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Abstract A collection of sets on a ground set Un (Un = {1, 2, ..., n}) closed
under intersection and containing Un is known as a Moore family. The set of
Moore families for a fixed n is in bijection with the set of Moore co-families
(union-closed families containing the empty set) denoted Mn. This paper fol-
lows the work initiated in [9] in which we have given an inductive definition of
the lattice of Moore co-families. In the present paper we use this definition to
define a recursive decomposition tree of any Moore co-family and we design an
original algorithm to compute the closure under union of any family. Then we
compare performance of this algorithm to performance of Ganter’s algorithm
and Norris’ algorithm.
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1 Introduction

The concept of a collection of sets closed under intersection appears with dif-
ferent names depending on the scientific fields. The name Moore family was
first used by Birkhoff in [4] referring to E.H. Moore’s research. But, very fre-
quently, such a collection on a ground set Un (Un = {1, 2, ..., n}) is called
closure system. This concept is applied to numerous fields in pure or applied
mathematics and computer science. For instance Cohn, Sierksma and van de
Vel have used it in the framework of algebra and topology ([10,23,24]) while
Birkhoff, Davey and Priestley focused on order and lattice theory ([3,14]).
Formally a closure operator is an extensive, isotone and idempotent function
on 2Un (the set of all subsets of Un), and a closure system is then the set
of its fixed points. In particular, it is well-known that any closure system is
a complete lattice. In 1937, Birkhoff ([3]) gave a compact representation of
quasi-ordinal spaces (in other words, collections of sets closed under inter-
section and union and so which are distributive lattices). More recently the
notion of closure system appears as a significant concept in computer science
with research in relational databases ([12]), data analysis and formal concept
analysis ([16,1,17]). More precisely, Ganter and Wille defined a mathemati-
cal framework for classification, and Barbut defined and used Galois lattices
about questions raised in Guttman scales analysis ([1]). Meanwhile, in 1985,
equivalent collections of sets were called knowledge spaces by Doignon and
Falmagne ([11]). In that context, a set of the collection is a possible state of
knowledge of a student following a specific discipline in an educational setting
and such that each element of the state is some elementary fact or question
known by the student. The hypothesis is that the union of any set of states is
itself a knowledge state.

An important fact is that the collection of Moore families on Un is itself a
closure system. Indeed, the system composed of Moore families on Un contains
a maximum element (2Un) and the intersection of two Moore families is a
Moore family itself. To get an overall view of the properties of this closure
system, see the survey [7]. There exists a one-to-one mapping1 between the
set of Moore families and the set of Moore co-families defined dually as the
set of union-closed collections of subsets of Un containing the empty set. The
latter is denoted by Mn.

Some researches focus on quantitative properties of this lattice of Moore co-
families. As an example, Demetrovics et al. in [15] noticed that the problem of
counting Moore co-families on n elements is a complex issue for which there is
no known formula. Even the lack of such a formula has not been proved. In [6],
Burosh et al. consider the issue of counting Moore families as natural, so they
provide an upper bound for that number (see also [13]). An often supported
approach to try to obtain such a formula involves counting the number of

1 Basically, for a given Moore family, one only has to complement every set to obtain a
Moore co-family. For example, the Moore family {{1}, {1, 2}, {1, 3}, {1, 2, 3}} on U3 corre-
sponds to the Moore co-family {∅, {2}, {3}, {2, 3}} and vice versa.
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objects for the first values of n using a systematic procedure. In [20], Habib
and Nourine computed this number for n = 6 and in [8], Colomb et al. found
1019 families for n = 7. We can find such integer sequences on the well-known
On-line Encyclopedia of Integer Sequences2.

From this quantitative study of the lattice, the same authors were able to
state an inductive definition of the lattice (see [9]). In the present paper we de-
fine a recursive decomposition tree of a Moore co-family and then we design an
original algorithm to compute the closure of any given family. Then we com-
pare the performance of this algorithm to performance of Ganter’s algorithm
and Norris’ algorithm. The paper proceeds as follows. Section 2 introduces the
inductive definition of the lattice of Moore co-families. Section 3 describes how
each Moore co-family can be represented by a decomposition tree relying on
the inductive definition (see Theorem 1). In section 4 we introduce the new
algorithm and we give practical performance in section 5.

In the rest of the paper, we denote elements by numbers (1, 2, 3, . . . ). Sets
are denoted by capital letters (A,B,C, . . . ). Families of sets are denoted by
calligraphic letters (A,B, C, . . . ). Finally, we denote the sets of families of sets
by black board letters (A,B,C, . . . ).

2 Inductive definition of the lattice of Moore co-families

As explained in the introduction, the set of Moore co-families Mn on a ground
set Un = {1, 2, ..., n} has a lattice structure. We give an example of such a
lattice with the set of Moore co-families on U2 in Figure 1. In this section we
will show how to define the lattice Mn+1 from the lattice Mn (see [9] and [2]
for a complete study).

{}

{{},{1}} {{}, {2}}

{{}, {1}, {2}, {1,2}}

{{}, {2}, {1,2}}{{}, {1}, {1,2}}

{{}, {1,2}}

Fig. 1 The Hasse diagram of the complete setM2 of Moore co-families on the ground set U2,
ordered by inclusion. There are exactly 7 Moore co-families on U2. This ordered set (M2,⊆)
(or M2 for short) has a maximal element 2U2 (all subsets of U2) and the intersection of two
Moore co-families is a Moore co-family. Thus, M2 admits a complete lattice structure.

2 http://oeis.org/A102896
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2.1 Definitions and notations

For any integer n ≥ 1, let Un denote the set {1, . . . , n}. LetM be a family on
Un, we denote (M,⊆) the corresponding ordered set. Two sets M,M ′ in M
such that neither M ⊆ M ′ nor M ′ ⊆ M are said incomparable in (M,⊆). A
family where every pair of sets is incomparable is called an antichain. We say
that M is covered by M ′ in (M,⊆), denoted M ≺ M ′, if M ⊂ M ′ and there
is no M ′′ ∈M such that M ⊂M ′′ and M ′′ ⊂M ′. In the following, depending
of the context, we will denote M the ordered set (M,⊆) when no confusion
is possible.
Given a family M, a subfamily I of M is an ideal of M if it satisfies the
following implication for any pair M , M ′ inM,

M ⊆M ′ and M ′ ∈ I ⇒M ∈ I.

In other words, an ideal ofM is some antichain ofM and everything below it.
We shall use IM to denote the sets of ideals onM. Given a set X in a family
M, there exists a unique ideal I ofM with X as a maximum set (also called
the principal ideal generated by X in M). Let IM(X) denote this ideal. By
extension, we denote IMn(M) the principal ideal generated byM in the lattice
Mn. This way, IMn

(M) corresponds to the set of Moore co-families included
inM.

2.2 Compatible families

A Moore co-family M on Un+1 can be decomposed into 2 parts. The part
consisting of the sets ofM containing the element n+ 1 (denoted byMup for
the upper part), and the complementary part (denoted byMlow for the lower
part). The empty set is duplicated to be present in the two parts. Naturally,
M =Mup ∪Mlow. On the one hand, the familyMlow is clearly a family of
Mn. On the other hand, the familyMup is a Moore co-family on Un+1 with the
peculiarity that all its sets contain the element n+ 1 (we will denote Mup

n+1 as
the set of Moore co-families having this property). Thus, any Moore co-family
in Mup

n+1 can be seen as a Moore co-family in Mn for which the element n + 1
has been added to each set.

Example: LetM be a Moore co-family on U3:
M = {∅, {1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

We can decompose this family into two sub Moore co-families:
Mlow = {∅, {1}, {1, 2}} andMup = {∅, {1, 3}, {2, 3}, {1, 2, 3}}

To study the matching conditions between a family in Mn and a family in
Mup

n+1 in order for their union to be a family in Mn+1, we define the notion of
compatible family. Thus, we will say that a family in Mn is compatible with a
family in Mup

n+1 if the union of both families is a Moore co-family in Mn+1. The
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∅

{1, 2, 3}

{1, 3} {2, 3}

⋃

⋃

∅

{1}

{1, 2}

∅

{1}

∅

{1, 2, 3}

{1, 3}

{2, 3}{1}

∅

{1, 2, 3}

{1, 3}
{2, 3}

{1}
{1, 2}

Mup

Mlow

Mlow

Fig. 2 On the left, a Moore co-family in Mup
3 (all its non empty sets contain the element 3)

and two different compatible Moore co-families on U2. In both cases, the obtained family,
on the right, is itself a Moore co-family.

example in Figure 2 illustrates that for a fixed upper part, there are several
compatible lower parts.

In [8] we showed that for a given upper familyMup in Mup
n+1, there exists

a unique compatible maximal family and that the set of compatible families
with Mup corresponds to the set of the Moore co-families contained in this
maximal family. Function fn defined hereafter is a characterization of the
maximal compatible family of a given Moore co-family in Mup

n+1.

Definition 1 Let fn be a function from Mup
n+1 to Mn such that:

fn(M) = {X ∈ 2Un | ∀M ∈M \ ∅, M ∪X ∈M}

We will write f instead of fn when no confusion is possible.

Proposition 1 [8]
Let Mup be a Moore co-family in Mup

n+1, for any Moore co-family Mlow in
Mn, the two following assertions are equivalent:

(i) Mlow is compatible with Mup;
(ii) Mlow ⊆ fn(Mup).

For example, the maximal family associated with Mup (cf. Figure 2) is the
family {∅, {1}, {2}, {1, 2}}. Basically, it can be verified that the two compatible
families calledMlow and given in Figure 2 are sub-families of this family.
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Corollary 1 Let Mup be a Moore co-family in Mup
n+1, the set of Moore co-

families compatible with Mup is IMn(f(Mup)).

2.3 Recursive decomposition theorem

Basically, the set Mup
n+1 can be partitioned into 2 sets: families that do not

contain the singleton {n + 1} and families that contain it. These two sets are
in natural bijection with Mn.

Definition 2 For any integer n such that n ≥ 1, we define

g1,n+1 : Mn −→ Mup
n+1

M 7−→ {X ∈ 2Un+1 | ∃M ∈M \ {∅} such that X = M ∪ {n + 1}} ∪ {∅},
g2,n+1 : Mn −→ Mup

n+1

M 7−→ {X ∈ 2Un+1 | ∃M ∈M such that X = M ∪ {n + 1}} ∪ {∅},

We give an illustration in Figure 3.

∅

{2}

{2, 3}

{1}

{1, 2}

{1, 2, 3}

M

g1,4(M)

g2,4(M)

g2,4()

g1,4()

{4}

{2, 4}

{2, 3, 4}

{1, 2, 3, 4}

{1, 2, 4}

{1, 4}

∅

{2, 4}

{2, 3, 4}

{1, 2, 3, 4}

{1, 2, 4}

{1, 4}

∅

Fig. 3 On the left, a Moore co-family on U3. At the bottom-right, its image in Mup
4 by

g1,4. One can check that all its sets contain the element 4. Singleton {4} does not belong to
the family. At the top, its image by g2,4 is in Mup

4 too and contains the singleton {4}.
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Now, from a given Moore co-family M in Mn we can generate two sets of
Moore co-families in Mn+1.

1. The set of Moore co-families which do not contain the singleton {n + 1}.
These families will be under the form g1,n+1(M) ∪M′ with M′ a com-
patible Moore co-family of g1,n+1(M). In other wordsM′ has to be a sub
Moore co-family of fn(g1,n+1(M)). For the convenience of the study, we
denote hn the function fromMn toMn such that hn(M) = fn(g1,n+1(M)).
By this way the set of compatible Moore co-families with g1,n+1(M) is ex-
actly IMn

(hn(M)).

2. The set of Moore co-families which contain the singleton {n + 1}. These
families will be under the form g2,n+1(M) ∪ M′ with M′ a compatible
Moore co-family of g2,n+1(M). In other wordsM′ has to be a sub Moore
co-family of fn(g2,n+1(M)). But one can check that fn(g2,n+1(M)) is equal
to M. For this reason, the set of compatible families with g2,n+1(M) is
exactly IMn

(M).

An illustration is given in figure 4. IMn
(hn(M)) (respectively IMn

(M)) is the
principal ideal generated by hn(M) (respectivelyM) in the lattice Mn.

Mn

Mup
n+1

M

hn(M)

g1,n+1(M)

g2,n+1(M)

fn

{n + 1}

{n + 1}

fn

g1,n+1

g2,n+1

Fig. 4 On the left, the lattice Mn of the Moore co-families on Un. On the right, both
isomorphic images of this lattice obtained by functions g1,n+1 and g2,n+1. The gathering of
these two images corresponds to the set of Moore co-families Mup

n+1.
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Theorem 1 states that the set of Moore co-families on Un+1 can be obtained
from the set of Moore co-families on Un. In the recursive decomposition formula
given below forMn+1, we use the functions g1,n+1, g2,n+1 and hn defined above.

Theorem 1 (Colomb et al.[9]) For any integer n such that n ≥ 1,

Mn+1 =
⋃

M∈Mn
{g1,n+1(M) ∪M′ | M′ ∈ IMn

(hn(M))} ∪⋃
M∈Mn

{g2,n+1(M) ∪M′′ | M′′ ∈ IMn
(M)}

In other words, there exists a natural bi-partition of Mn+1: the families not
containing the singleton {n+ 1}, under the form g1,n+1(M)∪M′ withM′ as
a sub Moore co-family of hn(M) and the families containing {n + 1}, under
the form g2(M) ∪M′′ withM′′ as a sub Moore co-family ofM.

3 Recursive decomposition tree of a Moore co-family

3.1 Definition

LetM be a Moore co-family in Mn and x be in Un, we denoteMx (resp.Mx̄)
the restriction of M to its sets containing x (resp. to its sets not containing
x). The empty set is added toMx.

3.2 Theoretical results

Another interpretation of the inductive definition ofMn stated by Theorem 1 is
that any Moore co-family can be decomposed by a recursive process described
by Corollary 2.

Corollary 2 LetM be a Moore co-family in Mn, for any element x in Un,M
can be writtenMx̄∪gi,x(M′) withM′ such that gi,x(M′) corresponds toMx.
This way, M is decomposed in two Moore co-families Mx̄ and M′. Applying
recursively this decomposition principle we obtain a decomposition binary tree
ofM (each leaf is an empty set which cannot be further decomposed). The left
branch of a node M, labelled x̄, leads to Mx̄ and the right one, labelled gi,x,
leads to M′ such that gi,x(M′) is equal to Mx (if the singleton {x} ∈ M we
have i = 2, if not i = 1).

An example of decomposition of a Moore co-family is given in Figure 5.

Basically each leaf of the tree shall relate to one set, and only one, of the
initial family M. To obtain the set corresponding to a leaf, one just has to
iteratively apply the different functions g1,x or g2,x that can be found in the
path from the chosen leaf to the root of the tree.
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{3,123,35,1235} 

{ø,12,5,125}

                    {ø, 3, 34, 123, 1234, 35, 345, 1235, 12345}

g1,4

g2,3

g2,5

{ø,3,123,35,1235}

{ø}

4

{ø,12}

 {ø}

{1,15}

{ø,12,5,125}

g1,2

{ø,5}

g2,1

{ø,5}

{2}

g1,1

g2,2

{ø}

g2,33

2

1

5

3

1235

34

1234

ø

5

{ø}

g2,5

{ø}

35

{ø}

{ø,12}

{2}

g1,1

g2,2

{ø}

1

345

12345

5

{ø}

g2,5

{ø}

123

M4̄ M′

M = M4̄ ∪ g1,4(M′)

Fig. 5 Decomposition of a Moore co-family. The familyM′ only owns a right branch.

3.3 Proper decomposition tree

As we can see on the example given in Figure 5, some nodes only own a right
branch. This may occur in two well-defined cases: either when the chosen
element x belongs to each sets of the family, or when the family is reduced to
only one set to be further decomposed.

However, it is always possible to obtain a proper binary tree (i.e. a tree
with the property that any internal node owns exactly two sons, also called
full binary tree). Indeed, in the first case, for any given family with at least
two sets, there exists always an element x which belongs to a set and does
not belong to another one. By choosing this element wisely we are ensured
that the node will have a left branch and a right one. The second case can
be detected and the recursive process easily adapted. In Figure 6, we give a
proper decomposition tree for another family.

Remark: It is well known that in a proper binary tree the number of
leaves is equal to the number of internal nodes plus one. This point will be
further addressed to state the time complexity of the closure algorithm.
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1234
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34
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ø
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234
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2

3
3 3
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g2,2

g2,1

g2,3

g2,4 g2,4 g2,44 4 4

g2,3 g2,3 g2,3

ø 3 24

23 234

1

13 134 123 1234

124

24

4

4

ø

ø ø

g2,44

12 124

Fig. 6 Proper decomposition tree of a Moore co-family. Each internal node of the tree owns
two sons.

4 Algorithm to compute the union closure of a family

Problem of generation of closed-sets from a given family has been well-studied
these last years. Most of existing algorithms are based on a decomposition
strategy [18,5,21,19]. As previously stated, generation of closed-sets and co-
closed sets can be treated in the same way (i.e. one only have to complement
every sets of input and output families to obtain both closed and co-closed
families). In this section, we present an algorithm to generate a Moore co-
familyM from its set of join-irreducible elements denoted JM. This way, this
algorithm can be used to compute the closure by union of any given family.
This algorithm is based on Theorem 1.
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4.1 Definition

A set J ∈ M is called a join-irreducible of M if J covers only one set in
M. The set of all join-irreducible sets of M is denoted JM. By extension,
we denote by (JM)x (resp. (JM)x̄) the set of join-irreducible elements ofM
which contains the element x (resp. which do not contain the element x). We
call union product between two familiesM1 andM2, denotedM1⊗M2, the
set {M1 ∪M2 | M1 ∈M1,M2 ∈M2}.

4.2 Theoretical results

We propose an algorithm based on the decomposition of a Moore co-family
that only uses families of join-irreducible sets. In other words, for each step
of the recursive decomposition, given a local set JM, we compute families of
sets JMx̄ and JM′ corresponding to the join-irreducible sets of Mx̄ and M′

such thatM =Mx̄ ∪ gi(M′) (see Figure 7). Leaves of the decomposition tree
obtained after the whole recursive decomposition correspond to the closure of
the familyM (see Figure 8).

Proposition 2 Let M, M′ ∈ Mn, let x ∈ Un and let i ∈ {1, 2} such that
M =Mx̄ ∪ gi,x(M′). Then

– JMx̄
= (JM)x̄;

– JM′ ⊆ {J\{x} | J ∈ (JM)x} ∪ ((JM)x̄ ⊗ {J\{x} | J ∈ (JM)x}).

An illustration is given in Figure 7.

Proof

– JMx̄
= (JM)x̄

Any join-irreducible element ofM not containing x is also join-irreducible
of Mx̄. Indeed, all the predecessors of each set in M not containing x,
don’t contain x itself. Similarly, there is no new join-irreducible element in
JMx̄

.
– JM′ ⊆ {J\{x} | J ∈ (JM)x} ∪ ((JM)x̄ ⊗ {J\{x} | J ∈ (JM)x})

Let us show that gi,x(JM′) ⊆ (JM)x ∪ ((JM)x ⊗ (JM)x̄). Let J ∈
gi,x(JM′), then J ∈ JMx . Two cases occur:
– J ∈ JM and with x ∈ J we obtain J ∈ (JM)x;
– J owns one, and only one, immediate predecessor in Mx and another

one, and only one, in Mx̄. By contradiction, let us suppose by hy-
pothesis that J 6∈ (JM)x ⊗ (JM)x̄. Let S = {s1, s2, ..., sn} (resp.
S′ = {s′1, s′2, ..., s′m}) be the family of maximal join-irreducible sets
of Mx̄ (resp. of Mx) such that ∀i, si ⊂ J (resp. ∀j, s′j ⊂ J). Let
Max = max(S ⊗ S′), we have Max ⊆ Mx and by hypothesis we
have ∀m ∈ Max,m 6= J and so |Max| > 1. With J = (

⋃
m∈Max m)

we conclude that J 6∈ JMx
. J \ {x} 6∈ JM′ and then J 6∈ gi,x(JM′).

Contradiction.
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ut

234

23 34
32

ø

34

3

ø

34

3

ø

2 g2,2

24

4

34

32

34

3

2 g2,2

ø

ø

3

ø

24

4

JMx̄
=Mx̄

M JM

x = 2
x = 2

M�
34

T = {J \ {x} | J ∈ (JM)x}
JM� = Reduction(T ∪ (JM)x̄ ⊗ T )

T ∪ (JM)x̄ ⊗ T
JM� ⊆

M = Mx̄ ∪ g2,2(M�)

(JM)x̄

Fig. 7 On the left,M is splitted in two parts according to theorem 1 with x = 2. Singleton
{2} belongs toM and so i = 2. We haveM =Mx̄ ∪ g2,2(M′). To compute the closure of a
given family, we will simulate this step by the process illustrated on the right of the figure.
From the set of join irreducible elements of M denoted JM, thanks to Proposition 2 we
compute the set JMx̄ of join-irreducible elements of Mx̄ (on the left branch), and the set
JM′ of join-irreducible elements ofM′ (on the right branch). The set {3, 4}, in bold, is not
a join-irreducible element and it will be deleted by the reduction step.

Proposition 2 gives an exact characterization of the set JMx̄
and merely

states a superset of JM′ . But sets JM′ and {J\{x} | J ∈ (JM)x} ∪ (JM)x̄⊗
{J\{x} | J ∈ (JM)x} share exactly the same set of join-irreducible elements.
Thus, it will be enough to proceed to a step of reduction to obtain the exact
value of JM′ . We call process of reduction of a family, the process consisting
of deleting all non join-irreducible sets of the family.

4.3 Algorithm

The given Algorithm 1 is recursive and the stop case arises when the local
family JF is reduced to one set.

In the general case, an element x is wisely chosen (see Section 4.5) and
the algorithm computes the set of join-irreducible elements of Fx̄ and of F ′

such that F = Fx̄ ∪ gi,x(F ′). Since JFx̄
= (JF )x̄ the recursive process is
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launched on the left branch with (JF )x̄ as input family. After that, the set
JF ′ is computed thanks to a reduction process from the set {J\{x} | J ∈
(JF )x} ∪ (JF )x̄⊗{J\{x} | J ∈ (JF )x}. The recursive process is then launched
again, corresponding to the right branch, and the element x is added to the
current solution. See Figure 8 for an example.

Note: It is important to understand that the algorithm operates well even
if the given family is not reduced (the call to the reduction process in Line 4,
Algorithm 1, is optional). Although the process of reduction is the opposite
process to the closure process, our experimental results have shown that it
was much more efficient to reduce the given family before proceeding with the
closure process.

Algorithm 1: Co-closure(JF , S)
Input: JF a family of sets;

S the initial part of the current solution;
begin

if JF = {E} then
print(E ∪ S);

else
1 Choose an element x in

⋃JF \
⋂JF ;

2 JFx̄ ← {E | x 6∈ E,E ∈ JF};
3 T ← {E \ {x} | x ∈ E,E ∈ JF};

Co-Closure(JFx̄
, S);

4 JF ′ ← Reduction(T ∪ JFx̄
⊗ T );

Co-Closure(JF ′ , S ∪ {x});

4.4 Discussion about the time complexity of Algorithm 1

We denote |Co− closure(F)| the size of the closure under union of the family
F . Since the decomposition tree obtained at the end of the whole process
of Algorithm 1 is a proper binary tree, we know that this tree owns exactly
|Co − closure(F)| − 1 internal nodes3. This means that the time complexity
needed to compute one set of the closure corresponds exactly to the time
complexity needed to treat one internal node. Moreover in the following we
will suppose that the size of the ground set Un is constant. This way, the
operations on sets like intersection and union will be considered feasible in
constant time.

Let F be the local family of an internal node. Lines 1, 2 and 3 of Algorithm
1 can be treated in one pass through the family F . All these operations can

3 For any proper binary tree, the number of leaves is equal to the number of internal
nodes plus one.
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Fig. 8 Proper decomposition tree obtained by the execution of Algorithm 1 on the set of
join irreducible elements of the family given in Figure 6. One can check that leaves of the
trees are strictly identical.

be done in O(|F|). Basically, the whole complexity of the computing lies in
line 4 with two processes: a process of union product between two sets and
then a process of reduction of the obtained family. These two processes are
quadratic in the size of the involved families. The most noteworthy fact is that
sizes of this families are not always polynomially correlated with the size of
the initial family (we mean the family of the root of the tree). But one has
to know that the size of the family resulting of the product is never greater
than to the number of leaves of the sub-tree rooted in this internal node. This
means that the local time complexity is polynomially linked with the size of
the sub-result rooted in this node.

4.5 Discussion about the choice of the element x

The choice of the element x leads to a bi-partition of the input family JF into
JFx̄

and T (see Lines 2 and 3, Algorithm 1). Thus the sum |JFx̄
| + |T | is

constant. As already mentioned, complexity of Algorithm 1 lies in line 4 with
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a process of union product between JFx̄ and T and a process of reduction of
the result. These two operations have a time complexity in O(|JFx̄ | ∗ |T |).

– Regarding the union product, the biggest complexity comes when sets have
approximately the same size. By this way, we must choose x to ensure that
|JFx̄ | or |T | is minimum.

– Our experimental studies show that the majority of time is spent on the
process of reduction. Along the left branch of the recursive process, the
time consuming process steps such as the reduction is the sum of the times
spent on the reduction of each set T . The complexity of this reduction
being quadratic, to achieve short response times, the smallest possible sub-
families which do not contain x should always be used.

For these two reasons, the best choice for x is the element which occurs
the least often. But it is, in any case, essential to state here that, in spite of all
these general rules, the computation time to find x will increase significantly
calculation times of the whole process.

5 Experimental results

5.1 Experimental design

In order to assess performance, the approach described previously has been
implemented in C. The executable file was generated with compiler GCC 4.4.
The experiments were performed on a AMD Opteron 8356 processor with 2.3
GHz of speed and 256 Go of memory. Several well-known benchmark real-
world data-sets were chosen from UCI4. The following table summarizes the
data-sets characteristics.

Table 1 Data-sets characteristics of several well-known benchmark data-sets chosen from
UCI.

Data-sets # Attributes # Sets # Attributes per set # Closed set

Mushroom 119 8124 23 238 709
Chess 75 3196 37 930 851 336
Connect 129 67557 43 1 415 737 994

To compare performance of Co-closure and previous approaches with re-
spect to the size of family, we implemented a version of Norris’ algorithm
(see [22]) as well as a version of Ganter’s algorithm called Next-closure (see
[18]). It can be noticed that we have used the natural one to one mapping be-
tween Moore and co-Moore families to compute closed sets using Co-Closure
algorithm.

4 Uci machine learning repository
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5.2 Result

We have compared execution time of these different algorithms on parts of
benchmark data-sets. In that way, we have run algorithms on the first m sets
of each benchmark data-sets by varying m. On Tables 2, 3, and 4 we give
numbers of co-closed sets we obtained by execution of the three algorithms
for each size of the considered data-sets partition. In the last three rows we
give the execution time for each algorithm. ms stands for milliseconds, m for
minutes, h for hours and d for days.

Table 2 Chess

#sets # closed Ganter Norris Co-Closure

100 10 867 60ms 60ms 140ms
200 73 033 160ms 190ms 600ms
500 1 051 399 1.6s 6s 5s
800 10 145 237 21s 1m19 33s
1000 38 558 373 1m50s 5m20 3m
1500 183 655 113 12m 50m 51m
2000 292 107 880 23m 2h02 4h15
2500 386 235 477 40m >5h >5h
3196 930 851 336 2h15 >5h >5h

Table 3 Mushroom

#sets # closed Ganter Norris Co-Closure

50 1208 75ms 75ms 90ms
100 3459 80ms 85ms 150ms
200 7086 80ms 95ms 310ms
500 17 781 120ms 180ms 570ms
1000 32 513 205ms 380ms 900ms
1500 48 414 340ms 680ms 1.5s
2000 58 982 430ms 1s 1.7s
2500 72 008 490ms 2s 2.5s
3000 80901 700ms 2.1s 3s
4000 104 104 1s 3.5s 4.5s
5000 136 401 1.5s 5s 7s
6000 156 573 2s 7.5s 8.5s
7000 214 950 3.5s 11.7s 13s
8000 237 874 4s 17s 15s
8124 238 709 4.1s 17.4s 15.5s
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Table 4 Connect

#sets # closed Ganter Norris Co-Closure

100 13 406 730ms 760ms 850ms
200 63 360 840ms 900ms 1.3s
300 149 393 875ms 1.2s 2s
500 445 676 1.3s 3.1s 7.3s
800 753 371 2s 8s 14s
1000 1 069 569 3s 17s 24s
2000 4 732 622 20s 2m 3m40s
3000 9 742 932 1m 5m35s 20m
5000 22 543 073 3m25s 26m 3h15m
10000 69 916 189 20m >4h >5h
20000 242 644 240 2h30 >4h >5h
67557 1 415 737 994 4d >4h >5h

5.3 Analysis of the results

The first point to note here is that Ganter’s algorithm shows the best perfor-
mance in each context. Basically, the performance of the proposed algorithm
appears to be equivalent to the performance of Norris’ algorithm. We should
add that in some cases this algorithm exceeds Norris’. Moreover, let us recall
that Norris’ algorithm consumes a lot of memory. Indeed the family resulting
of the computing is kept in memory during all the process. Note that it is not
the case of the algorithmic process described in this paper.

6 Conclusion

In [8] authors have computed the exact size of |M7|. From this first technical
challenge has derived a recursive decomposition theorem which has been for-
malized in [9]. In the present article we have shown that each Moore co-family
can be represented by a proper decomposition tree and we use this principle
to design an original algorithm to close by union any family. The process has
been implemented and the results on well-known benchmarks are given in the
last section. Experimentations state the correctness of the process but show
that time complexity is not satisfying. However, we think this straightforward
process is interesting by itself. Moreover we have determined two major ways
of improvement :

– Since most of the time is spent on the reduction of the set of join-irreducible
elements on the right branch, a question could be to early detect sets,
produced by a union product, which will not be join-irreducible elements
and so will be deleted by the reduction process.

– A second interesting question will be the design of some kind of dynamic
programming algorithm to take into account the redundancy of families
which appear in the bottom part of the tree. Maybe we should use another
closure algorithm in this part of the process.
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