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Abstract

In this conference proceeding’s paper we recall several constructions related to periodic
Schrödinger operators in the discrete setting. Our aim is to focus on periodic systems
without being distracted by any perturbation. This material is mainly borrowed from a
joint paper with D. Parra where perturbations of such periodic systems are also considered.

1 Introduction

There were two motivations for writing this review paper. Firstly, it corresponds to a paper
version of a presentation made during the conference Mathematical aspects of quantum fields
and related topics organized at Rims in Kyoto in July 2018. This paper will be published
in the proceedings of this conference. The second motivation comes from discussions with
Prof. K. Kurdyka which took place in September 2018. Indeed, after several unitary transfor-
mations and identifications, periodic Schrödinger operators lead naturally to a certain class
of hyperbolic polynomials which have been extensively studied in [24]. For that reason, the
present paper contains a thorough presentation of periodic Schrödinger operators on topolog-
ical crystals, together with a detailed description of these transformations. Let us emphasize
that only purely periodic systems are considered, with all perturbation arguments removed.
We hope that such an uncluttered presentation will facilitate the access of this theory to a
larger readership. On the other hand, note that more complete investigations on such models
have been performed in [26] to which we refer for the more analytical part.

The study of Laplace operators on infinite graphs has recently attracted lots of attention.
Let us mention for example the problem of essential self-adjointness for very general infinite
graphs [12, 18], or the more precise study of the spectrum for bounded Laplacians [4, 25].
For periodic graphs it is well-known that this spectrum has a band structure with at most
a finite number of eigenvalues of infinite multiplicity [14]. This structure is preserved if one
considers periodic Schrödinger operators [20, 21, 22]. Perturbations of such systems have also
been extensively considered, as for example in [3, 5, 7, 14, 16, 19] and more recently in [26].
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As mentioned above, we do not consider perturbations of the purely periodic system.
Consequently this paper does not contain any new result, but focus on a precise description
of the framework and on the path to a new representation in terms of analytically fibered
operators. In addition to this, we construct in the last section a conjugate operator for any
analytically fibered matrix valued operator. Again this construction is not new and a similar
construction already appeared in the seminal paper [11]. However, the version provided in
the present paper is more detailed, and slightly simpler since the initial operator is bounded.
Note that the interest for presenting this construction is twofold. On the one hand, a conjugate
operator is an essential tool for investigating perturbed systems, as shown in [1, 7, 25, 26]. On
the other hand, the construction provided is intimately linked to Rellich’s theorem, a result
which is also at the root of the investigations performed in [24]. A better understanding of
the construction of the conjugate operator in the context of this paper would certainly be
valuable.

2 Topological crystals and periodic Schrödinger operators

In this section we provide the definition of a topological crystal and define some related
notions. An explicit and rather general construction of a topological crystal is introduced at
the end of the section.

A graph X =
(
V (X), E(X)

)
is composed of a set of vertices V (X) and a set of unoriented

edges E(X). Graphs with loops and parallel edges are accepted. Generically we shall use the
notation x, y for elements of V (X), and e for elements of E(X). If both V (X) and E(X) are
finite sets, the graph X is said to be finite.

A morphism ω : X → X between two graphs X and X is composed of two maps ω :
V (X)→ V (X) and ω : E(X)→ E(X) such that it preserves the adjacency relations between
vertices and edges, namely if e is an edge in X between the vertices x and y, then ω(e) is an
edge in X between the vertices ω(x) and ω(y). Let us stress that we use the same notation
for the two maps ω : V (X)→ V (X) and ω : E(X)→ E(X), and that this should not lead to
any confusion. An isomorphism is a morphism that is a bijection on the vertices and on the
edges. The group of isomorphisms of a graph X into itself is denoted by Aut(X). For a vertex
x ∈ V (X) we also set E(X)x := {e ∈ E(X) | x ∈ e}. If E(X)x is finite for every x ∈ V (X) we
say that X is locally finite.

A morphism ω : X → X between two graphs is said to be a covering map if

(i) ω : V (X)→ V (X) is surjective,

(ii) for all x ∈ V (X), the restriction ω|E(X)x : E(X)x → E(X)ω(x) is a bijection.

In that case we say that X is a covering graph over the base graph X. For such a covering,
we define the transformation group of the covering as the subgroup of Aut(X), denoted by Γ,
such that for every µ ∈ Γ the equality ω ◦ µ = ω holds. We now define a topological crystal,
and refer to [30, Sec. 6.2] for more details.

Definition 2.1. A d-dimensional topological crystal is a quadruplet (X,X, ω,Γ) such that:

(i) X and X are graphs, with X finite,

(ii) ω : X → X is a covering map,
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(iii) The transformation group Γ of ω is isomorphic to Zd,

(iv) ω is regular, i.e. for every x, y ∈ V (X) satisfying ω(x) = ω(y) there exists µ ∈ Γ such
that x = µy.

We usually say that X is a topological crystal if it admits a d-dimensional topological
crystal structure (X,X, ω,Γ). Note that all topological crystal are locally finite, with an upper
bound for the number of elements in E(X)x independent of x. Indeed, the local finiteness and
the fixed upper bound follow from the definition of a covering and the finiteness of X. For
shortness, we shall use the multiplicative notation for the group law in the abstract setting,
but the additive notation for the group Zd.

Remark 2.2. Topological crystals have been extensively studied in the monograph [30] to
which we refer for many examples. Let us also mention [5] in which one can find square,
triangular, hexagonal, and diamond periodic graphs. In reference [20] body-centered cubic
and face-centered cubic periodic graphs have been studied, while armchair graph is presented
in [6]. We also refer to the Remark 2.3 below for an explicit procedure generating an infinite
number of topological crystals (X,X, ω,Γ) once a small graph X has been chosen.

For a while let us come back to an arbitrary graph X. From the set of unoriented edges
E(X) of the graph X we construct the set of oriented edges A(X) by considering for every
unoriented edge between x and y both oriented edges from x to y and from y to x. The elements
of A(X) are still denoted by e. The origin vertex of such an oriented edge e is denoted by o(e),
the terminal one by t(e), and e denotes the edge obtained from e by interchanging the vertices,
i.e. o(e) = t(e) and t(e) = o(e). For x ∈ V (X) we set A(X)x ≡ Ax := {e ∈ A(X) | o(e) = x}.
Clearly, any morphism ω between a graph X and a graph X, and in particular any covering
map, can be extended to a map sending oriented edges of A(X) to oriented edges of A(X).
For this extension we keep the convenient notation ω : A(X)→ A(X).

A measure m on a graph X is a strictly positive function defined on vertices and on
unoriented edges. On oriented edges, the measure satisfies m(e) = m(e). From now on, let us
assume that the graph X is locally finite. For such a graph the Laplace operator is defined on
the space of 0-cochains C0(X) := {f | V (X)→ C} by

[∆(X,m)f ] (x) :=
∑
e∈Ax

m(e)

m(x)

(
f
(
t(e)
)
− f(x)

)
, ∀f ∈ C0(X).

Furthermore, when

degm : V (X)→ R+, degm(x) :=
∑
e∈Ax

m(e)

m(x)
(2.1)

is bounded, then the operator ∆(X,m) is a bounded self-adjoint operator in the Hilbert space

l2(X,m) :=
{
f ∈ C0(X) | ‖f‖2 :=

∑
x∈V (X)

m(x)|f(x)|2 <∞
}

endowed with the scalar product

〈f, g〉 :=
∑

x∈V (X)

m(x)f(x)g(x) ∀f, g ∈ l2(X,m).
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We refer for example to [18, Thm. 2.4] for the statement about boundedness. Note also that
we use the simple notation l2(X,m) for what could have been denoted by l2

(
V (X),m

)
.

Let us now come back to the setting of a topological crystal (X,X, ω,Γ). We also consider
a Γ-periodic measure m0 and a Γ-periodic function R0 : V (X) → R. The periodicity means
that for every µ ∈ Γ, x ∈ V (X) and e ∈ E(X) we have m0(µx) = m0(x), m0(µe) = m0(e) and
R0(µx) = R0(x). We can provide the definition of a periodic Schrödinger operator : it consists
in the operator

H0 := −∆(X,m0) +R0. (2.2)

Note that we use the same notation for the function R0 and for the corresponding multipli-
cation operator. As a consequence of our assumptions, the expression H0 defines a bounded
self-adjoint operator in the Hilbert space l2(X,m0).

In the paper [26] perturbations of the operators H0 are considered, either by assuming
that the measure m is only asymptotically periodic and/or by assuming that a function R is
only asymptotically periodic. Perturbations theory has then to be used in order to study the
corresponding operator

H := −∆(X,m) +R, (2.3)

and for such investigations the theory of the conjugate operator plays an important role. Let
us still mention that such investigations take place in a 2-Hilbert spaces setting, since the
natural Hilbert space for H is l2(X,m). Various tools related to toroidal pseudo-differential
operators have also to be borrowed from [28]. We do not continue in this direction in the
present manuscript.

Let us now introduce a notion of norm on the set of vertices or edges. We consider again
the topological crystal (X,X, ω,Γ). The notation x, resp. x, will be used for the elements of
V (X), resp. of V (X), and accordingly the notation e, resp. e, will be used for the elements of
E(X), resp. of E(X). It follows from the assumption (iii) in Definition 2.1 that Γ\X ∼= X, and
therefore we can identify V (X) as a subset of V (X) by choosing a representative of each orbit.
Namely, since V (X) = {x1, . . . , xn} for some n ∈ N, we choose {x1, . . . , xn} ⊂ V (X) such that
ω(xj) = xj for any j ∈ {1, . . . , n}. For shortness we also use the notation x̌ := ω(x) ∈ V (X)
for any x ∈ V (X), and reciprocally for any x ∈ X we write x̂ ∈ {x1, . . . , xn} for the unique
element xj in this set such that ω(xj) = x.

As a consequence of the previous identification we can also identify A(X) as a subset of
A(X). More precisely, we identify A(X) with ∪nj=1Axj ⊂ A(X) and use notations similar to
the previous ones: For any e ∈ A(X) one sets ě := ω(e) ∈ A(X), and for any e ∈ A(X) one sets
ê ∈ ∪nj=1Axj for the unique element in ∪nj=1Axj such that ω(ê) = e. Let us stress that these
identifications and notations depend only on the initial choice of {x1, . . . , xn} ⊂ V (X).

We have now enough notation for defining the entire part of a vertex x as the map
b · c : V (X)→ Γ satisfying

bxĉ̌x = x . (2.4)

Similarly, the entire part of an edge is defined as the map b · c : A(X)→ Γ satisfying

beĉ̌e = e . (2.5)

The existence of this function b · c follows from the assumption (iv) of Definition 2.1 on the
regularity of a topological crystal. One easy consequence of the previous construction is that
the equality bec = bo(e)c holds for any e ∈ A(X).
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For later use, let us finally define the map

η : A(X)→ Γ, η(e) := bt(e)cbo(e)c−1

and call η(e) the index of the edge e. For any µ ∈ Γ we then infer that

η(µe) = bt(µe)cbo(µe)c−1 = µbt(e)cµ−1bo(e)c−1 = η(e).

This periodicity enables us to define unambiguously η : A(X)→ Γ by the relation η(e) := η(ê)
for every e ∈ A(X). Again, this index on A(X) depends only on the initial choice {x1, . . . , xn} ⊂
V (X) and could not be defined by considering only A(X).

Before moving to the next section, we provide an explicit construction of a topological
crystal, starting from a given X.

Remark 2.3. In this remark we provide a procedure for constructing a topological crystal
(X,X, ω,Γ) for any given graph X and almost every index function η. The construction of X
mimics the construction of the universal covering of a graph provided in [30, Chp. 5]. Let X be
a given finite graph, and let us choose any spanning tree T in X. The number of edges in X\T
corresponds to the Betti number B(X) of X. Then, let us choose any integer d ≤ B(X), which
will lead to a transformation group Γ equal to Zd. For any edge e ∈ X\T let us associate an
element η(e) ∈ Zd with the single condition that the set {η(e)}e∈X\T generates Zd. For such an
edge e ∈ X\T, we also fix an orientation to e by choosing o(e) and t(e). We are now ready for
the construction of X: i) For any µ ∈ Zd we consider a copy of T and denote it by Tµ. ii) For
any e ∈ X\T and for any µ ∈ Zd we set an edge between the vertex corresponding to o(e) in
Tµ and the vertex corresponding to t(e) in Tµη(e). iii) We define the set V (X) by collecting
all vertices of {Tµ}µ∈Zd and for E(X) all edges of {Tµ}µ∈Zd together with the additional
edges constructed in ii). With an obvious definition for the map ω we finally observe that
(X,X, ω,Zd) is a d-dimensional topological crystal. In addition, if we fix n distinct vertices
{x1, . . . , xn} of T0 with 0 ∈ Zd and n the cardinality of V (X), then any x ∈ V (X) with x ∈ Tµ
will satisfy bxc = µ and any e ∈ A(X) will satisfy either bec = 0 or bec = ±η(e) for one e in
our initial set X\T.

3 A bounded analytically fibered operator

The aim of this section is to construct another representation of the operator H0, more suitable
for further investigations. For that purpose we first introduce the dual group of Γ, denoted
by Γ̂. It consists of group homomorphisms from Γ to the multiplicative group T ⊂ C endowed
with pointwise multiplication. Since Γ is discrete, Γ̂ is a compact Abelian group and comes
with a normalized Haar measure dξ of volume 1 [9, Proposition 4.24]. We can then define the
Fourier transform F : l1(Γ)→ C(Γ̂) by

[Ff ](ξ) ≡ f̂(ξ) :=
∑
µ∈Γ

ξ(µ)f(µ) (3.1)

and it is well-known that this extends to a unitary map from l2(Γ) to L2(Γ̂) which is still
denoted by F . The adjoint map F ∗ : L2(Γ̂) → l2(Γ) is defined on elements in L1(Γ̂) by the
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formula [F ∗u](µ) =
∫

Γ̂ dξ ξ(µ)u(ξ). Furthermore, by the Fourier inversion formula for any
f ∈ l1(Γ) one has [9, Theorem 4.21]:

f(µ) =

∫
Γ̂

dξ ξ(µ)f̂(ξ),

or equivalently for any u ∈ L1(Γ̂) such that F ∗u ∈ l1(Γ)

u(ξ) =
∑
µ∈Γ

ξ(µ)[F ∗u](µ).

Let us now provide a direct integral decomposition. The framework is the following: a
topological crystal (X,X, ω,Γ) and a Γ-periodic measure m0 on X. Because of its periodicity,
this measure is also well-defined on X by the relation m0(x) := m0(x̂) and m0(e) := m0(ê).
For simplicity, we keep the same notation for this measure on X. Let us consider the Hilbert
spaces l2(X,m0) and L2

(
Γ̂; l2(X,m0)

)
, and use the shorter notation l2(X) and L2

(
Γ̂; l2(X)

)
.

We also denote by cc(X) ⊂ l2(X) the space of 0-cochains of finite support. We then define
the map U : cc(X)→ L2

(
Γ̂; l2(X)

)
for f ∈ cc(X), ξ ∈ Γ̂, and x ∈ V (X) by

[U f ](ξ, x) :=
∑
µ∈Γ

ξ(µ)f(µx̂). (3.2)

Clearly, the map U corresponds the composition of two maps: the identification of l2(X)
with l2

(
Γ; l2(X)

)
and the Fourier transform introduced in (3.1). As a consequence, U extends

to a unitary map from l2(X) to L2
(
Γ̂; l2(X)

)
, and we shall keep the same notation for this

continuous extension. The formula for its adjoint is then given on any u ∈ L1
(
Γ̂; l2(X)

)
by

[U ∗u](x) =

∫
Γ̂

dξ ξ(bxc)u(ξ, x̌).

Lemma 3.1 (Lemma 3.2 of [26]). Let (X,X, ω,Γ) be a topological crystal and let m0 be a
Γ-periodic measure on X. Then for any u ∈ L2

(
Γ̂; l2(X)

)
, every x ∈ V (X) and almost every

ξ ∈ Γ̂ the following equality holds:

[U ∆(X,m0)U ∗u](ξ, x) =
∑
e∈Ax

m0(e)

m0(x)

[
ξ
(
η(e)

)
u
(
ξ, t(e)

)
− u(ξ, x)

]
.

Let us now make a connection with the so-called magnetic Laplacians. We recall that for
any θ : A(X)→ T satisfying θ(e) = θ(e) one defines a magnetic Laplace operator on X by the
formula

[∆θ(X,m0)ϕ](x) :=
∑
e∈Ax

m0(e)

m0(x)

(
θ(e)ϕ(t(e))− ϕ(x)

)
∀ϕ ∈ l2(X).

Thus, if for fixed ξ ∈ Γ̂ one sets

θξ : A(X)→ T, θξ(e) := ξ
(
η(e)

)
, (3.3)

then one infers that

θξ(e) = ξ
(
η(e)

)
= ξ
(
η(e)−1

)
= ξ
(
η(e)

)
= θξ(e).
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As a consequence, the operator ∆θξ(X,m0) defined on any ϕ ∈ l2(X) by

[∆θξ(X,m0)ϕ](x) :=
∑
e∈Ax

m0(e)

m0(x)

(
θξ(e)ϕ(t(e))− ϕ(x)

)
=
∑
e∈Ax

m0(e)

m0(x)

(
ξ
(
η(e)

)
ϕ(t(e))− ϕ(x)

)
corresponds to a magnetic Laplace operator on X.

Let us now recall that L2
(
Γ̂; l2(X)

)
=
∫ ⊕

Γ̂
dξ l2(X). As a consequence of the previous lemma

and of the construction made above, the operator U ∆(X,m0)U ∗ itself can be identified with
the direct integral operator

∫ ⊕
Γ̂

dξ∆θξ(X,m0). In other words, the Laplace operator ∆(X,m0)
is unitarily equivalent to a direct integral of magnetic Laplace operators acting on X.

It only remains to deal with the multiplication operator R0 by a Γ-periodic function, as
introduced in (2.2). For that purpose, let us observe that for any real Γ-periodic function
defined on V (X) one can associate a well-defined function on V (X) by the relation R0(x) :=
R0(x̂). For simplicity (and as already done before) we keep the same notation for this new
function. Then the following statement is obtained by a direct computation.

Lemma 3.2. Let R0 be a Γ-periodic function on V (X). Then one has U R0U ∗ = R0, or
more precisely for any u ∈ L2

(
Γ̂; l2(X)

)
, for all x ∈ X and a.e. ξ ∈ Γ̂ the following equality

holds:
[U R0U

∗u](ξ, x) = R0(x)u(ξ, x).

By adding the various results obtained in this section one can finally state:

Proposition 3.3. Let (X,X, ω,Γ) be a topological crystal and let m0 be a Γ-periodic measure
on X. Let R0 be a real Γ-periodic function defined on V (X). Then the periodic Schrödinger
operator H0 := −∆(X,m0) + R0 is unitarily equivalent to the direct integral of magnetic
Schrödinger operators acting on X defined by∫ ⊕

Γ̂
dξ
[
−∆θξ(X,m0) +R0

]
with θξ defined in (3.3).

We shall now show that H0 is unitarily equivalent to an analytically fibered operator.
We refer to [11] and [27, Sec. XIII.16] for more general information on such operators, and
restrict ourselves to the simplest framework. In that respect, the next definition is adapted
to our setting. Note that from now on we shall use the notation Td for the d-dimensional
(flat) torus, i.e. for Td = Rd/Zd, with the inherited local coordinates system and differential
structure. We shall also use the notation Mn(C) for the n× n matrices over C.

Definition 3.4. In the Hilbert space L2(Td;Cn), a bounded analytically fibered operator
corresponds to a multiplication operator defined by a real analytic map h : Td →Mn(C).

In order to show that the periodic operator introduced above fits into this framework,
some identifications are necessary. More precisely, since Γ is isomorphic to Zd, as stated in the
point (iii) of Definition 2.1, we know that Γ̂ is isomorphic to Td. In fact, we consider that a
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basis of Γ is chosen and then identify Γ with Zd, and accordingly Γ̂ with Td. As a consequence
of these identifications we shall write ξ(µ) = e2πi ξ·µ, where ξ · µ =

∑d
j=1 ξjµj . Accordingly,

the Fourier transform defined in (3.1) corresponds to [Ff ](ξ) ≡ f̂(ξ) =
∑

µ∈Zd e
−2πi ξ·µf(µ),

and its inverse to [F ∗u](µ) ≡ ǔ(µ) =
∫
Td dξ e2πi ξ·µu(ξ), with dξ the usual measure on Td.

Note that an other consequence of this identification is the use of the additive notation for
the composition of two elements of Zd, instead of the multiplicative notation employed until
now for the composition in Γ.

The second necessary identification is between l2(X) and Cn. Indeed, since V (X) =
{x1, . . . , xn}, as already mentioned in the previous section, the vector space l2(X) is of di-
mension n. However, since the scalar product in l2(X) is defined with the measure m0 while
Cn is endowed with the standard scalar product, one more unitary transformation has to be
defined. More precisely, for any ϕ ∈ l2(X) one sets I : l2(X)→ Cn with

Iϕ :=
(
m0(x1)

1
2ϕ(x1),m0(x2)

1
2ϕ(x2), . . . ,m0(xn)

1
2ϕ(xn)

)
. (3.4)

This map defines clearly a unitary transformation between l2(X) and Cn. Note that we shall
use the same notation I for the map L2

(
Td; l2(X)

)
→ L2(Td;Cn) acting trivially on the first

variables and acting as above on the remaining variables.
We can now state and prove the main result of this section, where we use the usual

notation δj` for the Kronecker delta function.

Proposition 3.5. Let (X,X, ω,Γ) be a topological crystal and let m0 be a Γ-periodic measure
on X. Let R0 be a real Γ-periodic function defined on V (X). Then the periodic Schrödinger
operator H0 := −∆(X,m0) + R0 is unitarily equivalent to the bounded analytically fibered
operator in L2(Td;Cn) defined by the function h0 : Td →Mn(C) with

h0(ξ)j` := −
∑

e=(xj ,x`)

m0(e)

m0(xj)
1
2 m0(x`)

1
2

e2πi ξ·η(e) +
(

degm0
(xj) +R0(xj)

)
δj` (3.5)

for any ξ ∈ Td and j, ` ∈ {1, . . . , n}.

Proof. The proof consists simply in computing the operator I U H0U ∗I ∗, and in checking
that the resulting operator is analytically fibered. Observe first that the product U H0U ∗

has already been computed in Proposition 3.3. The conjugation with I is easily computed,
and one directly obtains (3.5) if one takes the equality ξ(µ) = e2πi ξ·µ into account. Since for
each fixed µ ∈ Zd the map Td 3 ξ 7→ e2πi ξ·µ → C is real analytic, the matrix-valued function
defined by h0 is real analytic.

4 Mourre theory and the conjugate operator

In this section we first recall some definitions related to Mourre theory, such as some regularity
conditions as well as the meaning of a Mourre estimate. These notions will be used in the
second part of the section where a conjugate operator for H0 will be constructed. Clearly, any
reader familiar with the conjugate operator method can skip Section 4.1 and directly start
with Section 4.2.
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4.1 Mourre theory

In this section we recall the version of Mourre theory suitable for bounded operators, and
refer to [2, Sec. 7.2] for more information and details.

Let us consider a Hilbert space H with scalar product 〈 · , · 〉 and norm ‖ · ‖. Let also
S and A be two self-adjoint operators in H. The operator S is assumed to be bounded, and
we write D(A) for the domain of A. The spectrum of S is denoted by σ(S) and its spectral
measure by ES( ·). For shortness, we also use the notation ES(λ; ε) := ES

(
(λ− ε, λ+ ε)

)
for

all λ ∈ R and ε > 0.
The operator S belongs to C1(A) if the map

R 3 t 7→ e−itASeitA ∈ B(H) (4.1)

is strongly of class C1 in H. Equivalently, S ∈ C1(A) if the quadratic form

D(A) 3 ϕ 7→ 〈iAϕ, S∗ϕ〉 − 〈iSϕ,Aϕ〉 ∈ C

is continuous in the topology of H. In such a case, this form extends uniquely to a continuous
form on H, and the corresponding bounded self-adjoint operator is denoted by [iS,A]. This
C1(A)-regularity of S with respect to A is the basic ingredient for any investigation in Mourre
theory.

Let us also define some stronger regularity conditions. First of all, S ∈ C2(A) if the map
(4.1) is strongly of class C2 in H. A weaker condition can be expressed as follows: S ∈ C1,1(A)
if ∫ 1

0

dt

t2
∥∥e−itASeitA + eitASe−itA − 2S

∥∥ <∞.
It is then well-known that the following inclusions hold: C2(A) ⊂ C1,1(A) ⊂ C1(A).

For any S ∈ C1(A), let us now introduce two subsets of R which will play a central role.
Namely, one sets

µA(S) :=
{
λ ∈ R | ∃ε > 0, a > 0 s.t. ES(λ; ε)[iS,A]ES(λ; ε) ≥ aES(λ; ε)

}
as well as the larger subset of R defined by

µ̃A(S) :=
{
λ ∈ R |∃ε > 0, a > 0,K ∈ K(H) s.t.

ES(λ; ε)[iS,A]ES(λ; ε) ≥ aES(λ; ε) +K
}
.

In order to state one of the main results in Mourre theory, let us still set K :=
(
D(A),H

)
1
2
,1

for the Banach space obtained by real interpolation. We refer to [2, Sec. 3.4] for more infor-
mation about this space and for a general presentation of Besov spaces associated with the
pair

(
D(A),H

)
. Since B(H) ⊂ B(K,K∗), for any z ∈ C\R the resolvent (S−z)−1 of S belongs

to these spaces, and the following extension holds:

Theorem 4.1 ([2, Theorem 7.3.1]). Let S be a self-adjoint element of B(H) and assume that
S ∈ C1,1(A). Then the holomorphic function C± 3 z → (S − z)−1 ∈ B(K,K∗) extends to a
weak∗ continuous function on C± ∪ µA(S).
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Let us still mention how a perturbative scheme can be developed. Consider a “perturba-
tion” V ∈ K(H) and assume that V is self-adjoint and belongs to C1,1(A) as well. Even if µA(S)
is known, it usually quite difficult to compute the corresponding set µA(S + V ) for the self-
adjoint operator S+V . However, the set µ̃A(S) is much more stable since µ̃A(S) = µ̃A(S+V ),
as a direct consequence of [2, Thm. 7.2.9].

Based on this observation, the following adaptation of [2, Thm. 7.4.2] can be stated in
our context:

Theorem 4.2. Let S be a self-adjoint element of B(H) and assume that S ∈ C1,1(A). Let
V ∈ K(H) and assume that V is self-adjoint and belongs to C1,1(A). Then, for any closed
interval I ⊂ µ̃A(S) the operator S + V has at most a finite number of eigenvalues in I, and
no singular continuous spectrum in I.

Note that such a result plays an essential role when perturbations of the periodic systems
are considered. In particular, the previous result is at the root of the results obtained in [26]
for the operator H mentioned in (2.3).

4.2 The conjugate operator

In this section, we construct a conjugate operator for a self-adjoint bounded analytically
fibered operator h in L2(Td;Cn). At the end of the day, the operator h will be the operator h0

introduced in Proposition 3.5, but we prefer to provide an abstract construction. Note that
the following content is inspired from an analog construction of [11]. However, our setting is
slightly simpler, and in addition we provide here much more details.

Let us recall that a self-adjoint bounded analytically fibered operator corresponds to a
multiplication operator by a real analytic function h : Td → Mn(C) with h(ξ) Hermitian for
any ξ ∈ Td. For consistency, the multiplication operator will also be denoted by h. For such
an operator we introduce some notation. For any Borel set V ⊂ R and any ξ ∈ Td, let us
denote by πV(ξ) the spectral projection Eh(ξ)(V), i.e. the projection in Cn onto the vector
space generated by eigenvectors associated with the eigenvalues of h(ξ) that lie in V. We also
recall that σ

(
h(ξ)

)
denotes the set of eigenvalues of h(ξ). Furthermore, we set:

• Σ :=
{

(λ, ξ) ∈ R× Td, λ ∈ σ
(
h(ξ)

)}
,

• mul : R× Td → N defined by (λ, ξ)→ dimπ{λ}(ξ)Cn ,

• Σj := {(λ, ξ) ∈ R× Td,mul(λ, ξ) = j} for any j ∈ {0, 1 . . . , n}.

The set Σ is called the Bloch variety (or the set of energy-momentum) of h and will be the
central object of this section. We also denote by pR : Σ→ R and pTd : Σ→ Td the projection
on each coordinate of Σ. Some properties of h and the above related objects are gathered in
the next lemma. We also refer to [11, Lemma 3.4] for a similar statement in a more general
setting.

Lemma 4.3. The application mul : R × Td → N is upper semicontinuous. Furthermore, for
all (λ0, ξ0) ∈ R× Td, there exist an interval I0 ∈ VR(λ0) and T0 ∈ VTd(ξ0) such that:

(i) πI0(ξ0) = π{λ0}(ξ0),

(ii) The map ξ → πI0(ξ) ∈Mn(C) is real analytic in T0.
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Before providing the proof we want to stress that the theory of hyperbolic polynomials
allows us to show that the eigenvalues behave well on ξ, and this will be used to choose some
convenient neighborhoods. More precisely, for h as above, the eigenvalues of h(ξ) are given by
the roots of δ(λ, ξ) := det

(
λIn − h(ξ)

)
. Since each entry of the matrix h(ξ) is real analytic as

function of ξ, δ(λ, ξ) can be written as follows:

δ(λ, ξ) = det
(
λIn − h(ξ)

)
= λn +

n∑
j=1

an−j(ξ)λ
n−j (4.2)

where each function an−j is real analytic because it is the product of finitely many real analytic
functions. Let us denote by {λ1(ξ), . . . , λn(ξ)} the family of eigenvalues of h(ξ) that correspond
to the roots of (4.2). Then, it can be shown that the map ξ →

(
λ1(ξ), . . . , λn(ξ)

)
∈ Rn is

locally Lipschitz [24, Theorem 4.1].

Proof of Lemma 4.3. Let us fix (λ0, ξ0) ∈ R× Td. It is clear that if λ0 is not an eigenvalue of
h(ξ0), then both conditions hold trivially since we can find I0 and T0 such that I0∩σ

(
h(ξ)

)
= ∅

for every ξ ∈ T0.
Suppose now that λ0 is an eigenvalue of h(ξ0). We choose I0 such that its closure contains

no other eigenvalue of h(ξ0), which implies in particular that π{λ0}(ξ0) = πI0(ξ0). In fact, by
choosing an interval I0 = (a0, b0) small enough, we can also choose a neighborhood T0 of ξ0

such that for any ξ ∈ T0 we have σ
(
h(ξ)

)
∩ {a0, b0} = ∅. Around I0 we choose a positively

oriented closed curve Γ0 in C, sufficiently close to I0 such that it does not intersect the
spectrum of h(ξ) for every ξ ∈ T0. Hence, for every ξ ∈ T0, the eigenvalues of h(ξ) that lay
inside Γ0 correspond to λ0, or more precisely if λj(ξ) lies inside Γ0 we have λj(ξ0) = λ0.

As a consequence of this construction it follows that

πI0(ξ) =
1

2πi

∮
Γ0

dz
(
z − h(ξ)

)−1
. (4.3)

Finally, since (z, ξ) →
(
z − h(ξ)

)−1
is analytic in the two variables on any domain in which

z is not equal to any eigenvalues of h(ξ), as shown for example in [17, Thm II.1.5], we infer
from (4.3) that the map ξ → πI0(ξ) is real analytic.

We now recall that a real valued function defined on a topological space X is said to be
upper semicontinuous at x0 if for every ε > 0 there exists U ∈ VX (x0) such that supx∈U f(x) ≤
f(x0) + ε. If we pick I0 × T0 as neighborhood of (λ0, ξ0) we have for (λ, ξ) ∈ I0 × T0 that

mul(λ, ξ) = dimπ{λ}(ξ)Cn ≤ dimπI0(ξ)Cn = dimπI0(ξ0)Cn = dimπ{λ0}(ξ0)Cn, (4.4)

where dimπI0(ξ)Cn = dimπI0(ξ0)Cn is due to the analyticity of the map ξ → πI0(ξ).

The first step towards the construction of the conjugate operator is to provide a stratifi-
cation of the Bloch variety. For that goal the following theorem plays an essential role. Before
its statement, observe that R× Tn is a (n+ 1)-dimensional real analytic manifold.

Proposition 4.4. {Σj}nj=0 is a family of semi-analytic sets in R× Td.

Proof. For any (λ0, ξ0) ∈ R × Td we set O = I0 × T0 ∈ VR×Td(λ0, ξ0) as in Lemma 4.3.
Then, for every j > mul(λ0, ξ0) we have Σj ∩ O = ∅ by (4.4), so we only need to consider
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j ≤ mul(λ0, ξ0). Let us also recall that δ(λ, ξ) = det
(
λIn − h(ξ)

)
. By the discussion after

the statement of Lemma 4.3, δ admits real analytic derivatives on each variable. In addition,
Σj ∩ O is described as follows:

Σj ∩ O =
{

(λ, ξ) ∈ O | λ is an eigenvalue of multiplicity j of h(ξ)
}

=
{

(λ, ξ) ∈ O | δ(λ, ξ) =
∂δ

∂λ
(λ, ξ) = · · · = ∂j−1δ

∂λj−1
(λ, ξ) = 0,

∂jδ

∂λj
(λ, ξ) 6= 0

}
.

Then by the definition of a semi-analytic set we infer that each Σj is semi-analytic in R ×
Td.

Before the next step, let us recall the version of the theorem of stratification of Hironaka
presented in [8, Thm. III.1.8], see also [13, Corol. 4.4], [15, Sec. 3]. Note that we directly
impose a stronger condition on f since it simplifies the statement and since this condition will
be automatically satisfied in our application.

Theorem 4.5. Let M,M′ be two real analytic manifolds, and let f :M→M′ be a proper
real analytic map. Suppose we are given finitely many subanalytic sets Mj ⊂M, and finitely
many subanalytic sets M′k ⊂ M′. Then there exists a subanalytic stratification (S ,S ′) of f
such that S is compatible with {Mj} and S ′ is compatible with {M′k}.

We have shown above that {Σj}nj=0 is a finite family of semi-analytic subsets of R× Td.
Since pR : R × Td → R is proper and real analytic we can apply Theorem 4.5 to get a
stratification (S ,S ′) of pR such that S is compatible with {Σj}nj=0. We recall that each
Sα ∈ S is contained in only one Σj and that S ′ is a stratification of R. We will denote by τ
the set of thresholds, and this set is given by the union of the elements of dimension 0 of S ′.
The thresholds are the levels of energy where one can not construct a conjugate operator.

Definition 4.6. Let h be a real analytic function Td → Mn(C) with h(ξ) Hermitian for any
ξ ∈ Td. The set of thresholds τ ≡ τ(h) is defined by

τ :=
⋃

dimS′β=0

S ′β ,

where S ′ = {S ′β}β is the partition of R given by Theorem 4.5 applied to the proper real
analytic function pR and the family of semi-analytic subsets {Σj}nj=0.

Note that τ is a finite subset of R because S ′ is locally finite, i.e. only a finite numbers
of S ′β intersects the neighborhood of a given λ ∈ R. It is also easily observed that τ contains
the energy levels corresponding to flat bands, i.e. a value λ ⊂ R satisfying λj(ξ) = λ for all ξ
and some fixed j ∈ {1, . . . , n}.

We start now the construction of the conjugate operator for a fixed closed interval I ⊂
R \ τ . This is done in three steps: first we construct Aλ0,ξ0 for fixed λ0 ∈ I and ξ0 ∈ Td; then
we sum over all the eigenvalues λ of h(ξ0) that lie in I and obtain Aξ0 ; finally we define AI
by smoothing a finite family of such Aξ0 .

Let (λ0, ξ0) be fixed with λ0 ∈ I. We denote by O the neighborhood of (λ0, ξ0) constructed
as in Lemma 4.3, i.e. O = I0 × T0. Then (λ0, ξ0) ∈ Sα ⊂ Σj for a unique α. Without loss of
generality we can assume that Σj∩O = Sα∩O. Let s denote the dimension of the submanifold
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Sα. Furthermore, since pTd |Sα is injective the subset pTd(Sα ∩ O) ⊂ Td has also dimension s.
This enables us to find a neighborhood W0 of the origin in Rd diffeomorphic to T0, or more
precisely there exists a diffeomorphism

ι0 : T0 →W0 with ι0
(
pTd(Sα ∩ O)

)
⊂ Rs × 0, (4.5)

see for example [29, Theorem 2.10.(2)]. Let us then set x = (x′, x′′) ∈ W0 with x′ ∈ Rs and
x′′ ∈ Rd−s. We also define f : I0 ×W0 → R by

f(λ, x) :=
∂j−1δ

∂λj−1

(
λ, ι−1

0 (x)
)
.

It follows from the proof of Proposition 4.4 that f
(
λ, (x′, 0)

)
= 0 and ∂f

∂λ

(
λ, (x′, 0)

)
6= 0 if λ is

such that
(
λ, ι−1

0 (x′, 0)
)
∈ Sα. By the implicit function theorem as for example presented in

[23, Theo. 2.3.5.] and maybe in a smaller subset W0, we get that there exists a real analytic
function λ :W0 → R such that f

(
λ(x), x

)
= 0 for every x ∈ W0. Then we have

Sα ∩ O =
{(

λ(x′, 0), ι−1
0 (x′, 0)

)
| (x′, 0) ∈ W0

}
. (4.6)

Let us denote by (ι−1
0 )∗ the pullback by ι−1

0 defined for ϕ with support on T0 and for any
x ∈ W0 by [(ι−1

0 )∗ϕ](x) := ϕ
(
ι−1
0 (x)

)
. Analogously the pullback ι∗0 is defined by [ι∗0g](ξ) :=

g
(
ι0(ξ)

)
for any g defined onW0. We denote by Dj = −i∂j the operator of differentiation with

respect to the j−variable in Rd. We also set ∂(s) = (∂1, . . . , ∂s) and D(s) = (D1, . . . , Ds). If
we keep the notation πI0 for the matrix-valued multiplication operator acting on L2(Td;Cn)
we can define Aλ0,ξ0 on C∞c (T0;Cn) ⊂ L2(Td;Cn) by

Aλ0,ξ0 := −1
2πI0ι

∗
0

[
(∂(s)λ) ·D(s) +D(s) · (∂(s)λ)

]
(ι−1

0 )∗πI0 .

By repeating this construction for each eigenvalue λj of h(ξ0) lying in I we can define

Aξ0 :=
∑

λj∈σ(h(ξ0))∩I

Aλj ,ξ0 . (4.7)

It follows that for every ξ0 ∈ Td we can find a neighborhood T0, given by the intersection of
the neighborhoods constructed for each pair (λj , ξ0), and an operator Aξ0 defined by (4.7) on
C∞c (T0;Cn).

We now define UI := pTd(p
−1
R (I)). Since we chose I closed, UI is compact. We can then

consider finitely many pairs (ξ`,T`) such that Aξ` acts on C∞c (T`;Cn) and such that UI ⊂
⋃

T`.
Considering a smooth partition of unity on Td, we can find a family of smooth functions χ`
satisfying

∑
χ2
` (ξ) = 1 for ξ ∈ UI and such that each χ` has support contained in T`. The

candidate for our conjugate operator is then given by

AI :=
∑
`

χ`Aξ`χ` (4.8)

and is defined on C∞(Td;Cn). Note that AI depends on the covering {T`} of UI and we will
impose later on another condition on this covering to ensure the positivity of the commutator
of [ih,AI ] once suitably localized.
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The next step consists in showing that the operator AI is essentially self-adjoint on
C∞(Td;Cn). This proof and the necessary background material are provided in [26, Lem. 5.6].
We do not recall the argument here, and refer to this reference for the proof.

We are now in a suitable position for proving a Mourre estimate, or in other words the
positivity of [ih,AI ] when suitably localized. As mentioned at the beginning of this section, a
similar result already appeared in [11, Thm. 3.1], but the above construction and the following
proof have been adapted to our context.

Theorem 4.7. Let h be a real analytic function Td → Mn(C) with h(ξ) Hermitian for any
ξ ∈ Td, and let also h denote the corresponding multiplication operator in L2(Td;Cn). Let τ
be the set of thresholds provided by Definition 4.6 and let I be any closed interval in R \ τ .
Then, there exist a finite family of pairs {(T`, ξ`)} with ξ` ∈ T` such that for the operator AI
defined by (4.8) the following two properties hold:

(i) the operator h belongs to C2(AI),

(ii) there exists a constant aI > 0 such that

Eh(I) [ih,AI ]Eh(I) ≥ aIEh(I) . (4.9)

Before providing the proof, let us restate part of the previous statement with the notation
introduced in Section 4.1. As a consequence of (4.9), for any closed interval I ≡ [a, b] ⊂ R \ τ ,
one has

(a, b) ⊂ µAI (h) ⊂ µ̃AI (h). (4.10)

Proof. Let (λ0, ξ0) ∈ Td×R be fixed with λ0 ∈ I, and let ι0 be the associated diffeomorphism
introduced in (4.5). For shortness we also set π0 := πI0 , λ̃0 := ι∗0λ(ι−1

0 )∗, ∇0 = ι∗0D
(s)(ι−1

0 )∗

and ∂0 = ι∗0∂
(s)(ι−1

0 )∗. With this notation one has

Aλ0,ξ0 = −1
2πI0ι

∗
0

[
(∂(s)λ) ·D(s) +D(s) · (∂(s)λ)

]
(ι−1

0 )∗πI0

= −1
2π0

[
(∂0λ̃0) · ∇0 +∇0 · (∂0λ̃0)

]
π0

= −π0

(
(∂0λ̃0) · ∇0

)
π0 − i

2π0(∆0λ̃0)π0

where −∆0 := ι∗0
(∑s

j=0 ∂
2
j

)
(ι−1

0 )∗.
Now, since both operators h and Aλ0,ξ0 leave C∞(T0;Cn) invariant, the commutator

[ih,Aλ0,ξ0 ] can be defined as an operator on C∞(T0;Cn). On this set one has

[ih,Aλ0,ξ0 ] = −[ih, π0

(
(∂0λ̃0) · ∇0

)
π0] + 1

2 [h, π0(∆0λ̃0)π0]

Note also that the second term in the r.h.s. vanishes since ∆0λ̃0 is scalar and since h commutes
with π0. Furthermore we have for ϕ ∈ C∞(T0;Cn) that([

ih, π0

(
(∂0λ̃0) · ∇0

)
π0

]
ϕ
)

(ξ)

= ih(ξ)π0(ξ)(∂0λ̃0)(ξ) ·
(

(∇0π0)(ξ)π0(ξ)ϕ(ξ) + π0(ξ)
(
∇0(π0ϕ)

)
(ξ)
)

− iπ0(ξ)(∂0λ̃0)(ξ) ·
((
∇0(π0h)

)
(ξ)π0(ξ)ϕ(ξ) + π0(ξ)h(ξ)

(
∇0(π0ϕ)

)
(ξ)
)
.
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Since h commutes with each (scalar) component of ∂0λ̃0 the second terms of the parenthesis
cancel each others. Consequently, one infers that [h, iAλ0,ξ0 ] corresponds to a bounded fibered
operator Bλ0,ξ0 with its fibers defined by

bλ0,ξ0(ξ) := −iπ0(ξ)(∂0λ̃0)(ξ) ·
(
h(ξ)(∇0π0)(ξ)−

(
∇0(π0h)

)
(ξ)
)
π0(ξ) .

The first term in the parenthesis vanishes because π(·)π′(·)π(·) = 0 for any differentiable
family of projections. For the second term one has by construction

π0

(
ι−1
0 (x′, 0)

)
h
(
ι−1
0 (x′, 0)

)
= λ̃0

(
ι−1
0 (x′, 0)

)
π0

(
ι−1
0 (x′, 0)

)
for any (x′, 0) ∈ W0, and therefore

bλ0,ξ0(ξ) = iπ0(ξ)(∂0λ̃0)(ξ) ·
(
∇0(λ̃0π0)

)
(ξ)π0(ξ) = π0(ξ)|(∂0λ̃0)(ξ)|2π0(ξ)

for any ξ satisfying ι0(ξ) ∈ W0 ∩ Rs × 0.
Let us denote by Sα ∈ S the real analytic submanifold of R × Td obtained by the

theorem of stratification of Hironoka which satisfies (λ0, ξ0) ∈ Sα. By the definition of the set
of thresholds τ and by the properties of the stratification one has dim(pR|Sα) = 1. Combining
this with (4.6) one infers that

1 = dim(pR|Sα) = dim
(
λ
(
{(x′, 0) ⊂ W0}

))
= rank

(
∂0λ̃0|ι−1

0 (W0∩Rs×0)

)
from which we deduce that ∂0λ̃0 does not vanish on ι−1

0 (W0 ∩Rs × 0). As a consequence one
has bλ0,ξ0(ξ0) ≥ c0,0πI0(ξ0), with c0,0 > 0, and since for fixed ξ0 there are at most n constants
we infer that

bξ0(ξ0) :=
∑

λi∈σ(h(ξ0))∩I

bλi,ξ0(ξ0) ≥ min{ci,0}
∑

πIi(ξ0) = c0πI(ξ0) (4.11)

with c0 > 0. By continuity of both bξ0 and πI at ξ0 and using (4.11) we can find a possibly
smaller neighborhood T0 satisfying the properties of Lemma 4.3 such that for ξ ∈ T0 we have

πI(ξ)bξ0(ξ)πI(ξ) ≥ 1
2c0πI(ξ) . (4.12)

Since we chose ξ0 arbitrarily in Td, we can construct T0 satisfying (4.12) for every ξ0.
It follows that one can find a covering of the closed set UI := pTd(p

−1
R (I)) composed of a

finite number of such T0. We have thus defined the covering {T`} already mentioned before
the equation (4.8) and mentioned in the above statement. To finish, observe that [ih,AI ] is a
bounded fibered operator with fiber b given for any ξ ∈ UI by

b(ξ) =
∑
`

χ`(ξ)bξ`(ξ)χ`(ξ) .

Therefore, the operator Eh(I)[ih,AI ]Eh(I) is a bounded fibered operator with fiber equal to
πI(ξ)b(ξ)πI(ξ). We also infer that∑

`

πI(ξ)χ`(ξ)bξ`(ξ)χ`(ξ)πI(ξ) ≥
1
2 min

`
{c`}πI(ξ)
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for every ξ ∈ Td. By setting aI = 1
2 min`{c`} we conclude that

Eh(I)[ih,AI ]Eh(I) ≥ aIEh(I).

Since the operator B := [ih,AI ] has been computed on C∞(Td;Cn) which is a core for AI ,
and since the resulting operator is bounded, one deduces from the results stated in Section
4.1 that h belongs to C1(AI). Then, since the operator B is again an analytically fibered
operator, the computation of [iB,AI ] can be performed similarly on C∞(Td;Cn) and the
resulting operator is once again bounded. It then follows that h belongs to C2(AI).

Remark 4.8. When studying a particular graph one can usually find analytic families of
eigenvalues λi and associated eigenprojections Πi outside a discrete subset of Td. Then, a more
natural conjugate operator is given formally by

∑
Πi

(
(∂λi)·∇+∇·(∂λi)

)
Πi as used for example

in [3] (see also [10] for a related construction). In fact it is a classical result due to Rellich that
for every one-dimensional analytic family of (not necessarily bounded) operators, such analytic
eigenprojections can be found. For dimension 2, the theory of hyperbolic polynomials shows
that this choice can be made outside a discrete set [24, Remark 5.6]. For arbitrary dimension,
there seems to be no argument to ensure that analytic eigenprojections can be chosen and so
we shall use the conjugate operator given by (4.8).
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