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ABSTRACT

Despite many recent advances for the design of dialogue sys-
tems, a true bottleneck remains the acquisition of data re-
quired to train its components. Unlike many other language
processing applications, dialogue systems require interactions
with users, therefore it is complex to develop them with pre-
recorded data. Building on previous works, on-line learning
is pursued here as a most convenient way to address the is-
sue. Data collection, annotation and use in learning algo-
rithms are performed in a single process. The main diffi-
culties are then: to bootstrap an initial basic system, and to
control the level of additional cost on the user side. Consid-
ering that well-performing solutions can be used directly off
the shelf for speech recognition and synthesis, the study is
focused on learning the spoken language understanding and
dialogue management modules only. Several variants of joint
learning are investigated and tested with user trials to confirm
that the overall on-line learning can be obtained after only a
few hundred training dialogues and can overstep an expert-
based system.

Index Terms— on-line learning, adversarial bandit, rein-
forcement learning, zero-shot learning, spoken dialogue sys-
tems

1. INTRODUCTION

While a new avenue of research on end-to-end deep-learning-
based dialogue systems has shown promising results lately
[1, 2], a major hindrance remains the need of a huge quantity
of data for these models to be trained efficiently. So far, in
this case, it is not clear how some initial (low cost) knowledge
can be leveraged for a warm start of the system development
followed by on-line training with users as describe in [3, 4],
although some recent works have proposed end-to-end archi-
tectures [5, 6].

In the experiments reported here our underlying goal is to
develop a system intended to be used in a neuroscience exper-
iment. From inside a fMRI, users interact with a robotic plat-
form, vocally powered by our system, which is live-recorded
and displayed inside the head-antenna. These experiments
will be performed in French. Therefore, it is not possible to

use the publicly available corpora since the vast majority is
in English [7] and a new task is targeted (see section 5) for
which no data are yet available.

As a consequence, this work still refers to a classical ar-
chitecture, with proven capabilities, for goal-directed vocal
interaction. It is basically a pipeline of modules dealing with
the audio information from the user downstream; progressive
processing aims to first extract the content (speech recogni-
tion), then the meaning (semantic parsing, SP), to finally com-
bine it with previous information (including grounding status)
from the dialogue history (belief tracking) so that a policy can
decide upon this dialogue state representation the next best
action to perform according to some global criteria (generally
dialogue length and success in reaching the goal). This step of
dialogue management (DM) is then followed by the follow-
ing operations to convey back the information upstream to the
user: conversion of the dialogue manager action into natural
language (NLG) followed by speech synthesis. The HIS ar-
chitecture [8] offers such a setup encompassing a global sta-
tistical framework to account for the relations between the
data handled by the main modules of the system, allowing a
reinforcement learning of the DM policy. This system can
be implemented with sample-efficient learning algorithms [9]
and can involve on-line learning through direct interactions
with users [10]. More recently, on-line learning has been gen-
eralised to the input/output modules, SP and NLG, with pro-
tocols to control the cost of such operations during the system
development (as in [11, 12, 13]). This work is a first attempt to
combine the on-line learning of SP and DM in a single phase
of development. Not only it is expected to help speed up and
simplify the process, but also to benefit from intertwined im-
provements of the modules.

In dialogue systems, SP extracts a list of semantic con-
cept hypotheses from an input sentence transcription of the
user’s query. State-of-the-art SPs are based on probabilistic
approaches and trained with various machine learning meth-
ods to tag the user input with these semantic concepts [14,
15]. Dealing with supervised machine learning techniques
requires a large amount of annotated data which are domain
dependent and hardly available.

To deal with this limitation, Dauphin et al. [16] proposed
a zero-shot learning algorithm for Semantic Utterance Clas-



sification (SUC). This method tries to find a sentence-wise
link between categories and utterances in a semantic space. A
deep neural network can be trained on a large amount of non-
annotated and unstructured data to learn this semantic space.
In the same line, in [11] was presented a zero-shot learning
method for SP (ZSSP) based on word embeddings [17]. This
approach requires neither annotated data nor in-context data
and has recently been used for different dialogue systems’
modules (as in [18, 19, 20]). Indeed, only the ontological
description of the target domain and generic word embedding
features (learned from freely available and general purpose
data) are required to initiate the model. On top of that, an ac-
tive learning strategy based on an adversarial bandit has been
proposed [12] in order to train ZSSP with a light and con-
trolled supervision from the users.

In the same line of ideas, thanks to the sample-efficient RL
algorithm KTD [21], an active learning scheme has also been
proposed for the DM training which uses reward shaping [22]
to take into account local (turn-based) rewards from the user
to offer a better control over the learning process and speed it
up [10].

Since solutions exist for active on-line learning of both SP
and DM subsystems, we now consider their joint application
to address the issue of the overall training of the system. First,
a direct application of existing techniques is presented and
tested; both modules remain separated and the parameters of
their on-line training are kept disjoint (a bandit algorithm for
SP, a Q-learner for DM). Then a new possibility with shared
parameters in a single Q-learner is also introduced and evalu-
ated.

The remainder of this paper is organised as follows. Af-
ter presenting the basis of the on-line learning versions of SP
in Section 2 and DM in Section 3, we define the joint on-
line learning strategies in Section 4. Section 5 provides an
experimental study with human evaluations of the proposed
approaches and we conclude in Section 6.

2. ON-LINE LEARNING FOR ZERO-SHOT SP

The SP model concerned by this study is the ZSSP model pre-
sented in [12]. This latter makes use of a semantic knowledge
base K and a semantic feature space F . K contains some
examples of lexical chunks associated with each targeted Di-
alogue Act (DA) and F is a word embedding representation
learnt with neural network algorithms on large non-annotated
open domain data [17, 23]. The ZSSP model builds a scored
graph of hypotheses from user utterances. A best-path de-
coding is performed in order to find the best semantic tags
hypothesis for the considered user utterance.

An on-line adaptation strategy (facilitated by the zero-shot
approach) is adopted, as presented in [12] and briefly recalled
here. In this approach, at each dialogue iteration, the system
chooses an adaptation action it ∈ I and uses the user feed-
back to update K.

The system gain g(it), the user effort φ(it) and the loss
function l(it) for performing each action are defined and can
be estimated during on-line training.

Three possible actions are considered:
• Skip: Skip the adaptation process for this turn (φ(skip) =

0).
• AskConfirm: A yes/no question is presented to the

user about the correctness of the selected DAs in
the best semantic hypothesis. If the whole sentence
is accepted, φ(YesNoQuestions) = 1. Otherwise,
φ(YesNoQuestions) is equal to 1+ the number of DAs
in the best semantic hypothesis (one yes/no confirma-
tion request per DA).

• AskAnnotation: the user is asked to re-annotate the
whole utterance. φ(AskAnnotation) = 1 if the sen-
tence is accepted straight away. Otherwise, the user
will first inform the system about which chunks he
wants to annotate (+1 per selected boundary), and then
the system will sequentially ask for acttype, slot and
value if necessary (+1 per interim question) for each
DA.

An adversarial bandit algorithm is used in order to find
i1, i2, . . . , so that for every t, the system minimises the loss
l(it). The loss function l(i) ∈ [0, 1] is calculated as follows:

l(i) := γg(i)︸ ︷︷ ︸
system improvement

+ (1− γ)
φ(i)

φmax︸ ︷︷ ︸
user effort

,

where γ ∈ [0, 1] balances the importance of information im-
provement and user effort for the system, and φmax ∈ N∗ is
the maximum number of exchanges between the system and
the user (in a same turn/round). In this work, γ has been set
to 0.5 for example.

3. ON-LINE LEARNING FOR RL DIALOGUE
MANAGER

The dialogue manager used in this paper adapts a system pre-
sented in [10]. It is based on a POMDP-based dialogue man-
agement framework, the Hidden Information State (HIS) [8].
In this setup, the system maintains a distribution over possi-
ble dialogue states (the belief state) and uses it to generate an
adequate answer. A reinforcement learning (RL) algorithm is
used to train the system by maximising an expected cumula-
tive discounted reward.

At each turn, the dialogue manager generates several pos-
sible answers, depending on its belief state. It generates 11
dialogue acts, matching the 11 summary acts (Greet, Bye,
Bold Request, Tentative Request, Confirm, Find Alternative,
Split, Repeat, Offer, Inform and Request More). Some can
be deemed impossible at some point if no conversion to full
action is possible (for instance Inform if no entity is selected
yet).



Subsequently, the dialogue manager chooses the best
summary act according to the given context. To learn this
policy, an RL approach is used: the KTDQ learning algo-
rithm [24], derived from a Kalman-based Temporal Differ-
ences (KTD) framework. At each turn, the policy selects a
summary act to answer the user, then a feedback is given by
the users to score the response and update the policy. There
are two types of feedback. The global feedback is given at the
end of the dialogue by asking the user if the entire dialogue
is a success or not. The social feedback si is given at each
turn i to score the last response only. It is composed of two
parts, the score given by the user to this last response (named
additional feedback ai) minus a Ψ function (which takes into
account the history of annotations to smooth the local feed-
back), and the turn cost which penalises too long dialogues
by adding a negative score (named feedback fi) for each new
turn : si = fi + (θai −Ψ)

Here Ψ is the previous turn’s additional-feedback ai−1

and θ = 0.95. At the end of the dialogue, the policy is up-
dated according to all the collected feedbacks.

In this work, the global feedback value is set to 20 in case
of success, 0 otherwise. The feedback fi is set to -1 for each
turn and the additional-feedback ai ∈ {−1,−0.5, 0, 0.5, 1}.

4. JOINT ON-LINE LEARNING

In order to effectively learn on-line the dialogue system, the
user needs to be able to both improve the SP model and the
dialogue manager. Two different joint learning protocols are
proposed to achieve it.

The first one, referred to as BR hereafter, directly jux-
taposes the bandit to learn the ZSSP and the Q-learner RL
approaches to learn the dialogue manager policy. An adver-
sarial bandit algorithm as described in Section 2 is applied for
learning ZSSP and a Q-learner as mentioned in Section 3 is
used to learn the DM policy. The knowledge base of the ZSSP
as well as the DM policy are adapted after each dialogue turn.

The second protocol, referred to as RR hereafter, directly
adds the ZSSP learning actions to the dialogue manager RL
policy, and therefore combines the two learning processes into
one single policy.

This variant of joint learning merges both policies in a sin-
gle Q-learner. In that purpose the DM summary state vector
was augmented with a ZSSP-related dimension. Let us note
that only one dimension was added so as to limit the increase
of the state size. This new dimension was evaluated from a
set of quality indices of the annotations made by the ZSSP
model. On a 3-point scale, five features were used:

1. confidence: confidence score of the semantic parser in
[0, 1].

2. fertility: ratio of concepts w.r.t. the utterance word
length in [0, 1], since ZSSP tends to produce an over-
segmentation of the incoming utterances with inserted
concepts.

3. rare: binary presence of rare concepts in the anno-
tation. Rare concepts are “help”, “repeat”, “restart”,
“reqalts”, “reqmore”, “ack” or “thankyou”, and are
wrongly annotated in general.

4. known chunks: ratio of annotated chunks available in
the semantic knowledge base K among the total number
of annotated chunks in [0, 1].

5. gap: the difference between the confidence scores of
the 1-best and the 2-best annotations. Since those dif-
ferences are very low (< 0.01), natural logarithm is ap-
plied to break out the data in order to have more read-
able values.

From these features, the ZSSP-related dimension is com-
puted as:

0 all clear: rare = 0 and confidence <= 0.499 and fer-
tility <= 0.4 and known chunks >= 0.5 and gap >=
−5.5

1 average condition: rare = 0 and fertility <= 0.5 and
known chunks >= 0.15 and gap >= −6.5 and (con-
fidence > 0.499 or fertility > 0.4 or known chunks
< 0.5 or gap < −5.5)

2 alarming: rare = 1 or fertility > 0.5 or known chunks
< 0.15 or gap < −6.5

Under the RR protocol, the two ZSSP-annotation actions
(AskConfirm and AskAnnotation, see Section 2) are also in-
cluded inside the list of summary actions that can be picked up
by the dialogue policy. In such case, the user is presented with
the appropriate annotation window in the system’s graphical
interface and can correct the current annotation. Purely vo-
cal interactions for this process are under study. Yet feasible,
it remains a challenging task which could introduce errors of
its own, so it seemed more appropriate to evaluate the whole
process first with a graphical interface and no input errors.
Once done, the turn is updated (i.e. the annotation process
has taken the place of the normal user audio response) and
the dialogue is pursued. Even though it might be possible that
the policy learned it by itself, we chose to inhibit two Ask
actions in a row (they are tagged as impossible in the next
turn). Finally, these two ZSSP-annotation actions have a spe-
cific social-feedback: instead of −1, the feedback fi uses the
loss function l(i) defined in Section 2 and rescaled to obtain
a score ∈ [−1, 1] : fi = (1.0− li)× 2− 1.

5. EXPERIMENTAL STUDY

5.1. Task Description

Experiments presented in this paper concern a chit-chat dia-
logue system framed in a goal-oriented dialogue task. In this
context, users discussed with the system about an image (out
of a small predefined set of 6), and jointly tried to discover
the message conveyed by the image, as described in [25]. In



Model Train Test Success Avg cum. Sys. Underst. Sys. Gener.
(#dial) (#dial) (%) Reward Rate Rate

ZH 0 142 29 -1.9 1.6 4.0
BH 80 96 70 7.0 3.2 4.6
BR 140 96 89 10.9 3.3 4.6
RR 140 96 65 4.4 2.9 3.8

Table 1. Evaluation of the different configurations of on-line learning

order to use a goal-oriented system for such a task, the prin-
ciple which was followed was to construct, as the system’s
back-end, a database containing several hundreds of possible
combinations of characteristics of the image, each associated
with a hypothesis of the conveyed message. During its inter-
action with the system, it is expected that the user progres-
sively provides elements from the image matching entities in
the database. This makes the system select a small subset of
possible entities from which it can pick both additional char-
acteristics to inform the user with, or ultimately a pre-defined
message to give as a plausible explanation for the image pur-
pose. This allows the user to speak rather freely about the
image for several tens of seconds before arguing briefly about
the message. No argumentation is possible from the system’s
side, it can only propose a canned message and the discussion
is expected to last around one minute at most.

The task-dependent knowledge base used in the experi-
ments is derived from the INT task description [25], as well
as from a generic dialogue information task. The semantics
of the domain is represented by 16 different act types, 9 slots
and 51 values. The 53 lexical forms used to model act types
were manually elaborated.

5.2. Results
The evaluation of the two joint learning approaches is pre-
sented here. Two complementary systems are proposed in
comparison: ZH is a baseline system without on-line learn-
ing using the initial ZSSP and a handcrafted dialogue man-
ager policy, whereas the system BH combines the bandit on-
line learning for ZSSP and the handcrafted dialogue manager
policy.

For each system, an expert user communicated with the
system to train a model. Then a group of 11 naive users tested
each model. Two expert users also tested the ZH model for
a total of 46 dialogues. At the end of each session, the users
were asked to rate on a scale of 0 (worst) to 5 (best) the under-
standing and generation qualities of the system. The amount
of training dialogues as well as the number of test sets for
each configuration are given in Table 1.

Regarding the training phase, we observed that the suc-
cess rate tends to highly variate: at the beginning of the learn-
ing process, the expert is inclined to use simple dialogues to
build an efficient dialogue manager policy, leading to a large
increase of the success rate. Then, when the system starts
to be usable, more sophisticated dialogues are tested to teach
more adaptability to the system. During the training, it drifts

towards a decrease of the reward and success rates.
The user trials of the two training trials for each proto-

col are given in Table 1. The results show that the differ-
ent configurations of the system display acceptable perfor-
mance. The BR model trained with 140 dialogues shows the
best success rate (89%) and significantly1 over-performs all
other models. Moreover, the ZH model leads to significantly1

lower success values than all other models. The difference in
performance between the ZH and the BH models (+41 points)
shows the impact of the ZSSP adaptation on the overall suc-
cess of the conversation, along with a better understanding
(rates of 1.6 for ZH vs. 3.2 for BH). The average cumulated
reward on the test is directly correlated with the success rate
and confirms previous findings. Besides, due to a well-tuned
template-based generation system, the system generation rate
is high (≥ 3.8) for all configurations.

The RR protocol offers smaller success rates than BH and
BR (65% for RR vs. 89% for BR). After analysing the train-
ing logs, it seems to be related to the very low triggering level
of the ZSSP learning actions after the exploration steps dur-
ing RR w.r.t the use of the bandit in BH and BR. To remedy
this shortcoming, the policy state space should be modified to
take a better account of the situations favourable to ZSSP ac-
tions, while preserving its capacities of discrimination for the
dialogue actions. Anyhow, this approach remains to be devel-
oped further and improved as it is based on a unique frame-
work for joint learning, which simplifies the system elabora-
tion from a programming point of view.

6. CONCLUSION

After proposing methods to interactively train both seman-
tic parsing and dialogue management on-line, this paper pro-
posed and evaluated ways to combine them in a joint learning
process. Experiments have been carried out in real conditions
and are therefore scarce. Yet it has been possible to show
that joint learning can be operated, and that after only a hun-
dred dialogues the performance of the various configurations
tested were generally good enough compared to a handcrafted
system.

Based on these results, we now investigate the possibility
of merging the resulting policies between trials, so as to be
able to pile up training data coming from different users and
save even more time to the system developers.

1Statistical significances were analysed with a two-tailed Welch’s t-test.
Results were considered statistically significant with a p-value < 0.001.
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jas Barahona, P.-H. Su, S. Ultes, and S. Young, “A
network-based end-to-end trainable task-oriented dia-
logue system,” in ACL, 2017, pp. 438–449.

[2] X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz,
“End-to-end task-completion neural dialogue systems,”
in IJCNLP, 2017, vol. 1, pp. 733–743.
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[4] M. Gašić, F. Jurčı́ček, S. Keizer, F. Mairesse, B. Thom-
son, K. Yu, and S. Young, “Gaussian processes for fast
policy optimisation of POMDP-based dialogue man-
agers,” in SIGDIAL, 2010.

[5] B. Dhingra, L. Li, X. Li, J. Gao, Y.-N. Chen, F. Ahmed,
and L. Deng, “Towards end-to-end reinforcement learn-
ing of dialogue agents for information access,” in ACL,
2017, vol. 1, pp. 484–495.

[6] P. Shah, D. Hakkani-Tur, B. Liu, and G. Tur, “Bootstrap-
ping a neural conversational agent with dialogue self-
play, crowdsourcing and on-line reinforcement learn-
ing,” in ACL, 2018, vol. 3, pp. 41–51.

[7] I. Casanueva, P. Budzianowski, P.-H. Su, N. Mrkšić, T.-
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M. Gašić, “A benchmarking environment for reinforce-
ment learning based task oriented dialogue manage-
ment,” arXiv preprint arXiv:1711.11023, nov 2017.
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P. Lehnen, R. De Mori, A. Moschitti, H. Ney, and
G. Riccardi, “Comparing stochastic approaches to
spoken language understanding in multiple languages,”
IEEE TASLP, vol. 19, no. 6, pp. 1569–1583, 2010.

[15] A. Deoras and R. Sarikaya, “Deep belief network based
semantic taggers for spoken language understanding,”
in INTERSPEECH, 2013.

[16] Y. Dauphin, G. Tur, D. Hakkani-Tur, and L. Heck,
“Zero-shot learning and clustering for semantic utter-
ance classification,” arXiv preprint arXiv:1401.0509,
2014.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Ef-
ficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

[18] S. Upadhyay, M. Faruqui, G. Tür, D.. Hakkani-Tur, and
L. Heck, “(almost) zero-shot cross-lingual spoken lan-
guage understanding,” in 2018 ICASSP. IEEE, 2018, pp.
6034–6038.

[19] T. Zhao and M. Eskenazi, “Zero-shot dialog genera-
tion with cross-domain latent actions,” arXiv preprint
arXiv:1805.04803, 2018.

[20] A. Bapna, G. Tur, D. Hakkani-Tur, and Larry Heck,
“Towards zero-shot frame semantic parsing for domain
scaling,” arXiv preprint arXiv:1707.02363, 2017.

[21] M. Geist and O. Pietquin, “Kalman temporal differ-
ences,” Artificial Intelligence Research, vol. 39, no. 1,
pp. 483–532, Sept. 2010.

[22] A. Ng, D. Harada, and S. Russell, “Policy invariance
under reward transformations: Theory and application
to reward shaping,” in ICML, 1999.

[23] J. Bian, B. Gao, and T. Liu, “Knowledge-powered deep
learning for word embedding,” in ECML, 2014.

[24] M. Geist and O. Pietquin, “Managing uncertainty within
value function approximation in reinforcement learn-
ing,” in Active Learning and Experimental Design work-
shop (AISTATS 2010), 2010, vol. 92.

[25] T. Chaminade, “An experimental approach to study the
physiology of natural social interactions,” Interaction
Studies, vol. 18, no. 2, pp. 254–276, 2017.


