
HAL Id: hal-02024864
https://hal.science/hal-02024864v2

Preprint submitted on 22 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A complete axiomatisation of reversible Kleene lattices
Paul Brunet

To cite this version:

Paul Brunet. A complete axiomatisation of reversible Kleene lattices. 2019. �hal-02024864v2�

https://hal.science/hal-02024864v2
https://hal.archives-ouvertes.fr

A complete axiomatisation of reversible Kleene
lattices
Paul Brunet
University College London, United Kingdom
paul.brunet-zamansky.fr
paul@brunet-zamansky.fr

Abstract
We consider algebras of languages over the signature of reversible Kleene lattices, that is the
regular operations (empty and unit languages, union, concatenation and Kleene star) together with
intersection and mirror image. We provide a complete set of axioms for the equational theory of
these algebras. This proof was developed in the proof assistant Coq.

2012 ACM Subject Classification Theory of computation → Algebraic language theory

Keywords and phrases Kleene algebra, language algebra, completeness theorem, axiomatisation

Supplement Material Coq formalisation: https://github.com/monstrencage/LangAlg

Funding This work was funded by the ESPRC grant IRIS (reference EP/R006865/1)

1 Introduction

We are interested in algebras of languages, equipped with the constants empty language (0),
unit language (1, the language containing only the empty word), the binary operations
of union (+), intersection (∩), and concatenation (·), and the unary operations of Kleene
star ((−)?) and mirror image ((−)). It is convenient in this paper to see the Kleene star as
a derived operator e? := 1 + e+ with the operator e+ representing the non-zero iteration.
We call these algebras reversible Kleene lattices. Given a finite set of variables X, and two
terms e, f built from variables and the above operations, we say that the equation e ' f is
valid if the corresponding equality holds universally.

In a previous paper [3] we have presented an algorithm to test the validity of such
equations, and shown this problem to be ExpSpace-complete. However, we had left open
the question of the axiomatisation of these algebras. We address it now, by providing in the
current paper a set of axioms from which every valid equation can be derived.

Several fragments of this algebra have been studied:
Kleene algebra (KA): if we restrict ourselves to the operators of regular expressions (0, 1,

+, ·, and (−)+), then several axiomatisation have been proposed by Conway[4], before
being shown to be complete by Krob [8] and Kozen [6].

Kleene algebra with converse: if we add to KA the mirror operation, then the previous
theorem can be extended by switching to a duplicated alphabet, with a letter a′ denoting
the mirror of the letter a. A small number of identities may be added to KA to get a
complete axiomatisation [2].

Identity-free Kleene lattices: this algebra stems from the operators 0, +, ·, ∩ and (−)+. In
a recent paper [5] Doumane and Pous provided a complete axiomatisation of this algebra.

The present work is then an extension of identity-free Kleene lattices, by adding unit and
mirror image. We provide in Table 1 a set of axioms which we prove to be complete for the
equational theory of language algebra, by reducing to the the completeness theorem of [5].
This proof has been formalised in Coq.

https://orcid.org/0000-0002-9762-6872
paul.brunet-zamansky.fr
mailto:paul@brunet-zamansky.fr
https://github.com/monstrencage/LangAlg
http://coq.inria.fr

2 A complete axiomatisation of reversible Kleene lattices

The paper is organised as follows. In Section 2, we introduce some notations and define
the various types of expressions used in the paper. We present our axioms and state our
main theorem. In Section 3 we deal with a technical lemma having to do with the treatment
of the empty word. We proceed in Section 4 to extend the theorem of [5] with the mirror
image operator. Section 5 studies in detail terms of the algebra that are below the constant
1, as those play a crucial role in the main proof. We present the proof of our main result in
Section 6. We conclude in Section 7 by a discussion on an operator that is missing from our
signature, namely constant > denoting the full language.

2 Preliminaries

2.1 Sets, words, and languages
Given a set X, we write P (X) for the set of subsets of X and Pf (X) for the set of finite
subsets of X. We will denote the two-elements boolean set as 2. For two sets X,Y , we write
X × Y for their Cartesian product, X ∪ Y for their union, and X ∩ Y for their intersection.
The empty set is denoted by ∅. We will use the notation f(A) for a set A ⊆ X and a function
f : X → Y to represent the set {y ∈ Y | ∃a ∈ A : f(a) = y} = {f(a) | a ∈ A}.

Let Σ be an arbitrary alphabet (set), the words over Σ are finite sequences of elements from
Σ. The set of all words is written Σ?, and the empty word is written ε. The concatenation of
two words u, v is simply denoted by uv. The mirror image of a word u, obtained by reading
it backwards, is written u. For instance abc is the word cba.

A language is a set of words, that is an element of L 〈Σ〉 := P (Σ?). We will also use the
symbol ε to denote the unit language {ε}. The concatenation of two languages L and M ,
denoted by L ·M , is obtained by lifting pairwise the concatenation of words: it contains
exactly those words that can be obtained as a concatenation uv where 〈u, v〉 ∈ L ×M .
Similarly the mirror image of a language L, denoted by L, is the set of mirror images of words
from L. We write Ln when L ∈ L 〈Σ〉 and n ∈ N for the iterated concatenation, defined by
induction on n by L0 := ε and Ln+1 := L · Ln. The language L+ is the union of all non-zero
iterations of L, i.e. L+ :=

⋃
n>0 L

n.

2.2 Terms: syntax and semantics
Throughout this paper, we will consider expressions over various signatures which we list
here. We fix a set of variables X, and let x, y, ... range over X.
Expressions: e, f ∈ EX ::= x | 0 | 1 | e+ f | e · f | e ∩ f | e+ | e;
One-free expressions: e, f ∈ E′X ::= x | 0 | e+ f | e · f | e ∩ f | e+ | e;
Simple expressions: e, f ∈ E−X ::= x | 0 | e+ f | e · f | e ∩ f | e+;

We will use various sets of axioms, depending on the signature. All of the axioms under
consideration are listed in Table 1. Axioms in Tables 1a and 1b are borrowed from [5],
those in Table 1c from [2] and Table 1d is inspired from [1]. We use these axioms to
generate equivalence relations over terms. For a type of expressions TX ∈

{
EX ,E′X ,E

−
X

}
,

the axiomatic equivalence relation, written ≡ is the smallest congruence on TX containing
those axioms in Table 1 that only use symbols from the signature of TX . This means that
for E−X we use the axioms from Tables 1a and 1b, for E′X we add those from Table 1c and for
EX we keep all of the axioms of Table 1. We will use the shorthand e 5 f to mean e+ f ≡ f .
This ensures that 5 is a partial order with respect to ≡. We list in Table 2 some statements
that are provable from the axioms. Interestingly the idempotency of + (equation (2a.1)),
which is usually an axiom, is here derivable from (1a.5) and (1a.8).

P. Brunet 3

e+ f = f + e (1a.1)
e+ (f + g) = (e+ f) + g (1a.2)

e+ 0 = e (1a.3)
e ∩ f = f ∩ e (1a.4)
e ∩ e = e (1a.5)

e ∩ (f ∩ g) = (e ∩ f) ∩ g (1a.6)
(e+ f) ∩ g = e ∩ g + f ∩ g (1a.7)
(e ∩ f) + e = e (1a.8)

(a) Distributive lattice

e · (f · g) = (e · f) · g (1b.1)
e · 0 = 0 = 0 · e (1b.2)

(e+ f) · g = e · g + f · g (1b.3)
e · (f + g) = e · f + e · g (1b.4)

e+ = e+ e · e+ (1b.5)
e+ = e+ e+ · e (1b.6)

e · f + f = f ⇒ e+ · f + f = f (1b.7)
f · e+ f = f ⇒ f · e+ + f = f (1b.8)

(b) Concatenation and iteration

e = e (1c.1)
e+ f = e+ f (1c.2)
e · f = f · e (1c.3)
e ∩ f = e ∩ f (1c.4)
e+ = e+ (1c.5)

(c) Mirror image

1 · e = e = e · 1 (1d.1)
1 ∩ (e · f) = 1 ∩ (e ∩ f) (1d.2)

1 ∩ e = 1 ∩ e (1d.3)
(1 ∩ e) · f = f · (1 ∩ e) (1d.4)

((1 ∩ e) · f) ∩ g = (1 ∩ e) · (f ∩ g) (1d.5)
(g + (1 ∩ e) · f)+ = g+ + (1 ∩ e) · (g + f)+ (1d.6)

(d) Unit

Table 1 Axioms of reversible Kleene lattices

e+ e ≡ e (2a.1)
e ∩ 0 ≡ 0 (2a.2)

e ∩ (e+ f) ≡ e (2a.3)

(a) Lattice laws

e+ · e+ 5 e+ (2b.1)(
e+)+ ≡ e+ (2b.2)

(1 + e)+ ≡ 1 + e+ (2b.3)

(b) Iteration

0 ≡ 0 (2c.1)
1 ≡ 1 (2c.2)

0+ ≡ 0 (2c.3)
1+ ≡ 1 (2c.4)

(c) Constants

e 5 g ⇒ f 5 g ⇒ e+ f 5 g (2d.1)
g 5 e⇒ g 5 f ⇒ g 5 e ∩ f (2d.2)

e 5 f ⇔ e ∩ f ≡ e (2d.3)
1 5 e · f ⇔ 1 5 e ∧ 1 5 f (2d.4)

(d) Reasoning rules

Table 2 Some consequences of the axioms

4 A complete axiomatisation of reversible Kleene lattices

Given an expression e ∈ TX , a set Σ, and a map σ : X → L〈Σ〉, we may interpret e as a
language over Σ using the following inductive definition:

JxKσ := σ(x) Je+ fKσ := JeKσ ∪ JfKσ
q
e+y

σ
:= JeK+

σ

J0Kσ := ∅ Je · fKσ := JeKσ · JfKσ JeKσ := JeKσ
J1Kσ := ε Je ∩ fKσ := JeKσ ∩ JfKσ

The semantic equivalence and semantic containment relations on TX , respectively written '
and ., are defined as follows:

e ' f ⇔ ∀Σ, ∀σ : X → L〈Σ〉 , JeKσ = JfKσ .

e . f ⇔ ∀Σ, ∀σ : X → L〈Σ〉 , JeKσ ⊆ JfKσ .

The main result of this paper is a completeness theorem for reversible Kleene lattices:

I Theorem 20 (Main result). ∀e, f ∈ EX , e ≡ f ⇔ e ' f .

Since all of the axioms in Table 1 are sound for languages, we know that the implication
from left to right holds. This paper will thus focus on the converse implication, and will
proceed in several steps. Our starting point will be the recently published completeness
theorem for identity-free Kleene lattices [5]:

I Theorem 1. ∀e, f ∈ E−X , e ≡ f ⇔ e ' f .

I Remark 2. In [5], this theorem is established for interpretations of terms as binary relations
instead of languages. However both semantic equivalences coincide for this signature [1].

3 A remark about the empty word

In several places in the proof, it makes some difference whether or not the empty word
belongs to the language of some one-free expression. We show here one way one might
manipulate this property, that will be of use later on.

I Proposition 3. Given an alphabet Σ, a map σ : X → L〈Σ〉 and a set of variables X ⊆ X,
there is an alphabet Σ′, and two maps σ′ : X → L〈Σ′〉 and φ (−) : Σ′? → Σ? such that:

∀a ∈ X , ε /∈ σ′(a) ∀e ∈ E′X , JeKσ = φ (JeKσ′ \ ε) .

Proof. We fix Σ, σ, and X as in the statement. Let • be some fresh letter, we set Σ′ to be
Σ ∪ {•}. For a word u ∈ Σ′?, we define φ (u) ∈ Σ? to be the word obtained by removing
every instance of • from u. Finally, σ′ is defined as follows:

σ′(x) := {u | φ (u) ∈ σ(x) ∧ (x ∈ X ⇒ u 6= ε)} .

It is straightforward to check that φ (σ′(x)) = σ(x) for any variable x. Therefore we only
need to check that this property is preserved by the operators of one-free expressions. For
any languages L,M , the following distributivity laws hold:

φ
(
L
)

= φ (L) φ (L ·M) = φ (L) · φ (M)

φ
(
L+) = φ (L)+

φ (L ∪M) = φ (L) ∪ φ (M)

However, it is not the case in general that φ (L ∩M) = φ (L)∩φ (M). To make the induction
go through, we will need to show that this identity holds for all the languages generated from

P. Brunet 5

the languages σ′(x) by the operations 0, ·,+,∩, (−)+
, (−). This is achieved by identifying

some sufficient condition for φ (L ∩M) = φ (L) ∩ φ (M), and showing that this condition is
satisfied by every language of the shape JeKσ′ . Let us define the ordering v on words over Σ′:

u v u u v •u
u v v v v w

u v w
u v v u′ v v′

uu′ v vv′

v is a partial order and satisfies the following properties:

u v v ⇒ φ (u) = φ (v) (3.1)
u v v ⇒ u v v (3.2)
u1u2 v v ⇒ ∃v1, v2 : v = v1v2 ∧ u1 v v1 ∧ u2 v v2 (3.3)
φ (u) = φ (v)⇒ ∃w, u v w ∧ v v w ∧ (∀w′, u v w′ ∧ v v w′ ⇒ w v w′) . (3.4)

(3.1) and (3.4) tell us that each equivalence class of the relation {〈u, v〉 | φ (u) = φ (v)} forms
a join-semilattice. The proofs of these properties being somewhat technical, we omit them
here. The interested reader may refer to the Coq formalisation for details.

Consider now those languages over Σ′ that are upwards-closed with respect to v, that is
to say languages L such that whenever u ∈ L and u v v, then v ∈ L. Clearly σ′(x) is closed
for any variable x. Since the property “being closed” is preserved by each operation in the
signature of E′X , we deduce that for any expression e ∈ E′X the language JeKσ′ is closed.

Thankfully, for closed languages the missing identity φ (L ∩M) = φ (L) ∩ φ (M) holds.
Thus we may conclude by induction on the expressions that JeKσ = φ (JeKσ′). For the last
step, notice that ε v • and φ (ε) = φ (•). Since JeKσ′ is closed, if ε ∈ JeKσ′ then • ∈ JeKσ′ ,
thus φ (JeKσ′ \ ε) = φ (JeKσ′) = JeKσ. J

By setting the set X in the previous proposition to the full setX, we get the straightforward
corollary, which will prove useful in the next section.

I Corollary 4. Let e be a one-free expression, then for any expression f ∈ EX we have

e . f ⇔ ∀Σ, ∀σ : X → L〈Σ〉 , ε /∈
⋃
x∈X

σ(x)⇒ JeKσ ⊆ JfKσ .

4 Mirror image

In this section, we show a completeness theorem for one-free expressions. In order to get
this result we will use translations between E′X and E−X×2. An expression e ∈ E′X is clean,
written e ∈ CX , if the mirror operator is only applied to variables. First, notice that we may
restrict ourselves to clean expressions thanks to the following inductive function:

Υ : E′X × 2→ E′X
〈0, b〉 7→ 0

〈
e+, b

〉
7→ Υ 〈e, b〉+

〈x,>〉 7→ x 〈e,>〉 7→ Υ 〈e,⊥〉
〈x,⊥〉 7→ x 〈e,⊥〉 7→ Υ 〈e,>〉

〈e+ f, b〉 7→ Υ 〈e, b〉+ Υ 〈f, b〉 〈e · f,>〉 7→ Υ 〈e,>〉 ·Υ 〈f,>〉
〈e ∩ f, b〉 7→ Υ 〈e, b〉 ∩Υ 〈f, b〉 〈e · f,⊥〉 7→ Υ 〈f,⊥〉 ·Υ 〈e,⊥〉 .

6 A complete axiomatisation of reversible Kleene lattices

We can show by induction on terms the following properties of Υ:

∀ 〈e, b〉 ∈ E′X × 2, Υ 〈e, b〉 ∈ CX . (4.1)
∀e ∈ E′X , Υ 〈e,>〉 ≡ e and Υ 〈e,⊥〉 ≡ e. (4.2)

We now define translations between clean expressions and simple expressions:
↑: CX → E−X×2 replaces mirrored variables x with 〈x,⊥〉 and variables x with 〈x,>〉;
↓: E−X×2 → CX replaces 〈x,>〉 with x and 〈x,⊥〉 with x.

We can easily show by induction the following properties:

∀e ∈ CX , ↓↑ e = e. (4.3)
∀e, f ∈ E−X×2, e ≡ f ⇒↓ e ≡↓ f. (4.4)

The last step to obtain the completeness theorem for E′X is the following claim:

B Claim 5. ∀e, f ∈ CX , e ' f ⇒↑ e '↑ f .

I Lemma 6. If Claim 5 holds, then ∀e, f ∈ E′X , e ≡ f ⇔ e ' f .

Proof. By soundness, we know that e ≡ f ⇒ e ' f . For the converse implication:

e ' f ⇒ Υ 〈e,>〉 ' Υ 〈f,>〉 By soundness and Equation (4.2).
⇒↑ Υ 〈e,>〉 '↑ Υ 〈f,>〉 By Claim 5.
⇒↑ Υ 〈e,>〉 ≡↑ Υ 〈f,>〉 By Theorem 1.
⇒↓↑ Υ 〈e,>〉 ≡↓↑ Υ 〈f,>〉 By Equation (4.4).
⇒ Υ 〈e,>〉 ≡ Υ 〈f,>〉 By Equation (4.3).
⇒ e ≡ f By Equation (4.2).

J

Hence, we only need to show Claim 5 to conclude. To that end, we show that for any
clean expression e, any interpretation of ↑ e can be obtained by applying some transformation
to some interpretation of e. Thanks to Corollary 4, we may restrict our attention to
interpretation that avoid the empty word. This seemingly mundane restriction turns out to
be of significant importance: if the empty word is allowed, the proof of Lemma 7 becomes
much more involved. More precisely, we prove the following lemma:

I Lemma 7. Let Σ be some set and σ : X × 2 → L〈Σ〉 some interpretation such that
∀x, ε /∈ σ(x). There exists an alphabet Σ′, an interpretation σ′ : X → L〈Σ′〉 and a function
ψ : L 〈Σ′〉 → L 〈Σ〉 such that: ∀e ∈ CX , J↑ eKσ = ψ (JeKσ′).

Proof. We fix Σ and σ : X×2→ L〈Σ〉 as in the statement. Like in the proof of Proposition 3,
we set Σ′ = Σ∪{•}, with • a fresh letter, and write φ (u) for the word obtained from u ∈ Σ′?
by erasing every occurrence of •. Additionally we define the function η : Σ? → Σ′? as follows:

η(ε) := ε η(a u) := • a η(u) (〈a, u〉 ∈ Σ× Σ?).

Clearly, φ (η(u)) = u and η (u v) = η(u) η(v). We may now define σ′ and ψ:

σ′(x) := {η(u) | u ∈ σ 〈x,>〉} ∪
{
η(u)

∣∣∣ u ∈ σ 〈x,⊥〉} ψ (L) := {u | η(u) ∈ L} .

P. Brunet 7

This is where the restriction ε /∈ σ(x) comes in. Indeed a word w cannot be written both as
w = η(u1) and as w = η(u2) unless w = u1 = u2 = ε. Since σ does not contain the empty
word, we may show that ψ (σ′(x)) = σ 〈x,>〉 and ψ

(
σ′(x)

)
= σ 〈x,⊥〉.

ψ distributes over the union and intersection operators. However, it does not hold in
general that ψ (L ·M) = ψ(L) · ψ(M). Like in the proof of Proposition 3 we will therefore
identify a predicate on languages that is sufficient for this identity to hold, is satisfied by
σ′(x), and is stable by ·,∩,+, (−)+

, (−). In this case we find that an adequate candidate is
“L contains only valid words”, where the set V of valid words is defined as follows:

u ∈ Σ+

η(u) ∈ V
u ∈ V
u ∈ V

u ∈ V v ∈ V
u v ∈ V

Alternatively, the elements of V are words over Σ′ that can be written as a product α1 . . . αn
with 1 6 n and each αi ∈ (Σ · •) ∪ (• · Σ). One may see from the definitions that σ′(x) ⊆ V.
V can also be seen to be trivially closed by concatenation and mirror image. Since the
remaining operators are either idempotent (union and intersection) or derived (iteration), we
get that JeKσ′ ⊆ V. This enables us to conclude thanks to the following property:

∀u1, u2 ∈ V, η(u) = u1 u2 ⇒ ∃v1, v2 : u1 = η(v1) ∧ u2 = η(v2) ∧ u = v1 v2. (4.5)

This property enables us to show that ψ (L ·M) = ψ(L) · ψ(M) and ψ (L+) = ψ (L)+, for
languages of valid words L,M . Hence we obtain by induction on expressions that for any
term e ∈ CX , it holds that J↑ eKσ = JeKσ′ . J

I Theorem 8. ∀e, f ∈ E′X , e ≡ f ⇔ e ' f .

Proof. Thanks to Lemma 6, we only need to check Claim 5. Let e, f be two clean expressions
such that e ' f , we want to prove ↑ e '↑ f . According to Corollary 4, we need to compare
J↑ eKσ and J↑ fKσ for some σ : X × 2→ L〈Σ〉 such that ε /∈

⋃
x∈X×2 σ(x). By Lemma 7, we

may express these languages as respectively ψ (JeKσ′) and ψ (JfKσ′). Since e ' f , we get that
JeKσ′ = JfKσ′ , thus proving the desired identity and concluding the proof. J

5 Interlude: tests

Before we start with the main proof, we define tests and establish a few result about them.
Given a list of variables u ∈ X?, we define the term θu by induction on u as θε := 1 and
θa u := a∩ θu. Thanks to the following remark, we will hereafter consider θA for A ∈ Pf (X):

I Remark 9. Let u, v be two lists of variables containing the same letters (meaning a variable
appears in u if and only if it appears in v). Then θu ≡ θv.

The following property explains our choice of terminology: the function λσ. JθAKσ can be
seen as a boolean predicate testing whether the empty word is in each of the σ(a) for a ∈ A.

I Lemma 10. Let Σ be some alphabet and σ : X → L〈Σ〉. Then either ∀a ∈ A, ε ∈ σ(a),
in which case JθAKσ = ε, or JθAKσ = ∅.

8 A complete axiomatisation of reversible Kleene lattices

Tests satisfy the following universal identities, with A,B ∈ Pf (X) and e, f ∈ EX :

θA 5 1 (5.1)
θA ∩ θB ≡ θA · θB ≡ θA∪B (5.2)
θA ≡ θA · θA (5.3)
a ∈ A⇒ θA 5 a (5.4)
θA · e ≡ e · θA (5.5)
(θA · e) ∩ (θB · f) ≡ θA∪B · (e ∩ f) (5.6)
θ+
A ≡ θA ≡ θA. (5.7)

We now want to compare tests with other tests or with expressions. Let us define the
following interpretation for any finite set A ∈ Pf (X).

σA : X → L〈∅〉

x 7→
{
ε if x ∈ A
∅ otherwise.

Note that the alphabet here does not matter, since we only want the unit language and the
empty language. This interpretation enables us to establish the following lemma:

I Lemma 11. For any A,B ∈ Pf (X), the following are equivalent:

(i) ε ∈ JθBKσA
(ii) B ⊆ A (iii) θA 5 θB (iv) θA . θB.

Proof. Assume (i) holds, i.e. ε ∈ JθBKσA
. By Lemma 10 this means that for every a ∈ B we

have ε ∈ σA(a) which by definition of σA ensures that a ∈ A. Thus we have shown that (ii)
holds. We show that (ii) implies (iii) by induction on the size of B:

if B = ∅, by Equation (5.1) θA 5 1 = θ∅.
if B = {a} ∪ B′ with a /∈ B′, since B ⊆ A we have a ∈ A and B′ ⊆ A. By induction
hypothesis we know that θA 5 θ′B . By Remark 9 we get that θA ≡ a ∩ θA. Hence we get:

θA ≡ a ∩ θA 5 a ∩ θ′B = θB .

Thanks to soundness we have that (iii) implies (iv). For the last implication, notice that by
construction of σA we have ε ∈ JθAKσA

. Therefore if θA . θB then we can conclude that
ε ∈ JθAKσA

⊆ JθBKσA
. J

We now define a function I : EX → Pf (Pf (X)), whose purpose is to represent as a sum
of tests the intersection of an arbitrary expression with 1:

I(0) := ∅ I(1) := {∅} I(x) := {{x}} I(e+ f) := I(e) ∪ I(f)

I(e · f) = I(e ∩ f) := {A ∪B | 〈A,B〉 ∈ I(e)× I(f)} I(e+) = I(e) := I(e).

I Lemma 12. ∀e ∈ EX , 1 ∩ e ≡
∑
C∈I(e) θC .

I Corollary 13. ∀e ∈ EX ,∀A ∈ Pf (X) , θA 5 e⇔ θA . e.

Proof. We only need to show the implication from right to left. Assume θA . e. This implies
1 ∩ θA . 1 ∩ e, and since θA 5 1 we know that 1 ∩ θA ≡ θA which by soundness implies
θA ' 1∩ θA. Combining this with Lemma 12, we get that θA ' 1∩ θA . 1∩ e '

∑
C∈I(e) θC .

P. Brunet 9

By Lemma 11, we know that ε ∈ JθAKσA
, which means that ε ∈

r∑
C∈I(e) θC

z

σA

=⋃
C∈I(e) JθCKσA

. Therefore there must be some B ∈ I(e) such that ε ∈ JθBKσA
which

by Lemma 11 tells us that θA 5 θB . We may now conclude:

θA 5 θB 5
∑
C∈I(e)

θC ≡ 1 ∩ e 5 e. J

I Remark 14. The word “test” is reminiscent of Kleene algebra with tests (KAT)[7]. Indeed
according to Equation (5.1) our tests are sub-units, like in KAT. However unlike in KAT,
not every sub-unit is a test. Instead here sub-units are in general sums of tests, as can be
inferred from Lemma 12 (because for every sub-unit e 5 1, we have e ≡ 1 ∩ e ≡

∑
C∈I(e) θC).

6 Completeness of reversible Kleene lattices

To tackle this completeness proof, we will proceed in three steps. Since we already proved
soundness, and since an equality can be equivalently expressed as a pair of containments, we
start from the following statement:

∀e, f ∈ EX , e . f ⇒ e 5 f.

First, we will show that any expression in EX can be equivalently written as a sum of terms
that are either tests or products θA · e of a test and a one-free expression. The case of tests
having been dispatched already (Corollary 13), this reduces the problem to:

∀e ∈ E′X , ∀A ∈ Pf (X) , ∀f ∈ EX , θA · e . f ⇒ θA · e 5 f.

Second, we will show that for any pair 〈A, f〉 ∈ Pf (X) × EX , there exists an expression
〈f〉A ∈ EX such that θA · 〈f〉A 5 f and whenever θA · e . f we have e . 〈f〉A. This further
reduces the problem into:

∀e ∈ E′X , ∀f ∈ EX , e . f ⇒ e 5 f.

For the third and last step, we show that for any expression f ∈ EX , there is an expression
[f] ∈ E′X such that [f] 5 f and whenever e . f for e ∈ E′X we have e . [f]. This is enough
to conclude thanks to Theorem 8.

In the next three subsections, we introduce constructions and prove lemmas necessary for
each step. Then, in Section 6.4 we put them all together to show the main result.

6.1 First step: normal forms
A normal form is either an expression of the shape θA or of the shape θA · e with e ∈ E′X .
We denote by NF the set of normal forms. The main result of this section is the following:

I Lemma 15. For any e ∈ EX there exists a finite set N (e) ⊆ NF such that e ≡
∑
η∈N (e) η.

Proof. We show by induction on e how to build N (e). The correctness of the construction
is fairly straightforward, and is left as an exercise : we will only state the relevant proof
obligations when appropriate.

For constants, variables, and unions, the choice is rather obvious:

N (0) := ∅ N (1) := {θ∅} N (x) := {θ∅ · x} N (e+ f) := N (e) ∪N (f).

10 A complete axiomatisation of reversible Kleene lattices

The case of mirror image is also rather straightforward:

N (e) := {θA | θA ∈ N (e)} ∪
{
θA · e′

∣∣ θA · e′ ∈ N (e)
}
.

For concatenations, we define the product η � γ of two normal forms η, γ ∈ NF as:

θA�θB := θA∪B θA�θB ·e := θA ·e�θB := θA∪B ·e θA ·e�θB ·f := θA∪B · (e · f) .

We then define N (e · f) := {η � γ | 〈η, γ〉 ∈ N (e)×N (f)}. For correctness of the construc-
tion, we would have to prove that ∀η, γ ∈ NF, η · γ ≡ η � γ.

For intersections, we define ⊗ : NF× NF→ Pf (NF):

θA ⊗ θB := {θA∪B} θA ⊗ θB · e := θA · e⊗ θB := {θA∪B∪C | C ∈ I(e)}
θA · e⊗ θB · f := θA∪B · (e ∩ f) .

We then define N (e ∩ f) :=
⋃
〈η,γ〉∈N (e)×N (f) η ⊗ γ.

Finally, for iterations we use the following definition:

N (e+) := {θA | θA ∈ N (e)} ∪

θ∪iAi ·

(∑
i

ei

)+
∣∣∣∣∣∣ {θAi · ei | i 6 n} ⊆ N (e)

 . J

I Remark. In [1], a similar lemma was proved (Lemma 3.4). However, the proof in that
paper is slightly wrong, as it fails to consider the cases θA ∩ θB (easy) and θA ∩ θB · e (more
involved).

6.2 Second step: removing tests on the left
Here we want to transform an inequation θA · e . f , into one one the shape e . 〈f〉A, while
maintaining that θA · 〈f〉A 5 f . The construction of 〈f〉A is fairly straightforward, the
intuition being that θA forces us to only consider interpretations such that a ∈ A⇒ ε ∈ JaKσ.
Therefore, for any a ∈ A we replace in f every occurrence of a with 1 + a.

I Lemma 16. θA · 〈f〉A 5 f 5 〈f〉A.

Proof. Since a 5 1 + a, we can show by induction that f 5 〈f〉A. Also, if a ∈ A:

θA · (1 + a) ≡ θA + θA · a By (1d.1) and (1b.4)
≡ θA · θA + θA · a By (5.3)
≡ θA · (θA + a) By (1b.4)
≡ θA · a. By (5.4)

This proves for the case of variables that θA · 〈f〉A 5 f , and can be generalised to arbitrary
expressions by a simple induction. J

For the other property, we rely on the following lemma:

I Lemma 17. Let Ξ be some alphabet, and σ : X → L〈Ξ〉 be an interpretation such that
∀x ∈ X, ε /∈ σ(x). Then J〈f〉AK

σ
= J〈f〉AK

τ
, where τ : X → L〈Ξ〉

x 7→ σ(x) ∪ {ε | x ∈ A} .

Proof. The result follows from a straightforward induction, the only interesting case being
that of variables x ∈ A. This case is a simple consequence of our definitions:

J1 + aKτ = ε ∪ τ(a) = ε ∪ σ(a) ∪ ε = ε ∪ σ(a) = J1 + aKσ . J

P. Brunet 11

I Corollary 18. Let 〈A, e〉 ∈ Pf (X)× E′X such that θA · e . f , then e . 〈f〉A.

Proof. Since by Lemma 16 we have f 5 〈f〉A by soundness and transitivity of . we
have θA · e . 〈f〉A. We want to show that e . 〈f〉A, so by Corollary 4 we only need
to check that for any interpretation σ : X → L〈Σ〉 such that ε /∈

⋃
x∈X σ(x) we have

JeKσ ⊆ J〈f〉AK
σ
. If we take τ like in Lemma 17, we get that 1) since for every variable

σ(x) ⊆ τ(x), JeKσ ⊆ JeKτ and 2) since for every a ∈ A we have ε ∈ τ(a), we get JθAKτ = ε.
Together these tell us that JeKσ ⊆ JeKτ = ε · JeKτ = JθA · eKτ . Since θA · e . 〈f〉A we know
that JθA · eKτ ⊆ J〈f〉AK

τ
, and by Lemma 17 we know J〈f〉AK

σ
= J〈f〉AK

τ
. We may therefore

conclude that JeKσ ⊆ JθA · eKτ ⊆ J〈f〉AKτ = J〈f〉AKσ. J

6.3 Third step: removing tests on the right
This last step relies on Proposition 3 and Lemma 15.

I Lemma 19. For any expression f ∈ EX , there exists a one-free expression [f] ∈ E′X such
that [f] 5 f and for any one-free expression e ∈ E′X such that e . f we have e . [f]. In
other words, [f] is the maximum of the set {e ∈ E′X | e 5 f}.

Proof. We define [f] :=
∑
θ∅·f ′∈N (f) f

′. We can easily check that [f] 5 f :

[f] ≡ 1 · [f] = θ∅ ·
∑

θ∅·f ′∈N (f)

f ′ ≡
∑

θ∅·f ′∈N (f)

θ∅ · f ′ 5
∑

η∈N (f)

η ≡ f.

For the other property, we rely on Proposition 3. Assume e . f , we want to show that
e . [f]. By Corollary 4, it is enough to check that JeKσ ⊆ J[f]Kσ for interpretations σ
such that ∀x ∈ X, ε /∈ σ(x). Let σ be such an interpretation, and u some word such that
u ∈ JeKσ. Notice that the condition on σ ensures that ∀x ∈ X, 1∩ σ(x) = ∅, hence JθAKσ 6= ∅
implies that A = ∅ by Lemma 10. Also, because σ(x) never contains the empty word and
e does not feature the constant 1, u must be different from ε. Since e . f , we already
know that u ∈ JfKσ. By Lemma 15 and soundness, we know that there is a normal form
η ∈ N (f) such that u ∈ JηKσ. Since u 6= ε, η cannot be a test: that would imply by (5.1)
that η 5 1, hence JηKσ ⊆ J1Kσ = ε. Therefore we know that there is a term θA · f ′ ∈ N (f)
such that u ∈ JθA · f ′Kσ. This means that u ∈ Jf ′Kσ and ε ∈ JθAKσ. As we have noticed
before, this means that A = ∅. Thus we get u ∈ Jf ′Kσ and θ∅ · f ′ ∈ N (f), which ensures that
u ∈ J[f]Kσ. J

6.4 Main theorem
We may now prove the main result of this paper:

I Theorem 20 (Main result). ∀e, f ∈ EX , e ≡ f ⇔ e ' f .

Proof. Since e ≡ f ⇔ e 5 f ∧ f 5 e and e ' f ⇔ e . f ∧ f . e, we focus instead on proving
that e 5 f ⇔ e . f . By soundness we know that e 5 f ⇒ e . f , so we only need to show
the converse implication.

Let e, f ∈ EX such that e . f . By Lemma 15 we can show that e ≡
∑
η∈N (e) η. Let

η ∈ N (e). Thanks to the properties of . we have that η . f . There are two cases for η:
either η = θA for some A ∈ Pf (X), in which case we have η 5 f by Corollary 13;
or η = θA · e′ with A ∈ Pf (X) and e′ ∈ E′X . In that case, by Corollary 18 we have
e′ . 〈f〉A, and by Lemma 19 we get e′ . [〈f〉A]. Since both e′ and [〈f〉A] are one-free,

12 A complete axiomatisation of reversible Kleene lattices

we may apply Theorem 8 to get a proof that e′ 5 [〈f〉A]. Therefore

η = θA · e′ 5 θA · [〈f〉A] 5 θA · 〈f〉A By Lemma 19.
5 f By Lemma 16.

In both cases we have established that η 5 f , so by monotonicity we show that

e ≡
∑

η∈N (e)

η 5
∑

η∈N (e)

f 5 f. J

7 The “top” problem

In reversible Kleene lattices, union and intersection form a distributive lattice, and 0 acts
as both the unit of union and the annihilator of intersection. All that is missing to get
a bounded distributive lattice is the unit of intersection and annihilator of union, namely
the constant >, to be interpreted as the full language. However, this turns out to be more
complicated than one might think.

The first idea that comes to mind is to add the sole axiom >+ e = >. This axiom just
says that for any expression e 5 >, and is enough to show that e ∩ > ≡ > ∩ e ≡ e. It is
obviously sound, so we get soundness of the resulting axiomatic equivalence. This axiomatic
equivalence can be reduced without too much difficulty to that of reversible Kleene lattices,
thanks to the following remark:
I Remark 21. If we write E>X for expressions with >, let φ : E>X → EX+1 be the function
that replaces every occurrence of > with

(∑
a∈X+1(a+ a)

)?. Then the following identity
holds: ∀e, f ∈ E>X , e ≡ f ⇔ φ(e) ≡ φ(f).

This same construction, when applied to expressions without intersections, yields a
completeness proof. In the presence of intersection however it is not complete. We illustrate
this with two examples.

I Example 22 (Levi’s lemma). Levi’s lemma for strings [9] states that whenever we have two
factorisations of the same word, i.e. u1 u2 = v1 v2, then either ∃w, u1 = v1 w ∧ v2 = w u2 or
∃w, v1 = u1 w ∧ u2 = w v2. If we now move from words to languages, it means that every
word that can be obtained simultaneously as L1 · L2 and M1 ·M2 also belongs to either
L1 · > ·M2 or M1 · > · L2. In other words, the following inequation holds:

(e1 · e2) ∩ (f1 · f2) . (e1 · > · f2) + (f1 · > · e2) .

However this equation is not derivable. This law also contrasts with the properties we can
observe in every fragment of this algebra that we have studied: in every case, if a term
without ? or + is smaller than a term e+ f , then it must be smaller than either e or f . One
can plainly see that it is not the case here.

I Example 23 (Factorisation). Another troubling example is the following:

(a · b) ∩ (a · c) . a · ((> · b) ∩ (> · c)) .

As before, this inequation is valid, but it is not derivable, and it does not involve unions.
This suggests that the (in-)equational theory of languages with just the signature 〈·,∩,>〉
is already non-trivial. We postulate that the key to adding > to Kleene lattices lies with a
better understanding of the theory of this smaller signature.

P. Brunet 13

References
1 Hajnal Andréka, Szabolcs Mikulás, and István Németi. The equational theory of Kleene

lattices. Theor. Comput. Sci., 412(52):7099–7108, 2011. doi:10.1016/j.tcs.2011.09.024.
2 S. L. Bloom, Z. Ésik, and Gh. Stefanescu. Notes on equational theories of relations. algebra

universalis, 33(1):98–126, March 1995. doi:10.1007/BF01190768.
3 Paul Brunet. Reversible Kleene lattices. In Kim G. Larsen, Hans L. Bodlaender, and Jean-

Francois Raskin, editors, 42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS 2017), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 66:1–66:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.MFCS.2017.66.

4 John H. Conway. Regular algebra and finite machines. Chapman and Hall Mathematics Series,
1971.

5 Amina Doumane and Damien Pous. Completeness for Identity-free Kleene Lattices. In Sven
Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory
(CONCUR 2018), volume 118 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 18:1–18:17, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CONCUR.2018.18.

6 D. Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events.
Information and Computation, 110(2):366–390, May 1994. doi:10.1006/inco.1994.1037.

7 Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–443,
1997. doi:10.1145/256167.256195.

8 Daniel Krob. Complete systems of B-rational identities. Theoretical Computer Science,
89(2):207–343, October 1991. doi:10.1016/0304-3975(91)90395-I.

9 Frank W. Levi. On semigroups. Bull. Calcutta Math. Soc, 36(141-146):82, 1944.

http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1007/BF01190768
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.66
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.18
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1016/0304-3975(91)90395-I

	Introduction
	Preliminaries
	Sets, words, and languages
	Terms: syntax and semantics

	A remark about the empty word
	Mirror image
	Interlude: tests
	Completeness of reversible Kleene lattices
	First step: normal forms
	Second step: removing tests on the left
	Third step: removing tests on the right
	Main theorem

	The ``top'' problem

