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Abstract

In this paper, we study the complexity of the selection of a graph discretization order with a stepwise
linear cost function. Finding such vertex ordering has been proved to be an essential step to solve
discretizable distance geometry problems (DDGPs). DDGPs constitute a class of graph realization
problems where the vertices can be ordered in such a way that the search space of possible positions becomes
discrete, usually represented by a binary tree. In particular, it is useful to find discretization orders that
minimize an indicator of the size of the search tree. Our stepwise linear cost function generalizes this
situation and allows to discriminate the vertices into three categories depending on the number of adjacent
predecessors of each vertex in the order and on two parameters K and U. We provide a complete study
of NP-completeness for fixed values of K and U. Our main result is that the problem is NP-complete
in general for all values of K and U such that U ≥ K + 1 and U ≥ 2. A consequence of this result is
that the minimization of vertices with exactly K adjacent predecessors in a discretization order is also
NP-complete.

Keywords vertex ordering, distance geometry problem, discretization order, complexity analysis

I. Introduction

I.1. Preliminaries

We consider an undirected graph G := (V, E), where V := {1, . . . , |V|}. The edges are weighted
with nonnegative integer values ce for e ∈ E. A vertex ordering of G is a bijective numbering of
the set of vertices σ : V → {1, . . . , |V|}. Function σ defines a total order over V: for v ∈ V, σ(v)
provides the position of v in the vertex ordering and σ−1(i) is the vertex with position i in σ. For
a given graph, the set of vertex orderings is Π and it holds that |Π| = |V|!.

A vertex v ∈ V is called a neighbor of u ∈ V if and only if {u, v} ∈ E and we denote δ(v) the
neighbors of v, while d(v) := |δ(v)| is the degree of v. The set of predecessors of v ∈ V, denoted as
Pσ (v), includes every vertex u ∈ V such that σ(u) < σ(v). A vertex u ∈ V is then called a reference
of v ∈ V if and only if {u, v} ∈ E and σ(u) < σ(v). The set of references of v is denoted as Rσ (v).
In other words, a reference is an adjacent predecessor and it holds that Rσ (v) = Pσ (v) ∩ δ(v).

The vertex ordering problem is the problem of finding a permutation of the vertices minimizing
some objective function. The difference from one ordering problem to another relies on the nature
of the objective function and on additional constraints depending on the desired applications. One
of the particular applications motivating this paper is the discretization of the distance geometry
problem (DGP).
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I.2. The discretizable distance geometry problem

An instance of the DGP is described by a weighted graph (V, E, d) where d : E 7→ R+ is a distance
function, and a dimension K ∈ Z+. The problem consists in finding an embedding x : V 7→ RK

such that ‖x(u)− x(v)‖2 = d(u, v), ∀{u, v} ∈ E. The DGP naturally appears for instance when
searching for the 3D-conformation of a molecule when all we know is a sparse set of pairwise
distances between its atoms [6]. The DGP is NP-hard in general [13], and it has received a vivid
attention recently (see, e.g., [9, 11, 12], or [10] for a recent introduction).

In [1], the authors show that the DGP can be solved by enumeration if we can find a discretization
order of the graph, which they formally define as follows.

Definition 1. Let G = (V, E) be an undirected graph and K ∈ Z+ such that K ≤ |V|. A discretization
order of G is a vertex ordering σ, such that:

1. the subgraph induced by {σ−1(1), . . . , σ−1(K)} is complete, and

2. for all v ∈ V such that σ(v) > K, |Rv (σ)| ≥ K.

The problem of finding a discretization order of a graph G is called Discretization vertex order
problem1 (dvop) in the literature [8]. When there exists a discretization order of G, the set of
solutions is discrete (and finite) and can be enumerated efficiently using a branch-and-prune (BP)
algorithm [9, 11]. In this case, the level k of the BP tree is associated with the vertex v ∈ V such
that σ(v) = k: the nodes of level k enumerate the potential positions of v in RK. It has been shown
that under reasonable assumptions on d, a vertex with K references whose positions in RK are
already known can be located in at most two different positions, whereas a vertex with K + 1 or
more references has at most one possible position in RK.

The difficulty is that the potential realizations of the vertices are not computed during the
search for a discretization order. Therefore, the exact number of nodes in the BP tree cannot be
known before executing the BP.

As a compromise, the authors of [12] define an indicator of the size of the BP tree for a given
discretization order σ. For this, they define a double vertex as a vertex that has exactly K references
in σ (because the vertex may be assigned to two different positions). In contrast, a vertex with
more than K references is a single vertex. Since double vertices are responsible for the growth of
the BP tree, the first approach is to minimize their number. The decision problem associated with
the minimization of double vertices has been called Minimum double order problem (mdop) in [12].

MINIMUM DOUBLE ORDER PROBLEM (mdop)

Input: A simple undirected graph G = (V, E), two integers K ≤ |V| and N.

Question: Is there a discretization order of V such that the number of double vertices is
smaller or equal to N ?

I.3. Contributions and Outline

All in all, finding a discretization order, σ, that minimizes the number of double vertices is an
ordering problem over a simple undirected graph, which discriminates in some sense three classes
of vertices

1The problem is also sometimes called Trilateration ordering problem (TOP), see e.g.[1].
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1. indispensable vertices: the initial clique, {σ−1(1), . . . , σ−1(K)},

2. desirable vertices: single vertices, {v : |Rv (σ)| ≥ K + 1}, and

3. undesirable vertices: double vertices, {v : |Rv (σ)| = K}.

This problem has already been treated numerically in [12], where the authors developed cutting
plane algorithms to solve an integer programming formulation of the problem. In particular,
they observed that although several different methods have been tested, none could find optimal
solutions of instances with more than 100 vertices in less than one hour. Despite these experiments,
they did not establish any result about the theoretical complexity of mdop.

Lavor et al. [8] argue that dvop is trivially NP-complete, because the first K vertices in
the discretization order must form a clique. Since dvop is a particular case of mdop, it is
straightforward that the latter is NP-complete in general. The limit of this result is that K is not
a parameter that is expected to take large values in DGP. Since it stands for the dimension of a
molecule conformation, it will in general be equal to 2 or 3. As a consequence, we should be more
interested in complexity results where the value of K is fixed. For K fixed, Lavor et al. [8] show
that dvop is in P by exhibiting a greedy algorithm that solves the problem in polynomial time. In
contrast, close variants of dvop are NP-complete even for K fixed. For instance, Cassioli et al. [1]
study the variant of dvop where every vertex with order ≥ K + 1 is adjacent to its K predecessors.
They named this variant Contiguous trilateration order problem, and showed that it is NP-complete
for any positive fixed value of K.

The main contribution of this article is in the study of the complexity of mdop for any positive
and fixed value of K. For this, we consider a generalization of mdop that emphasizes the specificity
of the problem. We extend the problem by introducing one new parameter U ≥ K that will allow
for a hierarchy in the undesirable vertices. The set of feasible orders remains the same, but the
objective function will not only penalize the vertices with exactly K references but also those
with K + 1 to U − 1 references whenever U ≥ K + 2. More precisely, let σ be a feasible order, i.e.,
{σ−1(1), . . . , σ−1(K)} forms a clique and |Rv (σ)| ≥ K for all v such that σ(v) ≥ K + 1, and for all
v ∈ V, let

fσ (v) := max {0, U − |Rv (σ)|} (1)

be the number of references of v below U. We then wish to minimize the objective

FK,U (σ) := ∑
σ(v)≥K

fσ (v) , (2)

which is a stepwise-linear function of the numbers of references in σ. Observe that for U = K + 1,
we fall back to mdop. We name the associated decision problem Stepwise linear minimum vertex
ordering (slvo). In the rest of the article, the parameters K and U are respectively called minimum
and critical numbers of references. The restriction of slvo where the parameters are fixed to
values K and U is denoted as slvo(k,u). For simplicity, we will use the same notations for the
optimization problems associated with mdop, slvo and slvo(k,u) as long as it is not ambiguous.

STEPWISE LINEAR MINIMUM VERTEX ORDERING (slvo)

Input: A simple undirected graph G = (V, E), three integers K < |V|, K ≤ U ≤ |V| and N.

Question: Is there a discretization order of G, σ, such that FK,U (σ) ≤ N ?
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In our view, slvo emphasizes better that the difficulty of the problem lies in the breakpoints
defined by U in the objective function. It also offers some perspectives of new applications. For
instance, a web social network that wishes to create some new community or service will be
interested in the optimization of their advertisement campaign. Given that people are more likely
to join a community already joined by several friends of them, the order in which emails or
notifications are sent is of importance. In this context the initial clique may stand for influential
personalities who support the community, and the minimum number of references represents a
threshold under which the community would lose credit. The cost for not reaching the critical
number of references can be associated with incentives such as special offers for users who need
to be convinced. Although, this application is still fictional, our opinion is that the framework is
wide enough to welcome others.

The rest of the paper is organized as follows. The main contributions of this paper are the
complexity results presented in Section II and Section III. In particular, our main result is that,
even with fixed K and U, slvo is NP-complete whenever U ≥ max{K + 1, 2}. On the other
hand, the problem is polynomial if K = U or U ≤ 1. We conclude the article with a discussion
about perspectives in the development of solution algorithms and in the study of approximation
algorithms in Section IV.

II. Polynomial versions of slvo(k,u)

Some specific instances of slvo(k,u) can be solved in polynomial time. As already mentioned,
dvop is in P when K is fixed. The extension of this result to slvo is in the study of the problem
with fixed K and U such that U = K (i.e., slvo(k,k)). In this case, the objective function FK,U (σ) is
vanishing for any vertex ordering σ, so slvo(k,k) is tantamount to finding a discretization order.
As shown in [8], this can be done in polynomial time using Algorithm 1, whose execution time is
in O(|V|K × (|E| |V|2)). If U = K step 9 of the algorithm is not useful. Actually, the algorithm can
stop as soon as a discretization order is found.

Theorem 1. slvo(k,k) is in P for all K ∈ Z+.

1 for all K-cliques, C, of G do
2 Set the rank of the vertices of C to 1, . . . , K;
3 O := C, k := K;
4 while a vertex has not been ordered do
5 Let i be a vertex of V \O with maximum number of adjacent vertices in O;
6 If i has less than K adjacent vertices in O, treat the next clique;
7 Assign rank k + 1 to i;
8 k := k + 1;
9 Update the best discretization order found so far.;

10 If |O| < |V| for all initial cliques, then no discretization order exists. Otherwise, return the
best discretization order found so far.

Algorithm 1: Greedy Algorithm.

This result is of particular importance for the discretizable DGP, since it states that once the
initial clique is given, it can be known in polynomial time whether the problem has a solution or
not. The greedy algorithm suggested in [8] has also been used in practice in [12]. Its use as an
approximation algorithm is discussed in Section IV.
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Theorem 2. slvo(0,1) is in P.

Proof. Setting K = 0 and U = 1 yields any permutation of the vertices, σ, is a discretization
order, while fv (σ) = 1 if and only if vertex v has no reference in σ. For any k ≥ 1, if a vertex is
not in the same connected component as {σ(1), . . . , σ(k)}, then it does not have any reference
among them. Consequently, the minimum cost of a discretization order is at least equal to the
number of connected components in G. Reciprocally, one can readily build a vertex with total
cost exactly equal to the number of connected components by ordering those components one
after the other. Hence, minimizing the objective function is equivalent to counting the number of
connected components of G, which can be achieved in polynomial time.

III. NP-complete cases

The following results state that it is sufficient to search for the smallest values of K and U such
that slvo(k,u) is NP-complete. The proof is divided into two lemmata respectively for increasing
K and U.

Lemma 1. Let K, U ∈ Z+ such that U ≥ K + 1. If slvo(k,u) is NP-complete, then slvo(k+p,u+p) is
also NP-complete for all P ∈ Z+.

Proof. Let K, U ∈ Z+, U ≥ K + 1, and let the graph G = (V, E) and the positive integer N
constitute an arbitrary instance of slvo(k,u). For P ∈ Z+, we build an instance of slvo(k+p,u+p)
defined by GP = (V ∪VP, E ∪ EP) and N, where:

• the subgraph of GP induced by VP is a P-clique;

• there is one edge between each vertex of V and each vertex of VP.

More formally,

VP = {|V|+ 1, . . . , |V|+ P}, and EP = {{u, v} : u, v ∈ VP, u 6= v} ∪ {{u, v} : u ∈ V, v ∈ VP}.

Assume that G admits a discretization order, σ. Then we can build a vertex order, σP, of GP, by
positioning the vertices of VP first followed by those of V in the order given by σ, i.e.:

σP(VP) = {1, . . . , P}, and σP(v) = σ(v) + P, ∀v ∈ V.

One can verify that the subgraph of GP induced by {σ−1
P (1), . . . , σ−1(K + P)} is a clique, because

σ is discretization order, and that

|RσP (v)| = |Rσ (v)|+ P, ∀v ∈ V,

which means that FK,U (σ) = FK+P,U+P (σP).
Reciprocally, for any vertex order σP of GP, we can build a vertex order, σ, of G by removing

the elements of VP from σP. The number of references of each vertex of V in this new order is at
most reduced by P. It follows that if σP is a discretization order, then σ is a discretization order of
G such that fσ (v) ≤ fσP (v) , ∀v ∈ V.

Finally, the above shows that (G, N) is a YES instance of slvo(k,u) if and only if (GP, N) is a
YES instance of slvo(k+p,u+p), which concludes the proof.

The above result does not specify the impact of an arbitrary increase in the value of U (in
particular, one that is larger than the increase in the value of K). A closer look at the proof of
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Lemma 1 indicates that its last part would not generalize in this case. To illustrate this, consider
slvo(k,u) and slvo(k,u+p) (instead of slvo(k+p,u+p)) and the two instances (G, N) and (GP, N)
considered in the above proof. The difficulty is that a discretization order in GP, σP, would not
necessarily yield a discretization order, σ, in G by simply removing the vertices that are not in G.
Indeed, this operation decreases by up to P the number of references, which does not need to be
greater than K in σP. Hence some vertices may have less than K references in σ.

Nevertheless, if K = 0, every argument used in the proof of Lemma 1 remains valid if we wish
to reduce slvo(0,u+p) from slvo(0,u). This justifies the following result.

Lemma 2. Let U ∈ Z+. If slvo(0,u) is NP-complete, then slvo(0,u+p) is also NP-complete for all
P ∈ Z+.

In the previous section, we have proved that slvo(k,u) is in P for K = U and for K = 0, U = 1.
We are thus left with the question of the complexity of slvo(0,2) and slvo(1,2). Indeed, if those
two problems are NP-complete, Lemmata 1 and 2 show that slvo(k,u) is NP-complete for all
K, U ∈ Z+ such that U ≥ 2 and U ≥ K + 1. We start with the study of slvo(1,2).

Theorem 3. slvo(1,2) is NP-complete.

We will show the theorem by polynomial reduction from 3-sat, which is one the 21 NP-
complete problems of [7]. We consider an instance, (c, x) of 3-sat defined by the set of clauses
c = {c1, . . . , cm} defined over boolean variables x = {x1, . . . , xn, xn+1, . . . , x2n}, where xn+i stands
for the negation of xi for all i ∈ {1, . . . , n}. For j = 1, . . . , m, we denote, j1, j2 and j3 the indices of
the three terms of clause cj, i.e., cj = xj1 ∨ xj2 ∨ xj3 . For i ∈ (1, . . . , n), we also denote as C(i) the
set of clauses that involve xi or xi+n.

Remark 1. We assume without loss of generality that there is no clause with a variable and its opposite
and that all the variables appear in at least one clause.

We then proceed as follows to transform (c, x) into an instance (G, n) of slvo(1,2). The set of
vertices of G = (V, E) is the union of six different sets V = X ∪ X′ ∪ C ∪ Y ∪ {O} ∪ B, where X
and X′ correspond to the variables, C and Y correspond to the clauses and their terms, and {O}
and B are artificial vertices required for the validity of the reduction. An illustration of the part of
G related to some variable xi, i ∈ {1, . . . , n} is given in Figure 1. The exact rules that lead to the
construction of G are as follows.

• X ∪ X′: for each variable xi, i = 1, . . . , 2n, one pair of vertices (Xi, X′i) ∈ X × X′, connected
with one edge.

• C ∪ Y: for each clause cj one vertex Cj ∈ C and three vertices Yj,1, Yj,2, Yj,3 ∈ Y that stand for
the three terms of the clause: three edges connect Yj,1 , Yj,2 , and Yj,3 to Cj, and two edges
connect Yj,k to Xjk and X′jk for k = 1, . . . , 3.

• B: for all i ∈ {1, . . . , n}, one gadget {B0
i } ∪ Bi, such that Bi induces a binary tree rooted at B1

i
and whose leaves are connected to at most two vertices of C(i) each such that two leaves do
not connect to a same clause. Vertex B0

i is connected only to B1
i , Xi and Xi+n.

• {O}: one vertex, which will be used as the initial clique. Vertex O is connected to every vertex
of X, X′ and C. For all i ∈ {1, . . . , n}, O is also connected to B1

i and to the vertices of the Bi
that are connected to exactly one vertex of C(i).
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Y1,1 Y1,2 Y1,3 Y2,1 Y2,2 Y2,3 Y3,1 Y3,2 Y3,3

XiX′i Xi+n X′i+n

B0
i

B1
i

B2,1
i

B2,2
i

C3C1 C2

Figure 1: Part of the graph corresponding to xi and xi+n for i ∈ {1, . . . , n}. The dotted lines stand for edges that
connect a vertex to O. In this case, C(i) = {c1, c2, c3}, xi is in first position in c1 and in second position in
c2, and the negation of xi appears in third position in c3.

Observe that the number of vertices in gadget Bi is at most twice larger than the number of clauses
in C(i), because it is a binary tree whose number of leaves is less than the number of clauses in
C(i). It is then straightforward to verify that the transformation from (c, x) to (G, n) is polynomial.

In the proofs and discussions below, it is more convenient to focus once and for all on
discretization orders of G started with O. We thus extend G with another gadget connected only
to O. The gadget is composed of n + 1 levels including n + 1 vertices each, Op,q, 1 ≤ p ≤ n + 1,
1 ≤ q ≤ n + 1, and one last level containing two vertices On+2,1 and On+2,2. The first level is totally
connected to O and the last one is totally connected to On+2,1 and On+2,2. The other levels are
connected only to those directly above and below so that each vertex has two neighbors above and
two neighbors below. The gadget is illustrated in Figure 2. The graph obtained as the union of G
and this gadget is denoted as GO.
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O

O1,2 O1,3 O1,n O1,n+1O1,1

O2,2 O2,3 O2,n O2,n+1O2,1

On+1,2 On+1,3 On+1,n On+1,n+1On+1,1

On+2,1 On+2,2

Figure 2: Illustration of the gadget rooted at O.

Proposition 1. There is a discretization order of GO with cost at most n + 1 if and only if there is a
discretization order of G with cost at most n starting with O.

Proof. Let σ be a discretization order of G such that σ(1) = O and F1,2 (σ) ≤ n. We build a
discretization order, σO, of GO by setting σO(On+2,1) = 1, σO(On+2,2) = 2 and by inserting the
levels one by one in the order from n + 1 to 1. We then set all the vertices of G in σO in the same
order as that given by σ. In σO: On+2,2 is the only vertex of the gadget with a non-vanishing cost;
O has more than two references; the other vertices of G keep as many references as in σ. As a
consequence, F1,2

(
σO) = F1,2 (σ) + 1 ≤ n + 1.

Reciprocally, let σO be a discretization order of GO such that F1,2
(
σO) ≤ n + 1. A recurrence

on the levels of the gadget shows that if (σO)−1(1) does not belong to the gadget rooted at O, then
the constraints on the number of references of σO(On+2,1) and σO(On+2,2) can only be satisfied if
at least n + 1 vertices of the gadget have exactly one reference. Since the second vertex of σO also
has a non-vanishing cost, this is in contradiction with F1,2

(
σO) ≤ n + 1. We deduce that (σO)−1(1)

belongs to the gadget, hence we can simply remove the gadget from σO to get a discretization
order of G with cost at most n.

Since we will only be interested in discretization orders of GO with cost n + 1, this result
indicates that we can simply drop the gadget rooted at O and consider discretization orders of G
with cost n and whose first vertex is O. In the remainder, we thus focus on G and set σ(O) = 1 for
every discretization order σ of G. This allows to push the analysis of discretization orders of G
further.

1. Let σ be a discretization order of G that starts with O (i.e., σ(O) = 1). For i = 1, . . . , 2n, Xi and
X′i are neighbors and they are both adjacent to O. Since σ(O) = 1, Xi and X′i have at least one
reference, and the one with higher position in σ has at least two references. Since there is no
possible benefit in having more than two references, this means that Xi and X′i can always take
contiguous positions in a minimum cost discretization order. The relative position of the two
vertices will not make any difference in the number of references of their neighbors, but it
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might impact their own costs. Indeed, the second among Xi and X′i in the order will always
have a zero cost, because it has two references, but the first one may have only O as reference.
Notice now that every neighbor of X′i is also adjacent to Xi, but Xi has one extra neighbor, B0

i .
This means that Xi can only have more references than X′i (other than one another). We get
that it can only be beneficial to set Xi first among the two in the order, i.e., σ(X′i) = σ(Xi) + 1.

2. Now, considering any vertex order where σ(O) = 1 and σ(X′i) = σ(Xi) + 1, we can propagate
the deductions to any vertex Yj,k such that jk = i. This vertex is adjacent to Xi and X′i , so
their contiguity involves that either they are both references of Yj,k or Yj,k is a reference of
both. Given that Yj,k has only three neighbors (Cj is the third), the latter would involve that

fσ

(
Yj,k

)
≥ 1. Even if Xi has no other reference than O and Yj,k, it would still not increase the

total cost if Yj,k was set after Xi and X′i instead. Indeed, the cost of Xi would increase to 1 but
that of Yj,k would decrease to 0.

The preliminary analysis shows that we can focus the search for a solution of (G, n) to the
discretization orders σ such that σ(O) = 1, σ(X′i) = σ(Xi) + 1, ∀i, and σ(Yj,k) > σ(X′i) = σ(Xi) + 1
for all i, j, k such that jk = i. Given that Xi has no other neighbor than O, X′i , {Yj,k}jk=i and B0

i , it
will have a zero cost in σ if and only if σ(B0

i ) < σ(Xi).

Lemma 3. Let σ be a discretization order of G such that σ(1) = O and F1,2 (σ) = n. Then, there exists a
discretization order of G, σ̄, such that σ̄(1) = O and

1. F1,2 (σ̄) = n;

2. σ̄(X′i) = σ̄(Xi) + 1 for all i ∈ {1, . . . , 2n};

3. σ̄(Yj,k) > σ̄(Xi) for all i, j, k such that jk = i;

4. for all i ∈ {1, . . . , n}, fσ̄ (Xi) = 1 or fσ̄ (Xi+n) = 1.

Proof. From the discussion preceding the lemma, we have seen that if σ is a discretization order
of G such that σ(1) = O and F1,2 (σ) = n, there is another discretization order, σ̄, with cost
F1,2 (σ̄) ≤ F1,2 (σ) such that σ̄(O) = 1 and

• σ̄(X′i) = σ̄(Xi) + 1, ∀i = 1, . . . , 2n;

• σ̄(Yj,k) > σ̄(Xi) for all i, j, k such that jk = i.

Now, assume that there is some i ∈ {1, . . . , n} such that Xi and Xi+n both have two references.
Given that Xi has no other neighbor than O, X′i , {Yj,k}jk=i and B0

i , the properties of σ̄ imply that
σ̄(B0

i ) < σ̄(Xi). The same argument applied to Xi+n yields σ̄(B0
i ) < σ̄(Xi+n). It follows that B0

i
can have only one reference in σ̄ (i.e., B1

i ). All in all, we get that for all i ∈ {1, . . . , n}, fσ̄ (Xi) = 1
or fσ̄ (Xi+n) = 1 or fσ̄

(
B0

i
)
= 1. Observing that F1,2 (σ̄) = n, we can even further state that

fσ̄ (Xi) + fσ̄ (Xi+n) + fσ̄

(
B0

i

)
= 1, ∀i ∈ {1, . . . , n},

and that every other vertex has at least two references.
Assume that fσ̄

(
B0

i
)
= 1: we just discussed that in this case σ̄(B0

i ) < σ̄(Xi) and σ̄(B0
i ) <

σ̄(Xi+n). We can prove by induction on the binary tree Bi that we necessarily have σ̄(B0
i ) >

σ̄(Cj), ∀Cj ∈ C(i). Combined with the property that σ̄(Yj,k) > σ̄(Xi) for all i, j, k such that jk = i,
we get that σ̄(Cj) < σ̄(Yj,k) for all Cj ∈ C(i) and k = 1, 2, 3. This leads to Cj having only O as
reference, a contradiction. As a consequence, we know that for all i ∈ {1, . . . , n} either fσ̄ (Xi) = 1
or fσ̄ (Xi+1n) = 1.
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Proof of Theorem 3. We consider an instance (c, x) of 3-sat and the corresponding instance (G, n)
of slvo(1,2), as described above. We prove the theorem by showing that (c, x) is satisfiable if and
only if there is a discretization order of G, σ, such that σ(O) = 1 and F1,2 (σ̄) = n.

Assume first that (c, x) is satisfiable and let x̄ be a feasible solution. From this solution, we
construct a vertex order of G, σ, where σ(O) = 1 and for i ∈ {1, . . . , n}, σ(Xi) = 2i, σ(X′i) = 2i + 1
if x̄i = TRUE, and σ(Xi+n) = 2i, σ(X′i+n) = 2i + 1 if x̄i = FALSE. We then insert in σ the vertices
of Y that correspond to the variables of x set to TRUE in x̄. Every vertex of C is then inserted in
the vertex order, followed by all those of B. One can verify that up to this stage, the only ordered
vertices with exactly one reference are those of X, whose common reference is O. Indeed, the
ordered vertices of X′ also have O as reference and another in X, and the ordered vertices of Y
have one reference in X and another one in X′. Moreover, every vertex of C has O as reference
and and at least one reference in Y, because x̄ is a feasible solution of (c, x). Finally, one can verify
that the vertices of B can be ordered to have exactly two references as long as they come after the
vertices of C in the order.
The following vertices in σ are the vertices of X that do not appear at the beginning of the order,
i.e., Xi if x̄i = FALSE, or Xi+n if x̄i = TRUE. At this stage, each one of these variables has O and
B0

i as references. The remaining vertices of X′ and Y can then be inserted last in σ without increase
in the objective value. As a consequence, the objective value of σ is exactly n.

Assume then that (G, n) is a YES instance of slvo(1,2), such that there is a discretization
order of G, σ, that satisfies F1,2 (σ) = n, and σ(O) = 1. Lemma 3 states that there is another
discretization, σ̄, such that σ̄(1) = O and

• F1,2 (σ̄) = n;

• σ̄(X′i) = σ̄(Xi) + 1 for all i ∈ {1, . . . , 2n};

• σ̄(Yj,k) > σ̄(Xi) for all i, j, k such that jk = i;

• for all i ∈ {1, . . . , n}, fσ̄ (Xi) = 1 or fσ̄ (Xi+n) = 1.

This also means that fσ̄ (v) = 0, ∀v /∈ X. Now, denote as x̄ the vector of boolean values such that
for i = 1, . . . , n, x̄i = TRUE if fσ̄ (Xi) = 1, and x̄i = FALSE if fσ̄ (Xi+n) = 1. We show that x̄ is a
feasible solution of the instance of 3-sat.
We assume by contradiction that there is a clause cj that is not satisfied by x̄, i.e., x̄jk = FALSE for
k = 1, 2, 3. For k = 1, 2, 3, we then have fσ̄

(
Xjk

)
= 0 by definition of x̄. Arguments similar to those

used in the proof of Lemma 3 yield

σ̄(Yj,k) > σ̄(Xjk ) > σ̄(B0
jk
) > · · · > σ̄(Cj).

This means in particular that Cj has only one reference, which is in contradiction with the definition
of σ̄. We conclude that (c, x) is a YES instance of 3-sat.

One can observe that the constraints |Rσ (v)| ≥ 1 for all v 6= O did not intervene anywhere in
the proofs of Theorem 3 and Lemma 3. Actually, it is automatically satisfied for all neighbors of
O, and |Rσ (v)| ≥ 2 for every other vertex v if F1,2 (σ) = n. Moreover, if σ is feasible for slvo(1,2)
it is of course feasible for slvo(0,2) and F0,2 (σ) = F1,2 (σ) + 2 (because fσ (O) = 2 if K = 0).
This means that the proof of Theorem 3 could be immediately adapted to show that slvo(0,2) is
NP-complete by showing that (c, x) is a YES instance if and only if there is a vertex order of G, σ,
such that σ(O) = 1 and F0,2 (σ̄) = n + 2.

Theorem 4. slvo(0,2) is NP-complete.
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We conclude this complexity study by summing up the results in Table 1.

K U − K 0 1 2 ≥ 3

0 P P NP NP
1 P NP NP NP
2 P NP NP NP
≥ 3 P NP NP NP

Table 1: Complexity of slvo(k,u).

Since mdop for fixed K is equivalent to slvo(k,k+1), we immediately deduce the following.

Corollary 1. If K is fixed, mdop is in P if K = 0 and it is NP-complete for all K ≥ 1.

IV. Perspectives

Now that we have established that slvo(k,u) is NP-complete for every interesting value of K and
U, the next step should be in a through study of its approximability. In this perspective, it is
interesting that in both [3] and [12], the authors have noticed that the greedy method described in
Algorithm 1 performed very well on mdop with K fixed to 3. Although this might be a lead for
the types of instances they used, we can show that, in general, it does not even approximate the
optimal solution of slvo(1,2) (i.e., mdop with fixed K = 1) within a constant factor. This is shown
by the following example.

O

A0 A1 A2 AN

B1 B2 BNB−2 B−1 B0

Figure 3: Counter-example of approximation within a constant factor for the greedy algorithm.

Example 1. Consider the instance illustrated in Figure 3, which is composed of 2N + 5 vertices: one root
O, and two branches {A0, A1, . . . , AN} and {B−2, B−1, . . . , BN}. As in the previous section, we could add
a gadget rooted in O to make sure that any solution where O is not ordered before the two branches will cost
more than N, so we set σ(O) = 1.
The optimal value of this instance is 4, and it can be obtained with the discretization order

(O, B−2, B−1, B0, . . . , BN , A0, . . . , AN).

Indeed, in this order, B−2, B−1, B0, and A0 have one reference, and the other vertices (except O) have two.
After setting σ(O) = 1, Algorithm 1 picks one vertex among those with most references, i.e., either A0 or

11 11
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B−2. Assuming that it repeatedly picks a vertex in the A branch, the algorithm builds a discretization order
where the first N + 1 vertices (A0, . . . , AN) have only one reference. Finally, the approximation ratio of the
algorithm is (N + 1)/4 for this instance.

Another finding is that different values of K could lead to different approximability results
for slvo(k,u). Indeed, we provide in Appendix A a proof that slvo(k,u) is NP-complete for all
K ≥ 3, U ≥ K + 1, by reduction from minimum vertex cover (vc) in bounded degree graphs.
From an instance, GVC, of vc, the proof constructs an instance G of slvo(k,k+1), where K is the
maximum edge degree in GVC. We then show that there is a vertex cover of GVC with size N if
and only if there is a discretization order of G with value N. In particular, this shows that the
best approximation ratio that can be achieved for slvo(k,k+1) is at best that achieved for vc in
bounded degree graphs (see e.g., [5] for such results). However, this reduction is not valid for
U ≤ 3. Another similar reduction from the triangle packing problem [2] is still valid for K = 2
and U = 3, but not for smaller values of U. This leaves the possibility that better approximation
can be found for U = 2.

Finally, there is still much to be done in the practical solution of slvo(k,u), since recent studies
still fail in the search for optimal solutions of slvo(k,u) for graphs with as few as 100 vertices [1, 12].
We also hope that we will soon see some other real applications of slvo(k,u) than the discretization
of DGPs.

References

[1] Andrea Cassioli, Oktay Günlük, Carlile Lavor, and Leo Liberti. “Discretization vertex orders
in distance geometry”. In: Discrete Applied Mathematics 197 (2015), pp. 27–41.

[2] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. “Some simplified NP-complete
graph problems”. In: Theoretical Computer Science 1.3 (1976), pp. 237–267.

[3] Douglas S. Gonçalves and Antonio Mucherino. “Optimal partial discretization orders for
discretizable distance geometry”. In: International Transactions in Operational Research 23.5
(2016), pp. 947–967.

[4] Venkatesan Guruswami, C. Pandu Rangan, M. S. Chang, G. J. Chang, and C. K. Wong. “The
Vertex-Disjoint Triangles Problem”. In: Graph-Theoretic Concepts in Computer Science. Ed. by
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A. Alternative reduction for K ≥ 3

In this section, we prove that slvo(k,u) is NP-complete for all K ≥ 3, U = K + 1 by reduction from
the minimum vertex cover problem (vc) in graphs with vertex degrees bounded by K.

Alternative proof of NP-completeness of slvo(k,u) for K ≥ 3 and U = K + 1. We show the result by
polynomial reduction from vc in graphs with bounded degrees, which is NP-complete for any
maximum degree ∆ ≥ 3 [2].

Let GVC = (V, E) and N ≤ |V| define an arbitrary instance of vc with vertex degrees bounded
by ∆ ≥ 3. We then set K = ∆, U = K + 1 and construct the corresponding instance (G, N) of
slvo(k,u). To avoid confusion in the remainder, we index with VC the quantities that refer to GVC
(e.g. dVC(i) or δVC(i)), and we do not index those referring to G. The vertices of G are given by
the union of four sets of vertices C ∪VV ∪VE ∪Vi, where

1. C = {c1, . . . , cK} is a clique of G;

2. VV = {vi : i ∈ V} and for all i ∈ V, dVC(i) edges connect vi to the K + 1− dVC(i) first vertices
of C;

3. VE = {vi,j : {i, j} ∈ E} and for all {i, j} ∈ E, K edges connect vi,j to the vertices of C, and two
edges connect vi,j to vi and vj (∈ VV) as illustrated in Figure 4;
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vi

C

vj

vi,j

i ∈ V

j ∈ V

{i, j} ∈ E

K + 1− dVC(i) edges

K + 1− dVC(j) edges

K edges

Figure 4: Construction of VV and VE from V and E.

4. for all i ∈ V, the gadget Vi = {gi
1, . . . , gi

dVC(i)
} has dVC(i) vertices. Each vertex gi

k ∈ Vi is

connected to vi ∈ VV , to the K vertices of C, to gi
k−1 if k 6= 1 and to gi

k+1 if k 6= dVC(i). The
gadget is illustrated in Figure 5.

C

gi
1

gi
2

gi
dVC(i)

vi

K edges

K edges
K edges

K + 1− dVC(i) edges

dVC(i) edges

Figure 5: Illustration of the gadget Vi for i ∈ V.

Stated otherwise, the vertices of C induce the K-clique which will come first in the discretization
order. The vertices of VV and VE correspond to the vertices and edges of GVC, and the gadget Vi

will guarantee the validity of the reduction. It is straightforward that the transformation from
GVC to G is polynomial. We will prove that a vertex cover of GVC with cardinality N exists if and
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only if a discretization order of G with cost N exists, but we start with preliminary remarks about G.

First, observe that C is a clique of G so that it can be set at the beginning of a discretization
order of G. Moreover, the first K + 1 vertices of a discretization order must form a clique. If there
is no vertex of VV in this clique, it only includes vertices that are neighbors to every vertex of C.
This means that the vertices of C can be set at the beginning of the order without modifying its
cost. Otherwise, the K + 1-clique contains at most one vertex vi ∈ VV , because there is no edge
with both ends in VV . This vertex can always be set K + 1− th in the order without modifying its
cost, so the vertices of C can be set at the beginning of the order if there is no other vertex in the
clique. By construction of VE and Vi there can be either one vertex vi,j ∈ VE or at most two vertices
gi

k and gi
k+1 of Vi in the K + 1-clique. In both cases, we can modify the vertex order to obtain

σ(ck) = k, ∀k ∈ {1, . . . , K},
σ(gi

k) = K + k, ∀k ∈ {1, . . . , dVC(i)},
σ(vi) = K + dVC(i) + 1.

If there is also some vi,j ∈ VE in the K + 1-clique, we also set σ(vi,j) = K + dVC(i) + 2. The first
K + 1 vertices in σ still form a clique and the dVC(i) + 1 following vertices all have K + 1 references.
If we keep the relative order of the other vertices unchanged, this modification can only increase
their numbers of references, so the total cost of the order does not increase. As a consequence, we
can focus on discretization orders starting with C without loss of generality.

Secondly, a vertex vi,j ∈ VE is connected to the K vertices of C and to the two vertices vi, vj ∈ VV .
As a consequence, its cost will vanish if and only if it comes after vi or vj in the order. Similarly, the
costs of every vertex of Vi will vanish if and only if they all come after vi in the order. And recip-
rocally, the cost of vi ∈ VV vanishes if it comes after every vertex vi,j ∈ VE or after every vertex of Vi.

Using the above preliminary remarks, we show that a solution, σ, of slvo(k,u) with cost
FK,K+1 (σ) = N can be built from a vertex cover, I ⊂ V, of GVC with cardinality N. For this we set
the orders of the vertices from the beginning to the end as follows.

1. σ(ck) = k, ∀k ∈ {1, . . . , K}, then

2. ∀i ∈ I : σ(gi
1) ≤ · · · ≤ σ(gi

dVC(i)
) ≤ σ(vi), then

3. ∀{i, j} ∈ E : σ(vi,j) ≥ σ(vk), : ∀k ∈ I, then

4. ∀i ∈ V \ I : σ(vi) ≥ σ(vi,j), ∀{i, j} ∈ E, then

5. ∀i ∈ V \ I, ∀j ∈ Vi : σ(gi
dVC(i)

) ≥ · · · ≥ σ(gi
1) ≥ σ(vi).

By Item 2., for all i ∈ I, gi
1 has K references, but vi and every other vertex of Vi have K + 1

references. Item 3. sets the position of the vertices of VE only after those of {vi : i ∈ I}. Since
I is a vertex cover of GVC this guarantees that every vertex of VE has at least K + 1 references.
According to Items 4. and 5., the remaining vertices of VV then come after all the vertices of VE
and each vertex of Vi comes after vi for all i ∈ V \ I. As a consequence, these vertices also have a
vanishing cost. Finally, this means that the only vertices with non-vanishing costs are {gi

1 : i ∈ I},
hence FK,K+1 (σ) = |I| = N.

Reciprocally, let σ̃ be a discretization order of G such that σ̃(V1) = {1, . . . , K} and FK,K+1 (σ̃) =
N. We have already seen that we can consider that σ̃(C) = {1, . . . , K} without loss of generality.
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We then modify σ̃ to build another discretization order of G, σ, such that the the only vertices
with non-vanishing costs are {gi

1 : i ∈ I} for some set I of size at most N.
Let v /∈ {gi

1 : i ∈ V} such that fσ̃ (v) = 1. Then either, v ∈ VV , v ∈ VE or v ∈ Vi \ {gi
1} for i ∈ V.

• If v = vi ∈ VV , we can move vertices of Vi down in the order so that σ(gi
1) ≤ · · · ≤ σ(gi

dVC(i)
) ≤

σ(vi). We get fσ

(
gi

1
)
= 1, fσ

(
gi

k
)
= 0, ∀k ≥ 2 and fσ (vi) = 0.

• If there exists i ∈ V such that v = gi
k ∈ Vi, k 6= 1, we can perform similar changes so that

σ(gi
1) ≤ · · · ≤ σ(gi

dVC(i)
) ≤ σ(vi).

• If v = vi,j ∈ E, we can also set vi and some vertices of Vi to lower position in the order so
that σ(gi

1) ≤ · · · ≤ σ(gi
dVC(i)

) ≤ σ(vi) ≤ σ(vi,j). Once again, gi
1 becomes the only vertex with

non-vanishing cost among them.

In all the above modifications, we only set vertices to lower positions in the order while leaving
the relative orders of the remaining vertices unchanged. This means that only the number of
references of the vertices that have been moved can decrease. But, in every case there is at least
one vertex with non-vanishing cost among them before the modifications and exactly one after.
As a consequence, we get FK,K+1 (σ) = |I| ≤ N, where I = {i ∈ V : fσ

(
gi

1
)
= 1}.

Finally, ∀i ∈ V \ I and ∀v ∈ {vi} ∪Vi, fσ (v) = 0, so σ(vi) ≥ σ(vi,j), ∀{i, j} ∈ E. As a consequence,
every vertex of VE has at least one reference among the vertices of {vi : i ∈ I}, which means that I
is a vertex cover of GVC of size at most N.

Remark 2. In the same vein as the reduction from vc, we can also prove that slvo(2,3) is NP-complete by
a reduction from triangle packing. This problem has been proved to be NP-complete for graphs with a
3-clique in [2] and later studied for several classes of graphs in [4].
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