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BRANCH-AND-CUT-AND-PRICE ALGORITHMS FOR THE

PREEMPTIVE RCPSP

Pierre Fouilhoux1,*, A.Ridha Mahjoub2, Alain Quilliot3 and
Hélène Toussaint3

Abstract. In this article, we address the preemptive Resource-Constrained Precedence Scheduling
Problem. We propose two mixed integer formulations containing an exponential number of variables
and inequalities. An antichain is a set of pairwise incomparable elements with respect to the precedence
constraints. In the first formulation, the integer variables are associated with the antichains. For the
second, the integer variables are limited to a particular subset of antichains. We propose two Branch-
and-Cut-and-Price algorithms for each of these formulations. We introduce some valid inequalities in
order to reinforce the second formulation. Finally, we give some computational results on instances of
the PSPLIB and compare the formulations.
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1. Introduction

Let V = {1, . . . , n} be a set of n activities that are associated with processing times pi, i ∈ V . Let G = (V,<)
be a partially ordered set (poset) where < is a precedence relation over the activities of V so that for every
pair of activities i, j ∈ V with i < j, activity i must be completed before activity j starts. We consider κ
resources such that each resource k ∈ {1, . . . , κ} corresponds to a total availability Rk ∈ IR and let rik ≤ Rk
be the constant amount of resource k required by activity i ∈ V at each time of its execution. We will refer at
instance P = (V,<, p, κ,R, r) where p = (p1, . . . , pn), R = (R1, . . . , Rκ) and r = (rik, i ∈ V, k ∈ {1, . . . , κ}) as
a project. Given an activity i ∈ V , an execution sequence for activity i ∈ V is a sequence of ni time intervals
Si =

(
[s1i , e

1
i ], . . . , [s

ni
i , e

ni
i ]
)

where eji < sj+1
i , j ∈ {1, . . . , ni − 1}, such that

∑ni
j=1(eji − s

j
i ) = pi. A schedule of

project P is a set S = {S1, . . . , Sn} of execution sequences for the activities i ∈ {1, . . . , n} so that i) enii ≤ s1j for
every pair i, j ∈ V with i < j and ii) at any time, the total amount of consumed resource k ∈ {1, . . . , κ} does not
exceed Rk. The makespan of a S is the total length of the schedule, i.e., maxi∈V (enii )−mini∈V (s1i ). A schedule is
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Aubière Cedex, France.

* Corresponding author: pierre.fouilhoux@lip6.fr

c© The authors. Published by EDP Sciences, ROADEF, SMAI 2018

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2018031
https://www.rairo-ro.org/
mailto:pierre.fouilhoux@lip6.fr
http://creativecommons.org/licenses/by/4.0


514 P. FOUILHOUX ET AL.

called non-preemptive if ni = 1 for every i ∈ V and preemptive otherwise. The preemptive Resource-Constrained
Precedence Scheduling Problem (RCPSP) consists in determining a preemptive schedule of minimum makespan.
In this article, we assume that the limited resources are renewable, i.e., their amounts are constant and available
at each time of the project (e.g. manpower, electric power,. . . ). For instance, such projects may arise in industrial
applications like production planning or process scheduling in computer science.

The decision variant of the non-preemptive RCPSP (sometimes named single-mode RCPSP) is the problem
of determining whether there exists a schedule of makespan smaller than a given deadline T . This problem is
NP-hard in the strong sense [6]. Two surveys of this problem and its extensions can be found in [3, 10].

Several integer formulations of the non-preemptive RCPSP have been given in the literature, e.g., [1, 11, 15,
17–19]. Most are based on a discretization of the time horizon. In particular, in [15] Mingozzi et al. introduce a
0–1 linear formulation for the non-preemptive RCPSP using time-indexed variables. They also propose several
linear relaxations of their formulation that permit to compute lower bounds. Brucker and Knust [4] consider one
of these relaxations and devise a destructive approach based algorithm using column generation and constraint
programming. In [9], Hardin et al. describe strong valid inequalities for another time-indexed formulation.
Baptiste and Demassey [2] develop a preprocessing step for this latter algorithm using constraint programming
techniques and provide the best known lower bounds for the instances of the PSPLIB of Kolisch and Sprecher[12].

Given a poset, an antichain is a set of pairwise incomparable elements. This concept has been first introduced
by Mingozzi et al. [15]. Using this they propose a formulation containing an exponential number of variables
and develop a column generation algorithm for solving it. The linear relaxation of this formulation permits to
produce a very good lower bound for the preemptive RCPSP, which is in turn a good lower bound for the non-
preemptive RCPSP. In [5], Damay et al. point out a correspondence between the solutions of the RCPSP and
particular subsets of antichains, called feasible subsets. Then they devise a heuristic column generation based
algorithm for the RCPSP. Recently, in [16] Moukrim et al. propose a Branch-and-Bound algorithm for the
preemptive RCPCP in which each subproblem is related to a particular subset of antichains and can be solved
to optimality using the linear relaxation of [15]. Using this approach, they solve instances up to 30 activities
coming from the PSPLIB.

The formulation of [15] was inspired from a similar column generation process proposed by Mehrotra and
Trick [14] for the vertex coloring problem. Efficient extensions of the formulation have been discussed in [7, 8, 13].
Moreover in [7], Gualandi and Malucelli succeed to solve very large instances of the vertex coloring problem
using a technique combining column generation and constraint programming.

In this article, we propose two mixed integer formulations (MIP) for the preemptive RCPSP. In the first one,
the integer variables are associated with the antichains and are then in exponential number. For the second,
the integer variables are limited to a particular set of antichains and are in O(|V |2). For both formulations,
we propose a Branch-and-Cut-and-Price (BCP) algorithm. We also propose some valid inequalities in order to
reinforce the second formulation. Finally, we present some computational results for instances from the PSPLIB
and compare the two formulations.

The paper is organized as follows. In the following section we show that the preemptive RCPSP reduces
to find a particular set of antichains. Using this, we introduce two MIPs for this problem in Section 3. In
Section 4, we present two Branch-and-Cut-and-Price algorithms which are dedicated to these formulations. In
Section 5, we propose some valid inequalities for the second formulation. Finally, in Section 6, we present our
computational study. In the rest of this section, we give more definitions and notations.

The graphs we consider are finite, directed and without loops and multiple arcs. We denote a graph by
H = (N,B) whereN is the node set andB the arc set ofH. An arc b ∈ B from node u to node v will be denoted as
(u, v). A path is a sequence of nodes (v1, v2, . . . , vk) such that B contains the arcs (v1, v2), (v2, v3), . . . , (vk−1, vk).
If (v1, v2, . . . , vk) is a path linking v1 to vk and arc (vk, v1) ∈ E, then the sequence (v1, v2, . . . , vk, ) is called a
circuit. If W ⊆ N , B(W ) denotes the set of all arcs of H with both endnodes in W . The graph (W,B(W )) is
the subgraph of H induced by W . An induced subgraph is called acyclic if it does not contain a circuit.
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Figure 1. An instance P1 of project with 1 resource and R1 = 2.

2. An antichain model

In this section, we show that the preemptive RCPSP reduces to finding a particular subset of antichains of a
poset. Such subsets can be seen as a generalization of the feasible subsets introduced by Mingozzi et al. in [15]
and of the candidate families introduced in [5].

Given a project P = (V,<, p, κ,R, r), a R-antichain a of P is an antichain of the poset G = (V,<) which
satisfies the resource constraints, i.e.,

∑
i∈a rik ≤ Rk for all k ∈ {1, . . . , κ}.

Figure 1 illustrates a project P1 of 8 activities and a single resource, called 1, with R1 = 2. In the figure,
project P1 is fully given by the graph G1: each activity i ∈ V is represented by a circle containing its number; the
pair (pi, ri1) of its processing time and its resource requirement; and the arcs represent the precedence relations
between the activities. Note that in such a graph, for every two activities i, j ∈ V , we have i < j if and only if
there is a path from i to j. Remark that sets {3, 4} and {2, 6} are R1-antichains, whereas {3, 5} is an antichain
which is not an R1-antichain since r31 + r51 = 3 > R1.

Let us consider A as the set of all the R-antichains of P . We define a precedence relation ≺ on A such that
for a, a′ ∈ A , a ≺ a′ if and only if there exists a pair of activities i ∈ a and j ∈ a′ with i < j. For instance, for
the project P1 of Figure 1, remark that {3, 4} ≺ {2, 6}. Given a subset of R-antichains A ⊆ A , let us define
the antichain graph as the directed graph Γ (A) = (A, E(A)) where the arc set E(A) contains the arc (a, a′),
a, a′ ∈ A, if and only if a ≺ a′.

Remark that an antichain graph can contain a circuit. For instance, in project P1 of Figure 1, the R1-
antichains {2, 6} and {3, 7} induce a circuit. A subset of R-antichains A ⊆ A is said to be acyclic if the graph
Γ (A) is acylic.

Given a subset A ⊆ A of R-antichains and an activity i of V , we define Ai as the subset of A containing
activity i. Let us consider the vector set S(A) introduced by Mingozzi et al. in [15]:

S(A) =

{
z ∈ IR|A|+ s.t.

∑
a∈Ai

za = pi for all i ∈ V

}
.

The set S(A) is the solution set of a set of equalities containing an exponential number of variables: there is
one variable za associated with every R-antichain a of A . A subset of R-antichains A ⊆ A is said to be time-full
if S(A) 6= ∅. Remark that, if S(A) 6= ∅, a component za corresponds to an amount of time associated with the
R-antichain a of A.

Figure 2a shows a schedule associated with the instance of Figure 1. Remark that activity 4 has an execution
sequence of 2 time intervals. Figure 2b presents the same schedule divided into the 9 corresponding R1-antichains.
For instance, the R1-antichain a1 (resp. a2) corresponds to an amount of time za1 = 3 (resp. za2 = 2). The two
R1-antichains containing activity 4 are a2 and a4 and their total amount of time is p4 = 3. It can be seen that
the set A1 of all these R1-antichains is time-full and that graph Γ (A1) = (A1, E(A1)) is acyclic.

We then can propose a reduction for the preemptive RCPSP.
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Figure 2. Gantt chart corresponding to the instance of Figure 1.

Theorem 2.1. Given a project P , determining an optimal preemptive schedule of P is equivalent to determining

an acyclic time-full subset A of A such that S(A) 6= ∅ and min
z∈S(A)

∑
a∈A

za is minimum.

Proof. First, let us consider a schedule S = {S1, . . . , Sn} where each execution sequence Si is divided into ni
time intervals, for each activity i ∈ V . Let us consider the set of the events on the schedule, that is to say the
dates between the time 0 and the makespan T when a time interval of an execution sequence of an activity
starts or ends. Let us denote (d1, . . . , dτ ) the sequence of the τ events of the schedule with d1 = 0 and dτ = T .
Given t = 1, . . . , τ − 1, let us consider the set at of activities that are in execution within the interval [dt, dt+1].
Since the activities of an antichain at, t ∈ {1, . . . , τ}, have been activated simultaneously, then

∑
i∈at rik ≤ Rk

for every k ∈ {1, . . . , κ}, and thus at is an R-antichain. Moreover, since in schedule S, an activity j ∈ V begins
after the end of every activity i of V with i < j, by construction, the subset A = ∪t∈{1,...,τ}at is acyclic. Finally,
we can see that A is time-full. Indeed, by setting zat = dt+1− dt, for every t ∈ {1, . . . , τ}, z is a solution of S(A)
where

∑
a∈A za is the makespan of the schedule S.

Conversely, let us consider an acyclic time-full subset A of p R-antichains with S(A) 6= ∅. Using a deep-first
search on graph Γ (A) it can then be obtained a topological order σ = (a1, . . . , ap) over the R-antichains of A.
Let z∗ be an optimal solution of the linear program minz∈S(A)

∑
a∈A za. Note that, since A is time-full, this

program is feasible. Given l ∈ {1, . . . , p} and an activity i ∈ al, we set sli =
∑l−1
λ=1 z

∗
aλ

and eli =
∑l
λ=1 z

∗
aλ

. By
construction, for a given i ∈ V , the sequence Si = ([s1i , e

1
i ], . . . , [s

p
i , e

p
i ]) is an execution sequence of activity i.

Indeed, since A is time-full,
∑
{l | al∈Ai} e

l
i− sli = pi. Moreover, since σ is a topological order and A is composed

of R-antichain, S = (S1, . . . , Sn) is a preemptive schedule. Finally, we can remark that the makespan of S is
exactly

∑
a∈A z

∗
a.

3. MIP formulations

In this section, we present two MIP formulations for the preemptive RCPSP based on the reduction introduced
in the previous section.
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3.1. Antichain formulation

We first introduce a MIP formulation directly inspired from Theorem 2.1. Given a project P , we associate a
0–1 variable xa and a continuous variable za to every R-antichain a of A . Vector x will be an incidence vector
of a subset A of A and za an amount of time associated with a ∈ A. Let Pa = min{pi | i ∈ a} for every a ∈ A .
Let us consider the following mixed linear program P1.

Min
∑
a∈A

za∑
a∈Ai

za = pi for all i ∈ V, (3.1)

za ≤ Paxa for all a ∈ A , (3.2)∑
a∈C

xa ≤ |C| − 1 for all circuit C in Γ (A ), (3.3)

xa ∈ {0, 1} for all a ∈ A ,

za ≥ 0 for all a ∈ A .

Given a solution (z, x) of P1, let us consider the set A = {a ∈ A | xa = 1}. Constraints (3.1), called time-full
inequalities, ensure that A is time-full and constraints (3.3), called circuit antichain inequalities, ensure that
A is acyclic. Constraints (3.2) force za to be equal to 0 whenever the R-antichain a ∈ A is not considered in
the solution, i.e., xa = 0. Consequently, A is an acyclic time-full subset of A so that A 6= ∅. Since, on the
other hand, every incidence vector of an acyclic time-full subset of A corresponds to a solution of P1, then by
Theorem 2.1, P1 is equivalent to the preemptive RCPSP.

3.2. Two-indices formulation

In this section, we will give another reduction for the preemptive RCPSP. Given a project P , let us consider
the set F of R-antichains containing exactly two activities. Given a subset A ⊆ A , we then consider the set

f(A) = {{i, j} ∈ F | ∃ a ∈ A with {i, j} ⊆ a}

and the graph Γ 2(A) = (f(A), E(f(A))) which is a subgraph of Γ (A ). We then can give the following result.

Theorem 3.1. Let A ⊆ A be a subset of R-antichains. Γ (A) is acyclic if and only if Γ 2(A) is acyclic.

Proof. Let us first consider a set A ⊆ A such that Γ (A) is acyclic and assume that Γ 2(A) contains a circuit
({i1, j1}, . . . , {ik, jk}) with k ≥ 2, such that il < jl+1 for l = 1, . . . , k − 1 and ik < j1. By construction of f(A),
there exists ak ∈ A such that {ik, jk} ⊆ ak for every k ∈ {1, . . . , k}. Then (a1, . . . , ak) is such that al ≺ al+1 for
l = 1, . . . , k − 1 and ak ≺ a1. Consequently (a1, . . . , ak) forms a circuit of Γ (A), a contradiction.

Let us now suppose that Γ 2(A) is acyclic and Γ (A) contains a circuit (a1, . . . , ak) with k ≥ 2. By definition
of Γ (A), for every l ∈ {1, . . . , k− 1} (resp. l = k), there exist two activities il ∈ al and jl+1 ∈ al+1 (resp. ik ∈ ak
and j1 ∈ a1) such that il < jl+1 (resp. ik < j1). Let us then consider the sequence s = ({i1, j1}, . . . , {ik, jk}).
Let us first suppose that there exists l0 ∈ {1, . . . , k} such that il0 = jl0 . Since il0−1 < jl0 = il0 < jl0+1 (indices
are taken modulo k), il0−1 < jl0+1. Let us then remove {il0 , jl0} from list s. Using iteratively this argument, we
then obtain a subsequence s′ = ({i′1, j′1}, . . . , {i′k′ , j′k′}) of s such that i′l 6= j′l for every l ∈ {1, . . . , k′}. Moreover
observe that k′ ≥ 2. Consequently, {i′l, j′l} ∈ f(A) for l = 1, . . . , k′, and thus s′ is a circuit of Γ 2(f(A)), which
is a contradiction.

From Theorem 3.1, we can propose a second MIP formulation, called Two-indices formulation, for the pre-
emptive RCPSP. With every element {i, j} of F , we associate a 0–1 variable xij . We also still consider continuous



518 P. FOUILHOUX ET AL.

variables za associated with every R-antichain a of A . Let Pij = min(pi, pj) for every {i, j} ∈ F . Let us consider
the following MIP formulation P2.

Min
∑
a∈A

za,∑
a∈Ai

za = pi for all i ∈ V, (3.1)

∑
a∈A | {i,j}⊆a

za ≤ Pijxij for all {i, j} ∈ F , (3.4)

∑
{i,j}∈C

xij ≤ |C| − 1 for all circuit C of Γ 2(A ), (3.5)

xij ∈ {0, 1} for all {i, j} ∈ F ,
za ≥ 0 for all a ∈ A .

Given a solution (z, x) of P2, let us consider the set A = {a ∈ A | z(a) > 0}. Clearly, time-full inequalities (3.1)
ensure that A is time-full. By inequalities (3.4), for every pair {i, j} of F that are contained in an R-antichain
of A, we have xij = 1. Note that, for a given pair {i, j} ∈ F , the corresponding inequality (3.4) is valid from
the two inequalities (3.1) for i and j. Moreover, constraints (3.5), called circuit inequalities, ensure that A is
acyclic. From Theorem 3.1, since every acyclic time-full subset A of R-antichains correspond to a solution of
P2, then program P2 is equivalent to the preemptive RCPSP.

We can remark that since inequalities (3.4) are associated with pairs of activities, they will be easier to handle
within a column generation process than inequalities (3.2) of the previous antichain formulation.

4. Branch-and-Cut-and-Price algorithms

In this section we devise two BCP algorithms for the two MIP introduced in the previous section.

4.1. Branching rules and pricing phase for the antichain formulation

In this section, we describe the branching rules and the pricing phase for the antichain formulation. For this,
we first present the branching rules of the algorithm.

4.1.1. Branching rules

Classical branching on variables xa, a ∈ A , will not be efficient in the framework of this BCP algorithm.
Indeed, a better strategy would be to determine a partition of the solution set into two subproblems of similar
size. We then use an idea close to the well-known Ryan and Foster rule: either two activities are never activated
simultaneously or they are (partially) activated simultaneously. This can be done as follows: for two given
activities i, j ∈ V such that neither i < j nor j < i, we construct two subproblems so that:

– Rule 0: either there is no R-antichain containing both activities i and j, i.e., xa = 0 for all a ∈ A such
that i, j ∈ a,

– Rule 1: there exists at least one R-antichain containing both i and j. This is equivalent to adding the
following inequality

∑
a∈A | {i,j}⊆a

xa ≥ 1. (4.1)
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For a given node of the branching tree, we will denote by L0 (resp. L1) the set of pairs i, j for which rule 0
(resp. rule 1) has been applied. Given a subset A ⊆ A of R-antichains, let us then consider the set

AL0 = {a ∈ A | {i, j} 6⊆ a for all {i, j} ∈ L0}.

Therefore each node of the branching tree is characterized by a program PL0,L1

1 obtained from P1 by removing
variables xa, za with a ∈ A \A L0 and adding the inequalities (4.1) for every i, j ∈ L1.

The choice of a pair of activities for these branching rules can be performed by determining a pair i, j so that∑
a∈A | {i,j}⊆a xa is close to 0.5.

4.1.2. Pricing problem

At each node of the branching tree induced by the branching rules, we need to solve problem PL0,L1

1 . This
will be performed by a Price-and-Cut algorithm. The pricing phase of this Price-and-Cut algorithm consists in
solving PL0,L1

1 where only a subset K of circuits of Γ (A L0) is considered.

In order to initialize a pricing algorithm to solve PL0,L1

1 , we consider a subset A ⊆ A of R-antichains such
that K ∈ Γ (AL0). Moreover, we will suppose that A contains all the R-antichains limited to only one activity
{i}, i ∈ V , this implies that every linear program involved in the pricing phase will always contain a solution.

Let us then consider the following linear program P̃L0,L1

1 (A)

Min
∑
a∈AL0

za∑
a∈AL0

i

za = pi for all i ∈ V, (3.1)

za ≤ Paxa for all a ∈ AL0 , (3.2)∑
a∈C

xa ≤ |C| − 1 for all circuit C ∈ K, (3.3)∑
a∈AL0 | {i,j}⊆a

xa ≥ 1 for all {i, j} ∈ L1, (4.1)

xa ≤ 1 for all a ∈ AL0 , (4.2)

xa ≥ 0 for all a ∈ AL0 ,

za ≥ 0 for all a ∈ AL0 .

Let (z∗, x∗) be an optimal solution of P̃L0,L1

1 (A). Let (z0, x0) be the vector such that z0a = z∗a, x0a = x∗a if a ∈ AL0

and z0a = 0, x0a = 0 if a ∈ A L0 \AL0 . We now can address the pricing subproblem associated with P̃L0,L1

1 (A).

Theorem 4.1. Let λ∗i , i ∈ V be the dual optimal values of constraints (3.1) of P̃L0,L1

1 (A). Then (z0, x0) is

optimal for the linear program P̃L0,L1

1 (A ) if
∑
i∈a λ

∗
i ≤ 1 for every a ∈ A L0 \AL0 .

Proof. Let us consider the linear problem P̃
′L0,L1

1 (A) obtained from P̃L0,L1

1 (A) by adding inequalities xa ≥ 0
and xa ≤ 1, for all a ∈ A L0 \AL0 ; and replacing inequalities (4.1) by inequalities∑

a∈A L0 | {i,j}⊆a

xa ≥ 1 for all {i, j} ∈ L1. (4.3)

Note that inequalities (4.1) and (4.3) differ by the fact that the sum in (4.1) is restricted to AL0 . Let us then
define vector x1 as x1a = x∗a if a ∈ AL0 and x1a = 1 if a ∈ A L0 \ AL0 . Remark that (z0, x1) is a solution of
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P̃
′L0,L1

1 (A). Moreover, if (z0, x1) is an optimal solution of P̃L0,L1

1 (A ), then (z0, x0) will be also optimal since

they correspond to the same objective value. We will now show that (z0, x1) is an optimal solution of P̃L0,L1

1 (A ).

Let λi, i ∈ V (resp. µa, a ∈ AL0 ; σC , C ∈ K; ρi,j , {i, j} ∈ L1; νa, a ∈ A L0) be the dual variables of P̃
′L0,L1

1 (A)

corresponding to the constraints (3.1) (resp. (3.2), (3.3), (4.3), (4.2)). The constraints of the dual of P̃L0,L1

1 (A )
are

∑
i∈a

λi + µa ≤ 1 for all a ∈ A L0 (4.4)

−Paµa +
∑

C∈K | a∈C

σC +
∑

{i,j}∈L1 | {i,j}∈a

ρij + νa ≤ 0 for all a ∈ A L0 (4.5)

with λi ∈ IR,∀i ∈ V ; µa ≤ 0,∀a ∈ A L0 , σC ≤ 0,∀C ∈ K, ρij ≥ 0,∀{i, j} ∈ L1; and νa ≤ 0,∀a ∈ A L0 .

Let (µ∗, σ∗, ρ∗, ν∗) be an optimal solution of the dual of P̃
′L0,L1

1 (A). Let us consider the vector µ1 given by
µ1
a = µ∗a if a ∈ AL0 and µ1

a = 0 if a ∈ A L0 \AL0 . We will first show that (λ∗, µ1, σ∗, ρ∗, ν∗) is a solution of the dual

of P̃L0,L1

1 (A ). By construction, inequalities (4.4) and (4.5) are satisfied for every a ∈ AL0 . Let us now consider
a ∈ A L0 \ AL0 . Since, by hypothesis,

∑
i∈a λ

∗
i ≤ 1, the inequality (4.4) corresponding to a is then satisfied.

Note that the inequality (4.5) of the dual of P̃
′L0,L1

1 (A) corresponding to a is
∑
{i,j}∈L1 | {i,j}∈a ρij + νa ≤ 0.

Moreover, since µa ≥ 0 and since any circuit C ∈ K does not contain the R-antichain a, then the inequality
(4.5) of the dual of P̃L0,L1

1 (A ) is satisfied.

Since the objective values of P̃L0,L1

1 (A ) and its dual are the same for (z0, x1) and for (λ∗, µ1, σ∗, ρ∗, ν∗), by

weak duality, (z0, x1) is an optimal solution of P̃L0,L1

1 (A ).

4.1.3. Pricing phase for P1

From Theorem 4.1, the pricing problem for formulation P̃L0,L1

1 (A) is, given the dual optimal value λ∗ of
inequalities (3.1), to test whether every R-antichain a ∈ A L0 \ AL0 satisfies

∑
i∈a λ

∗
i ≤ 1, and, if not, to find

an R-antichain a ∈ A L0 \ AL0 with
∑
i∈a λ

∗
i > 1. This pricing problem then reduces to find a set of activities

inducing an R-antichain A L0 \ AL0 so that
∑
i∈a λ

∗
i is minimum. This problem is clearly equivalent to the

following program where yi is a 0-1 variable associated with activity i, for every i ∈ V .

Max
∑
i∈V

λiyi∑
i∈V

rikyi ≤ Rk for all k ∈ {1, . . . , κ},

yi + yj ≤ 1 for all i, j ∈ V × V with i < j,

yi + yj ≤ 1 for all (i, j) ∈ L0,

{i ∈ V | yi = 1} /∈ AL0 , (4.6)

yi ∈ {0, 1} for all i ∈ V.

Given an optimal solution y∗ of this program, constraint (4.6) forces the R-antichain a = {i ∈ V | y∗i = 1} to
be in A L0 \AL0 . Indeed, the reduced cost of a variable za corresponding to an R-antichain a ∈ AL0 is different
from the one of za if a ∈ A L0 \AL0 due to the dual cost of inequalities (3.2).

Since constraint (4.6) can easily be taken into account during a Branch-and-Bound method, this program
can be solved using a MIP solver. Moreover, the linear inequalities of this program arise as valid inequalities in
the knapsack and stable set problems. This may explain the fact that MIP solvers efficiently solve this program.
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4.2. Branching rules and pricing phase for the two-index formulation

We now present the branching rules and the pricing algorithm for the two-index formulation P2.

4.2.1. Branching rules

For formulation P2, the chosen branching rule is to fix a variable use xij to 0 or 1. In the particular case of
P2, this classical branching rule exactly corresponds to the more complicated rule we used for P1 in the previous
section.

A subproblem of P2, using the classical branching rule, is then defined by a set L0 of pairs (i, j) of activities

such that xij = 0 and a set L1 such that xij = 1. A MIP program PL0,L1

2 equivalent to this subproblem is then
obtained from P2 by removing variables xij with (i, j) ∈ L0 together with the corresponding inequalities (3.4)
as well as every variable za such that {i, j} ∈ a; and to set to 1 every variable xij with (i, j) ∈ L1.

4.2.2. Pricing problem

As for the Antichain formulation, program PL0,L1

2 will be solved by a Price-and-Cut algorithm. The pricing

phase of this algorithm phase consists in solving PL0,L1

2 where only a subset K of circuits of Γ (A ) is considered.
This pricing phase starts with a given R-antichain subset A ⊆ A such that K ∈ Γ (AL0) and containing an

acyclic time-full subset. Let us then consider the following linear problem P̃L0,L1

2 (A)

Min
∑
a∈A

za,∑
a∈AL0

i

za = pi for all i ∈ V, (3.1)

∑
a∈AL0 | {i,j}⊆a

za ≤ Pijxij for all {i, j} ∈ F \ L0, (3.4)

∑
{i,j}∈C

xij ≤ |C| − 1 for all circuit C ∈ K, (3.5)

xij = 1 for all {i, j} ∈ L1,

xij ∈ {0, 1} for all {i, j} ∈ F \ L0,

za ≥ 0 for all a ∈ AL0 .

Let (z∗, x∗) be the optimal solution of P̃L0,L1

2 (A). Let us consider the vector z0 obtained as z0a = z∗a if a ∈ AL0

and z0a = 0 if a ∈ A L0 \AL0 . Let λ∗i , i ∈ V (resp. µij , (i, j) ∈ F \L0), be the dual optimal values of constraints

(3.1) (resp. (3.4)) of P̃L0,L1

2 (A). It can be easily seen that the reduced cost of variable za, a ∈ A L0 , is

ρa = 1−
∑
i∈a

λi +
∑
{i,j}⊆a

µij .

Consequently (z0, x∗) is optimal for the linear program P̃L0,L1

2 (A ) if ρa > 0 for every R-antichain a of A L0 .

4.2.3. Pricing phase for P2

The pricing problem for this formulation reduces to find an R-antichain with minimum reduced cost. Let yi
be a 0-1 variable associated with activity i ∈ V and tij a 0-1 variable associated with every (i, j) ∈ F \L0. Then
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the pricing subproblem is equivalent to the following program that can be easily solved using a MIP solver.

Max
∑
i∈V

λiyi −
∑

(i,j)∈F

µijtij

∑
i∈V

rikyi ≤ Rk for k ∈ {1, . . . , κ},

yi + yj ≤ 1 for all i, j ∈ V × V with i < j,

yi + yj ≤ 2tij for all (i, j) ∈ F \ L0,

yi + yj ≤ 1 for all (i, j) ∈ L0,

tij ≤ yi for all (i, j) ∈ F \ L0,

tij ≤ yj for all (i, j) ∈ F \ L0,

yi ∈ {0, 1} for all i ∈ V,
tij ∈ {0, 1} for all (i, j) ∈ F \ L0.

4.3. Price-and-Cut for the antichain and the two-index formulation

In this section, we precise how the whole Price-and-Cut algorithms are organized.

4.3.1. Circuit inequalities separation algorithm

We first present a separation algorithm for the circuit inequalities (3.3) and (3.5) of the two formulations.
Let us consider a directed graph H = (N,B) and a weight x∗u ∈ [0, 1] associated with every node u of N . For
a given set A ⊆ A , graph H can be either Γ (A) or Γ 2(A). The separation problem for inequalities (3.3) and
(3.5) can be then seen as deciding whether x∗ satisfies the inequalities

∑
u∈C x

∗
u ≤ |C| − 1 for every circuit of

H, and, if not, to find an inequality that is violated by x∗.
This separation problem can be easily performed in |O(|N |t(N,B)) where t(N,B) is the complexity of a

shortest path arborescence algorithm on graph H. Let wuv = 1− x∗u+x
∗
v

2 be a weight associated with arc (u, v)
for every (u, v) ∈ B. For every node u ∈ N , we compute a shortest path arborescence rooted in u. For every
node v such that (v, u) ∈ B, we then consider the circuit C obtained by concatenating the path from u to v in
the arborescence plus arc (v, u). Note that if w(C) < 1, then

∑
u∈C x

∗
u > |C| − 1. Moreover if for every node

u, v the corresponding circuit C is so that w(C) ≥ 1, then x∗ satisfies all the circuit inequalities.

4.3.2. Price-and-Cut algorithm

Given a subproblem created by the branching rules L0 and L1, the linear relaxation of the subproblem is
then solved using a Price-and-Cut algorithm as follows. The sets A and K are initialized so that A contains a
time-full acyclic subset and K is a set of circuits involving R-antichains of A.

(1) Consider linear program P̃L0,L1

i (A) (i = 1, 2)
(2) Using iteratively the pricing phase, find a set A′ of new columns so that there is no column with nonnegative

reduced cost to add in P̃L0,L1

i (A ∪A′)
(3) Using iteratively the separation phase, find a set K ′ of circuits so that there is no violated circuit

inequalities to add in P̃L0,L1

i (A ∪A′))
(4) If A′ = ∅ and K ′ = ∅, then STOP
(5) A← A ∪A′ and K ← K ∪K ′
(6) Go to (1)

Since this Price-and-Cut algorithm solves the linear relaxation of the subproblem, the branching tree induced
by the branching rules will give an optimal solution of P1 or P2.
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5. Valid inequalities for the two-index formulation

In formulation P2, a preemptive schedule of a project corresponds to several solutions of P2. For instance,

given a solution (z, x) of P2, for a given {i, j} ∈ F , if
∑

a∈A | {i,j}⊆a

za = 0, then xij can sometimes be indifferently

set to 0 or to 1. This implies that the linear relaxation P̃2 of P2 may produce unnecessary nodes in the branching
tree. In particular, an extreme point (z, x) of P̃2 may satisfy one or several inequalities (3.4) with equality, this
implies that some components of x may not be integer. However, another solution (z, x̃) corresponding to the
same R-antichain subset and the same variable z can be obtained by increasing as much as possible the value of
xij , for every {i, j} ∈ F . Hence either xij ≤ 1 or a circuit inequality (3.5) will be tight for x̃. Consequently, the
resulting point x̃ will satisfy more (resp. less) circuit inequalities (resp. inequalities (3.4)) with equality than x.

In order to construct a 1-to-1 correspondence between a subset of R-antichains and a solution (x, z) of P2, we
can restrict the solutions to the incidence vectors x of inclusion-wise maximal acyclic subgraphs of Γ 2(A ). Let
us consider the polytope Qmax defined as the convex hull of all the incidence vectors of inclusion-wise maximal
acyclic subgraphs of Γ 2(A ).

Given a subset W of F , let us consider the set AC(W ) of all subsets of pairs of F inducing an acyclic
subgraph of Γ 2(W ). Given an R-antichain {i, j} ∈ F , let Cij the set of all subsets of pairs of F inducing a
circuit containing the R-antichain {i, j}. We then consider the set Cij obtained as the union of the pairs of every
subsets of Cij . Note that Cij contains pair {i, j}. Consider the inequalities

xij + x(Cij \W ) ≥ 1 for all {i, j} ∈ F (5.1)

and for all W ∈ AC(Cij) with {i, j} ∈W.

Theorem 5.1. Inequalities (5.1) are valid for Qmax.

Proof. Let M be an inclusion-wise maximal subset of AC and let us consider χM its incidence vector. Let
{i, j} ∈ F and W ∈ AC(Cij) with {i, j} ∈ W . Let us remark, that since W induces an acyclic subgraph and
contains {i, j}, then Cij \W is a non-empty set of nodes. If χMij = 1, the inequality is trivially satisfied by χM .

Let us now suppose that χMij = 0 and χM (Cij \W ) = 0. Hence, M induces an acyclic subgraph and contain no

pair of Cij \W . Then M ∪ {{i, j}} still induces an acyclic subgraph of Γ 2(A ), a contradiction.

Moreover we have the following property.

Theorem 5.2. Let (z, x) be a solution of the formulation obtained by adding inequalities (5.1) to formulation
P2. Then x is the incidence vector of an inclusion-wise maximal acyclic subgraph of Γ 2(A ).

Proof. Let M = {{i, j} ∈ F | xij = 1}. Clearly, M induces an acyclic subgraph of Γ 2(A ) due to inequalities
(3.5). Let us suppose that M is not an inclusion-wise maximal subset of AC, i.e., there exists a pair {i, j} ∈ F
such that xij = 0 and W = M ∪{{i, j}} still induces an acyclic graph. Let W ′ = W ∩Cij . Since x(Cij \W ′) = 0,
the inequality (5.1) associated with {i, j} and W ′ is then violated by x, a contradiction.

Unfortunately, inequalities (5.1) are in exponential number and their associated separation problem appears
to be hard to solve. In fact, we do not know its complexity. In this article, we will only consider particular
inequalities of this class. Let us consider the following connected component inequalities

xij +
∑

{i′,j′}∈π(i,j)

xi′j′ ≥ 1 for all {i, j} ∈ F (5.2)

xij +
∑

{i′,j′}∈σ(i,j)

xi′j′ ≥ 1 for all {i, j} ∈ F , (5.3)
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Table 1. Linear relaxation values for the three formulations.

Ropt Ming. Gap NBbest TT

P̃1 56.83 0.16 76 0.2

P̃2 57.02 0.49 136 1.6

P̃3 57.05 0.54 144 2.2

where π(i, j) (resp. σ(i, j)) is the set of pairs {i′, j′} such that {i′, j′} belongs to the strongly component of
F containing {i, j} and such that ({i′, j′}, {i, j}) (resp. ({i, j}, {i′, j′})) is an arc of Γ 2(A ). Clearly, given
{i, j} ∈ F , inequality (5.2) (resp. (5.3)) is a particular case of inequalities (5.1) when W = Cij \ π(i, j) (resp.
W = Cij \ σ(i, j)). Note that it can be produced an incidence vector of AC(F) which satisfies inequalities (5.2)
and (5.3)) and which is not the incidence vector of a subset inducing an inclusion-wise maximal acyclic subgraph.

In what follows we present our experimental results. For these experiments, we will also consider a further
formulation, denoted by P3, obtained from P2 by adding inequalities (5.2) and (5.3). Note that P3 is also
equivalent to the preemptive RCPSP.

6. Experimental results

We can now present some computational results obtained using our BCP algorithms for the three formulation
P1, P2 and P3. The algorithm has been implemented in C++ using the SCIP 3.0.1 framework. It was tested on
a PC with 2.40GHz, 1 TB Ram for 80 processors, running under linux.
For these experiments, we have focused on the PSPLIB instances of 30 activities. Indeed, these are the only
instances for which the preemptive RCPSP have been solved to optimality in the literature. In [16], an optimal
solution has been produced within a few seconds using a Branch-and-Bound algorithm combined with a column
generation procedures based on Mingozzi formulation.

Each line of the three following tables corresponds to the average values obtained over the 480 instances of
the PSPLIB containing 30 activities. The first column of the table gives the formulation name.

Table 1 presents the linear relaxation P̃1, P̃2 and P̃3 of the three formulations. The entries of Table 1 are as
follows.

Ropt : the average optimal linear relaxation value,
Ming. Gap : the average relative error between the optimal linear relaxation

value and the optimal value of the Mingozzi linear formulation,
NBbest : the number of instances for which the optimal linear relaxation

value is strictly greater than the value of the Mingozzi
linear relaxation [15] over the 480 instances,

TT : the average total CPU time in seconds to obtain the relaxation value.

From Table 1, we can first remark that the relaxations of the three formulations can be obtained within a
few seconds and often give better lower bounds than the optimal values of the Mingozzi linear formulation. In
particular, formulation P3 gives a strictly greater lower bound for 144 instances of the 480 ones, with 0.54%
improvement in average.

Since every solution of the antichain formulation P1 corresponds to a solution of the two-index formulation
P2, the relaxation of formulation P2 is better than the one of formulation P1, and we can notice from Table 1
that this latter value is often strictly greater. Recall that formulation P3 is obtained from P2 by adding valid
inequalities (5.2) and (5.3). We can remark that these inequalities give rise to a small improvement of the linear
relaxation.
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Table 2. Experimental results within a time limit of 3 h.

Copt LB IntG OptG NBcol NBcut NBnode TT TTprice TTsep NBopt

P1 59.45 57.20 4.10 2.43 336.7 152450.2 3948.10 4759.6 523.2 3481.5 278
P2 59.38 57.40 3.66 2.41 1862.5 232209.7 23909.02 5266.1 3211.5 654.9 253
P3 58.74 57.47 2.38 1.27 1629.8 194707.0 16914.11 4217.8 2551.5 456.3 306

Table 3. Experimental results within a time limit of 5 min.

Copt LB IntG OptG NBcol NBcut NBnode TT TTprice TTsep NBopt

P1 59.95 57.09 5.13 3.26 222.3 33245.3 400.39 153.26 47.77 99.8 246
P2 60.03 57.27 4.92 3.44 917.4 13107.5 1014.85 163.5 128.47 28.6 225
P3 59.37 57.29 3.82 2.38 811.1 14915.1 876.54 152.81 115.4 22.0 252

Table 2 (resp. Tab. 3) gives the experimental results for the BCP algorithms for the three formulation within
a CPU time limit of 3 h (resp. 5 min). Their entries are as follows.

Copt : the average best obtained value,
LB : the average best obtained lower bound,
IntG : the average relative error between the best obtained value

and the best obtained lower bound,
OptG : the average relative error between the best obtained value

and the optimal solution obtained in [16],
NBcol : the average number of generated columns,
NBcut : the average number of generated circuit inequalities,
NBnode : the average number of nodes in the branching tree,
TT : the average total CPU time in seconds,
TTprice : the average total CPU time to solve the pricing subproblems in seconds,
TTsep : the average total CPU time to solve the separation problems in seconds,
NBopt : the number of instances solved to optimality over the 480 instances.

Within a time limit of 3 h, the two BCP algorithms presented in this article succeed in solving to optimality
more than the half of the instances and propose good solutions with a small gap from the optimal solutions.

The antichain formulation P1 generates few columns during the pricing phase and then consumes less time
in the pricing phase than the other formulation. However, the separation phase for P1 is much more time
consuming since the graph on which the separation problem is solved have to be dynamically constructed at
every iteration. We can notice than the branching tree is quite smaller for P1 than for the other formulation.
Consequently, the antichain formulation P1 is able to solve more instances than the two-index formulation P2,
but unfortunately propose a lower average gap from the optimal solution.

Finally, formulation P3 is clearly better with an average gap of 1.27% from the optimal solutions and 306
instances over 480 solved to optimality. Indeed, adding inequalities (5.2) and (5.3) to formulation P2 permits
to generate less nodes in the branching tree, less columns and less cuts.

Since Table 3 presents the same statistics than Table 2 for the same algorithm within 5 min instead of 3 h,
the number of solved instances is of course lower in Table 3 than in Table 2. However, it can be noticed that
half of the instances have been solved to optimality and that the optimality gap of P3 is still small. Then our
BCP algorithms can be used efficiently to produced good solutions within 5 min.
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Table 4. Details of the experimental results for P3 within a time limit of 3 h.

Inst. NC RS RF IntG OptG NBcol NBcut NBnode TT NBopt

J30-01 1.50 0.20 0.25 12.00 6.85 7420.6 932 069.8 31 268.9 9833.4 1
J30-05 1.50 0.20 0.50 10.78 3.63 4968.3 745 881.9 26 662.6 10 841.5 0
J30-09 1.50 0.20 0.75 8.00 3.03 1217.7 592 285.5 30 620.5 9721.0 1
J30-13 1.50 0.20 1.00 6.50 4.28 1329.6 803 604.1 19 213.4 9943.3 1
J30-02 1.50 0.50 0.25 4.44 2.48 6323.9 564 924.4 28 226.0 6545.9 4
J30-06 1.50 0.50 0.50 9.55 6.50 6578.5 651 090.9 33 942.4 10 800.0 0
J30-10 1.50 0.50 0.75 9.20 7.78 6382.4 767 458.9 19 800.6 9725.7 1
J30-14 1.50 0.50 1.00 9.01 7.28 4509.6 473 665.4 26 550.0 9758.1 1
J30-03 1.50 0.70 0.25 2.15 0.60 1167.8 242 346.7 24 431.1 4321.1 6
J30-07 1.50 0.70 0.50 3.13 2.71 3017.3 280 174.1 20 474.0 5245.1 6
J30-11 1.50 0.70 0.75 0.93 0.83 2106.9 130 797.1 7608.3 3038.1 8
J30-15 1.50 0.70 1.00 0.89 0.89 1687.6 115 949.0 4775.9 2263.3 8
J30-04 1.50 1.00 0.25 0.00 0.00 27.6 0.0 1.0 0.0 10
J30-08 1.50 1.00 0.50 0.00 0.00 28.5 0.0 1.0 0.0 10
J30-12 1.50 1.00 0.75 0.00 0.00 17.5 0.0 1.0 0.0 10
J30-16 1.50 1.00 1.00 0.00 0.00 27.3 0.0 1.0 0.0 10

J30-17 1.80 0.20 0.25 5.28 0.77 2367.3 235 428.9 33 659.8 6549.0 4
J30-21 1.80 0.20 0.50 1.94 0.66 1252.3 148 649.5 30 809.3 6653.3 5
J30-25 1.80 0.20 0.75 1.74 0.03 916.3 159 127.3 28 207.5 7847.7 3
J30-29 1.80 0.20 1.00 2.12 0.55 603.4 285 874.9 28 419.9 8674.0 2
J30-18 1.80 0.50 0.25 4.35 1.89 2946.7 591 367.6 74 411.0 8640.0 2
J30-22 1.80 0.50 0.50 4.38 2.03 2605.6 128 464.8 15 588.9 5473.9 5
J30-26 1.80 0.50 0.75 1.40 0.76 1590.4 190 219.1 12 074.3 4396.7 6
J30-30 1.80 0.50 1.00 5.03 3.75 2787.1 350 062.2 24 403.6 10 202.3 1
J30-19 1.80 0.70 0.25 0.79 0.62 2128.7 51 973.6 14 281.0 2831.8 8
J30-23 1.80 0.70 0.50 1.18 0.42 1199.5 168 171.8 23 602.5 4968.2 6
J30-27 1.80 0.70 0.75 0.18 0.18 1542.9 50 237.3 12 629.9 2055.1 9
J30-31 1.80 0.70 1.00 0.17 0.01 1007.7 32 975.8 9474.4 2874.2 8
J30-20 1.80 1.00 0.25 0.00 0.00 23.0 0.0 1.0 0.0 10
J30-24 1.80 1.00 0.50 0.00 0.00 25.0 0.0 1.0 0.0 10
J30-28 1.80 1.00 0.75 0.00 0.00 35.7 0.0 1.0 0.0 10
J30-32 1.80 1.00 1.00 0.00 0.00 28.0 0.0 1.0 0.0 10

J30-33 2.10 0.20 0.25 2.15 0.15 1733.8 180 981.9 51 636.6 6488.0 4
J30-37 2.10 0.20 0.50 1.82 0.00 975.2 99 935.3 40 328.9 5209.4 6
J30-41 2.10 0.20 0.75 0.29 0.00 458.4 38 029.9 15 719.4 3150.1 8
J30-45 2.10 0.20 1.00 0.00 0.00 206.4 16 081.8 2711.4 663.9 10
J30-34 2.10 0.50 0.25 0.49 0.00 288.9 16 799.3 7201.5 1089.1 9
J30-38 2.10 0.50 0.50 1.13 0.07 1194.0 88 040.8 29 486.3 5152.1 6
J30-42 2.10 0.50 0.75 0.71 0.55 876.9 25 338.4 9802.4 2592.0 8
J30-46 2.10 0.50 1.00 0.45 0.24 1091.5 81 065.4 15 965.3 5233.3 7
J30-35 2.10 0.70 0.25 0.21 0.17 401.4 4610.0 14 818.3 1105.8 9
J30-39 2.10 0.70 0.50 0.24 0.00 1011.0 17 987.9 17 291.9 1861.3 9
J30-43 2.10 0.70 0.75 1.33 1.15 1096.7 60 083.5 16 095.0 4326.3 6
J30-47 2.10 0.70 1.00 0.46 0.21 936.8 24 179.3 9672.5 2379.3 8
J30-36 2.10 1.00 0.25 0.00 0.00 22.5 0.0 1.0 0.0 10
J30-40 2.10 1.00 0.50 0.00 0.00 22.9 0.0 1.0 0.0 10
J30-44 2.10 1.00 0.75 0.00 0.00 23.8 0.0 1.0 0.0 10
J30-48 2.10 1.00 1.00 0.00 0.00 19.9 0.0 1.0 0.0 10
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We can notice that most of the columns and cuts are produced during the first minutes. This implies that the
branching phase is really time consuming: it will then be very interesting to study how to reinforce the master
problem of formulation P3 in order to reduce the time spent in the branching phase.

In order to give more insights concerning our BCP algorithm performance, Table 4 gives some statistical
details over the instances. Indeed, the PSPLIB instances, containing 30 activities and 4 resources, proposed in
[12] are divided within 48 groups of 10 instances, where each group is characterized by the three parameters
NC, RF and RS. Parameter NC (network complexity) is the average number of non-redundant arcs per node in
the graph corresponding to poset G: three values are considered for NC: NC∈ {1.50, 1.80, 2.10}. Parameter RS
(Resource Strength) is a scaling parameter expressing the resource availability of a resource and parameter RF
(Resource Factor) reflects the average portion of one resource used by an activity. Four values are considered
for RS and RF: RS∈ {0.20, 0, 50, 0.70, 1.00} and RF∈ {0.25, 0.50, 0.75, 1.00}. Indeed, each of the instance groups
corresponds to a distinct triplet over the 48 possible ones.

Table 4 only presents the experimental results obtained by the BCP algorithm for formulation P3 as this
formulation is clearly the better one. Each line gives the average values over the 10 instances of the group whose
name and parameters are given in the four first columns. Groups are sorted by values of the triplet NC, RS and
RF. It appears that this order almost corresponds to the case where the groups are sorted by their difficulties
to be solved. We can first notice that instances having a denser poset are easier to solve by our BCP. This can
be explained by the fact that the poset density directly impacts the number of R-antichains in the problem and
then the number of potential columns. Indeed the number of generated columns decrease with NC. We can also
remark that instances having a high amount of resources (i.e, when RS is high) are easier to solve. This can be
explained by the fact that, in this case, more activities can be set in parallel in the schedule leading our BCP
algorithm to directly generate R-antichains that will be in the optimal solution. For instance, when RS equals
to 1, the problem is directly solved without using the branching phase.

7. Conclusion

In this paper, we have studied two MIP formulations for the preemptive Resource-Constrained Precedence
Scheduling Problem, respectively called antichain and two-indices formulation. We have developed two different
Branch-and-Cut-and-Price algorithms for solving the two formulations. From our experiments, it appears that
the antichain formulation needs less variables than the two-indices formulation to solve the same instances.
However, the latter has performed better. Moreover, using additional valid inequalities, the two-indices formu-
lation could solve most of the 30 activities instances of the PSPLIB within 3 h time limit and give a solution
with a gap lower than 1.27% gap for each of these instances.

In [16], these instances have been solved to optimality within a few seconds using a Branch-and-Bound
approach. Since this approach consists in enumerating every acyclic subgraph of graph Γ 2, this method cannot
be used for larger instances. However our BCP approach can be improved in order to solve bigger instances.
In particular, it will be interesting to devise a polyhedral approach for the master problem of the two-indices
formulation to produce additional valid inequalities. Another improvement for this BCP approach is to study
further strategies to speed up the convergence of the pricing phase.
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