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Abstract

This paper addresses the problem of emergency surgery insertion into
a given elective surgery schedule of an operating theater (OT) composed
of multiple operating rooms (ORs). Emergency surgeries with different
emergency levels characterized by waiting time targets arrive according
to a non-homogeneous Poisson process and can be inserted into any OR.
An event-based stochastic programming model is proposed to minimize
the total cost incurred by exceeding waiting time targets of emergency
surgeries, elective surgery delay and surgery team overtime. A perfect
information-based lower bound is proposed and properties of the optimal
policies proved. Simple heuristic policies and a stochastic optimization
approach derived from the simple policies by policy improvement are pro-
posed. Numerical experiments show that the stochastic optimization sig-
nificantly outperforms the others and efficient emergency insertion signifi-
cantly improves the system performance. A principal component analysis
is performed to show how near-optimal policies differ from simple heuristic
policies.

Keywords:
Primary Topics: Operating Room Scheduling, Emergency Surgery Insertion
Secondary Topics: Waiting List Management, Real-time Scheduling Policy, Dy-
namic Optimization

Note to practitioners

The paper is motivated by enhancing the efficiency of operating theaters by
sharing surgery capacity between elective and emergency surgeries. More specif-
ically, we consider the problem of inserting non-elective surgeries of different
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emergency levels in the execution of a given elective surgery schedule. A stochas-
tic optimization approach is proposed to dynamically prioritize emergency and
elective surgeries in order to best balance meeting emergency surgery require-
ment, perturbation of elective schedule and surgery team overtime. Numerical
experiments based on data collected from Saint-Joseph Hospital in Paris show
the significant benefit of efficient emergency insertion over the current hospital
practice. Elective surgery schedule is shown to have the most important im-
pact on the system performance but efficient emergency insertion always adds
significant improvement.

1 Introduction

Many studies show that the operating theater (OT) is the most expensive service
of the hospital as it consumes a large number of expensive resources (surgeons,
staff and equipment) [1, 2]. For private hospitals, operating rooms (ORs) are
also the main source of income [3]. From a medical and organizational point of
view, ORs are also critical resources. ORs have a sizable impact on patients’
safety and the workflow of other services and the health care system [4,5]. The
importance of ORs operation is also evidenced by the extensive literature on
ORs planning and scheduling; see [6] for a review.

Sharing OR capacity between elective and emergency surgeries seems a nat-
ural way to improve the OR usage. Common emergency surgeries are those re-
quiring a prompt surgical intervention to perform in an OR as consequence of a
physical trauma, accident or rapid deterioration of health conditions. Hospitals
usually use the so-called Emergency Severity Index to measure the emergency
levels [7, 8]. The feasible delay for an emergency surgery varies from zero, the
surgery has to be performed as soon as possible to avoid severe consequences,
to several hours. Similar to the due dates in [9], we use instead the Waiting
Time Targets (WTTs) to indicate the time that the hospital has to start an
emergency surgery. The WTT varies from instantly up to 6h or merely within
the current day in the study of [9].

Sharing OR capacity raises however significant challenges due to the random
emergency arrival and the nature of emergency surgeries. Some authors show
that unpredictable arrival of emergency surgeries make the ORs scheduling more
complex [10, 11]. Most importantly, hospitals have limited time to respond to
randomly arriving emergency demands. Two approaches may be investigated to
alleviate the stress on ORs management caused by emergency arrivals: robust
schedules of elective patients and dynamic surgery scheduling. Our research
focuses on the second approach.

This paper considers the daily operation of an OT composed of multiple ORs
shared between elective and emergency surgeries of different emergency levels
characterized by different waiting time targets. We address particularly the
problem of the insertion of randomly arriving emergency surgeries into a given
elective surgery schedule. The goal is to best balance between meeting the
WTT requirement of emergency surgeries, the perturbation of elective schedule
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and surgery team overtime. The problem is nontrivial. Inserting all emergencies
instantly favors emergencies at the expense of excessive delay of elective surgeries
and OR overtimes. Delaying all emergencies to the end of the day favors the
execution of the elective surgery schedule at the risk of endangering most urgent
emergencies. How to dynamically prioritize emergency and elective surgeries
taking into account different emergency levels is the main research question of
this paper.

More specifically, this paper proposes a formal setting of the emergency in-
sertion problem in which an elective schedule is given and elective surgeries can
be delayed but cannot move to other ORs. Emergency surgeries arriving ac-
cording to a non-homogeneous Poisson process with WTT known upon arrival
can be inserted in any OR. The goal is to minimize the expected cost incurred
by exceeding WTT of emergency surgeries (Quality of Care), delays of elec-
tive surgeries (Quality of Service) and overtime of surgery teams (Quality of
Working Life). We then propose an event-based stochastic programming model
for determining the optimal emergency insertion policy. Based on this mathe-
matical model, the closest waiting time target first is proved to be optimal for
sorting emergencies and a tight perfect information-based lower bound taking
into account this property is then proposed. The model being intractable due
to the hybrid state space, we propose a policy improvement procedure, a set of
simple heuristic policies and a stochastic optimization approach built on policy
improvement and simple policies. A numerical experiment based on data col-
lected from a hospital is performed. The stochastic optimization approach is
found to be by far the best policy and significantly improves a policy close to
the current hospital practice. Further, whereas the elective schedule is found to
have higher impact on the system performance, the dynamic emergency inser-
tion adds significant improvement.

To the best of our knowledge, this paper is the first rigorous mathematical
treatment of emergency surgery insertion in elective surgery schedules. The
mathematical model and the stochastic optimization approaches proposed in
this paper are new. Interesting enough, with the efficient emergency inser-
tion policy of the paper, the elective schedule obtained by the BII (”Break-In-
Interval”) rule proposed by [12] is shown to be worse than the elective schedule
obtained by the SEPT (Shortest Expected Processing Time first) rule.

The remainder of the paper is organized as follows. In the following sec-
tion, the literature review of ORs management is given with a focus on con-
sidering emergency surgeries. Section 3 is dedicated to the formal setting of
the emergency insertion problem, its mathematical modeling and the perfect
information-based lower bound. The dynamic scheduling policies are detailed
in Section 4 and evaluated in Section 5. Section 6 is a conclusion.

2 Literature Review

As in many operational systems, the planning decision process of the OT can
be divided into three classes: strategical, tactical and operational. The reader

3



may find more detailed surveys in the following references [13–15].
The capacity planning is built at the strategical level. A cyclic master sched-

ule is often used to assign each time slot of each OR to a specialty. Depending
on the hospital the master schedule may be more or less flexible. The absence of
master schedule corresponds to the open scheduling strategy where assignments
are dynamically decided according to the demand. In any case, the emergency
demands are taken into account by means of slack times or some dedicated
ORs [16, 17]. The master schedule has to face the seasonality of the activity
and unpredictable fluctuations of elective and emergency demands. The med-
ical staff time tabling is usually defined at the tactical level, whereas surgical
cases are scheduled at the operational level under the rules and constraints from
upper decision levels.

OR scheduling is one of the most studied health-care operation problems.
The first models proposed were very close to the classical bin-packing problem,
where surgeries are assigned to ORs (bins). Then, researchers added various
extensions to the basic models. More recently published static and dynamic
models include upstream and downstream resources (anesthesia, wards and
hospitalization beds) and robustness with respect to uncertainties on surgery
durations and arrivals, like in [18–23]. A wide variety of solution approaches
have been investigated such as Markov decision process solution, linear pro-
gramming, local search heuristic, etc. The computed surgery planning defines
elective patient release times and staff working time.

Few tools implement specific strategies to optimize emergency surgeries in-
sertions; see [24] for a review. Some authors use slack times to anticipate the
insertion of emergency surgeries [25, 26]. In [12], the authors present a daily
operation problem where surgeries are already assigned to ORs and only the
sequencing of surgeries is considered. They call “Break-In-Moment” (BIM) the
time when a surgery is completed and the next surgery starts in one OR. Thus,
they define the “Break-In-Interval” (BII) as the time elapsing between two BIMs
not interleaved by another one regardless of the OR. The robustness criterion
is to spread the BIMs over the day and then the maximum BII is minimized.
Note that the practical motivation of our paper is similar to that of [12].

Real-time decisions – starting time and surgery-to-OR assignment – can be
optimized through dynamic decision models, like in [27, 28]. As in this paper,
the dynamic surgery scheduling is treated in the papers [9,29,30]. A simulation
model is proposed in [9] for evaluating the impact on the elective surgery sched-
ule of emergency surgeries over a multiple-day horizon. Emergency levels are
described by different due dates with the most urgent ones to be served as soon
as possible and the less urgent ones that can be postponed to the end of the
day. The WTTs of our paper extend the emergency levels defined in [9]. In [30],
the authors investigate the daily dynamic rescheduling of elective surgeries in
an OT composed of several identical ORs. A dynamic stochastic programming
approach is proposed to best balance surgeons waiting and OR idling/overtime.
Note that emergency surgeries are not considered in that paper. In [29], the
authors propose an adaptive dynamic surgery scheduling for a single OR and
over the planning horizon of one day with random surgery times. Differing
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from the usual static or dynamic scheduling approaches, fixing in the sched-
ule a set of not yet started surgeries, called “surgery committing”, is the main
novelty of that paper. Our paper differs from the papers on real-time surgery
scheduling by taking into account different emergency levels of randomly arriv-
ing emergency surgeries. We propose a formal mathematical model and efficient
dynamic emergency insertion policies.

3 Problem description

This section first provides a formal description of the problem of dynamic emer-
gency surgery insertion, then proposes a mathematical modeling and proves
the optimality of the earliest due date first rule for emergency surgeries, finally
proposes a perfect-information-based lower bound.

3.1 Problem setting

This paper considers the daily operations of an OT composed of a set K of
identical ORs. The OT serves two sets of surgeries: a given set R of elective
surgeries also called regular surgeries and an unknown set E of randomly arriving
non-elective surgeries also called emergency surgeries. Resources other than the
ORs do not limit the surgical activity of the OT.

Each OR k is associated with an opening time ak, a closing time bk and a
unit overtime cost βk for letting it open beyond the closing time.

The daily elective surgery plan is assumed given. An OR and an estimated
surgery start time, also called surgery release time, are assigned to each elective
surgery. The elective surgery plan can be described by the followings: (i) the
release time ri of surgery i and (ii) the ordered subset Rk of elective surgeries
assigned to OR k such that r(k,1) < r(k,2) < . . . < r(k,n); (k, j) denotes the j-th
elective surgery of OR k.

Emergency surgeries arrive randomly according to a non-homogeneous Pois-
son process of some given rate function γ(t) for all time t ≥ 0. The emergency
level of an emergency surgery is described by a random Waiting Time Target
(WTT) δ for the surgery start also called indifference interval; the WTT is the
time after which letting a surgery be in wait becomes critical.

Each surgery i requires a random surgery time pi also called processing time.
Its probability distribution is assumed known. As a result, both elective and
emergency surgeries are assumed to have random surgery durations. All random
variables are assumed to be mutually independent.

Random surgery durations and random emergency arrival often result in
perturbation of the elective surgery plan, tardy emergency insertion and OR
overtime. The goal of this paper is to determine the dynamic strategy for inser-
tion of emergency surgeries in order to best balance the fulfillment of waiting
time targets of emergency surgeries, the respect of the elective surgery plan and
the overtime usage.
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Assumption A1 There exists a finite positive time H ≥ 0 such that γ(t) =
0,∀t ≥ H.

Assumption A2 The surgery times pi and the waiting time targets δi of
emergency patients are mutually independent and are both i.i.d. (independent
and identically distributed). Further they have common tardiness cost rate α.

Assumption A3 The surgery-to-OR assignment and surgery sequencing of
elective surgeries are fixed and cannot be changed.

Assumption A4 No elective surgery is deliberately delayed if its OR is free
and no emergency surgery is assigned to it.

Assumption A5 No emergency surgery is inserted to an OR k after its closing
time bk and an OR is closed at or beyond its closing time bk after the completion
of the last surgery assigned to it. Further there exists at least one OR k such
that bk =∞.

Even though not relevant from the application background, we extend the
model by assigning to each elective surgery a WTT or indifference interval δi
in addition to its tardiness cost αi. This extension defines the elective and
emergency surgeries in a uniform way.

Remark 1 A1 is quite reasonable as late emergency surgeries are usually
assigned to specific surgery teams on night duty in dedicated ORs. They are
not relevant to the insertion in the elective surgery plan.

Remark 2 A2 is a restrictive assumption as breaching the WTT of a highly
urgent patient might have more serious consequence and hence higher cost than
breaching the WTT of a less urgent patient. A2 is however in line with our
goal of best balancing between elective surgery waiting and WTT breaching
of emergency surgeries. In this paper, the emergency level is solely described
by the WTT and the common tardiness cost allows us to better understand
the insertion of emergency surgeries in elective surgery plan without the need
to consider the tricky issue of the priority of emergency patients with different
tardiness cost.

Remark 3 A3 is reasonable as surgical teams prefer to prepare in-advance
each elective surgery in the corresponding OR. The preparation of a surgery
consists in withdrawing form the OT warehouse the specific material resources
(i.e. surgical devices and consumables), moving them into the OR and checking
their completeness carefully. On the contrary, emergency surgeries are prepared
just-in-time. The emergency condition justifies the risky task of preparing a
surgery just-in-time. The A3 removal might bring additional improvement but
implies that also elective surgeries are prepared just-in-time. A3 is also coherent
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with the study case hospital surroundings and consistent with the assumptions
of [12].

Remark 4 Whereas it is reasonable to keep an OR free in anticipation of an
upcoming elective surgery, doing so in anticipation of unknown future emergency
surgery arrivals seems odd and A4 is quite reasonable.

Remark 5 The assumption of an OR without closing time ensures the feasi-
bility of the problem. Such surgery teams can be considered as teams on night
duty. An interesting extension beyond the scope of this paper is to consider the
OR closing as dynamic decisions.

Remark 6 As in the majority of surgery scheduling literature, all surgeries
are to be performed and surgery cancellation or postponement (to another day)
is not allowed. The practical reasons of surgery cancellation/postponement go
far beyond the OR usage. Our modeling approach can nevertheless be extended
to take into account possible cancellation/postponement with the following rule:
cancel/postpone with a penalty cost the elective surgeries that are not started
before a deadline. However, we did not include cancellation/postponement in
the experiments, since this issue is beyond the scope of our paper focused on
the insertion of emergency surgeries in the elective surgery plan.

3.2 Mathematical formulation

This subsection provides an event-based framework for the formal definition of
the dynamic emergency surgery insertion problem.

Under the on-going assumptions, each surgery i ∈ R∪E is characterized by:
a release time ri equal to the planned release time if i ∈ R or the random arrival
time if i ∈ E, a random WTT δi known at the surgery release/arrival time, a
due date di = ri + δi, a random surgery time pi known only at the surgery
completion, a starting time si, an OR oi in which the surgery is performed, a
completion time ci = si+pi, a tardiness Ti = (si−di)+ where (x)+ = max(0, x)
and a unit tardiness cost αi leading to tardiness cost αiTi.

The overtime cost of each OR k depends on the completion time of the last
surgery assigned to it, i.e. max

i∈R∪E∧oi=k
ci. No overtime cost is incurred if it is

finished before the closing time bk and an overtime cost βk( max
i∈R∪E∧oi=k

ci − bk)

is incurred otherwise.
The Gantt chart Fig. 1 depicts the described surgery and OR variables.
The following events are considered: opening of an OR k ∈ K at epoch ak,

release of an elective surgery i ∈ R at epoch ri, arrival of an emergency surgery
i ∈ E at epoch ri, WTT breaching of an emergency surgery i ∈ E at epoch di
such that si > di (the surgery is not yet started) and completion of a surgery
i ∈ R∪E at epoch ci. No event is associated to the WTT breaching of elective
surgeries.
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Figure 1: Surgery and OR variables.

At the occurrence of an elective surgery release event, according to A4, the
elective surgery starts if its OR is idle and no decision is needed.

The events: opening of an OR k ∈ K, release of an elective surgery i ∈ R
and completion of a surgery i ∈ R ∪ E, and the related epochs, constitute a
sufficient basis for defining starting time decisions of elective surgeries.

At all events other than the release of an elective surgery, a dynamic decision
policy is needed to determine the optimal action. If no OR is available, then
no decision is needed. If the emergency queue is empty, then start in each
idle OR its earliest released elective surgery according to A4. If a surgery
completion event occurs on an OR k at time t ≥ bk and all its elective surgeries
are completed, then close OR k. In all other cases, a decision is made based on
the system state at time t denoted as S(t).

State S(t) at time t is defined by: (i) the emergency queue E(t), (ii) the list
R(t) of remaining elective surgery, and (iii) the on-going surgery ik(t) of each
OR k and its elapsed surgery time hk(t) with ik(t) = ε if the OR is idle.

Starting from state S(t) and action u, a new state Snext(S(t), u) is updated
as follows:

• case u = no action, Snext(S(t), u) = S(t);

• case u = assign an emergency surgery i to OR k: set ik(t)← i, hk(t)← 0
and E(t)← E(t)− {i};

• case u = assign an elective surgery i to OR k: set ik(t) ← i, hk(t) ← 0
and R(t)← R(t)− {i}.

The goal of the dynamic insertion is to determine the action u that mini-
mizes the total expected cost Q(S(t), u, t) incurred at and beyond t by surgery
tardiness and OR overtime under the assumption that the subsequent decisions
are made by the optimal policy. More specifically,

Q(S(t), u, t) = E

[ ∑
i∈R(t)∪E∗(t)

αi(si − di)+

+
∑
k∈K

βk( max
i∈R(t)∪E∗(t)∧oi=k

ci − bk)+
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: S(t) = S, u(t) = u

]
(1)

where E∗(t) is the complete set of emergency surgeries served at and beyond t.

Property 1. There exists an optimal policy such that all emergency surgeries
are served in EDD order, i.e. Earliest Due Date first.

Proof. Assume by contradiction that, at some time t and a state S(t), the
optimal action u is to assign an emergency surgery i to an OR k and there
exists another emergency surgery j in E(t) such that dj < di. Define another
feasible policy π identical to the optimal one but with service schedule of i and j
switched. Since the surgery times of i and j are i.i.d. random variables, we also
switch the surgery time of i and j. As a result, the two systems Q(S(t), u, t) and
policy π have exactly the same event times except the switched service order of
i and j. Let fπ(S(t), t) be the total expected cost at and beyond t by policy π.
Since dj < di and sj > t,

Q(S(t), u, t)− fπ(S(t), t) = E
[
α(t− di)+ + α(sj − dj)+

− α(t− dj)+ − α(sj − di)+
]
> 0 (2)

which contradicts the optimality of action u and concludes the proof.

Let Ω be the set of all possible realizations, also called scenarios, of the num-
ber of emergency surgeries and variables: surgery time, surgery release/arrival
time and surgery WTT. Then, let E(ω) be the set of emergency surgeries un-
der scenario ω ∈ Ω, and pi(ω), ri(ω) and di(ω) be the surgery time, the re-
lease/arrival time and the due date of surgery i ∈ R ∪ E(ω) under scenario
ω ∈ Ω respectively.

3.3 Perfect information bound

This subsection proposes a lower bound for the optimal total cost of the dynamic
scheduling of emergency surgery.

Let θ(ω) be the total cost resulting at the time of the latest surgery com-
pletion under scenario ω, i.e. max

i∈R∪E(ω)
ci. The lower bound cost is obtained by

applying the perfect information solution, i.e. all pieces of uncertain information
(number of emergency surgeries, surgery times and emergency surgery arrival
times) are known at once at time 0. OR assignment of emergency surgeries
and starting time of elective and emergency surgeries are determined indepen-
dently for each scenario ω to minimize the total cost θ(ω). This contradicts
the progressive disclosure of uncertain information in our original model and
hence provides a Lower Bound (LB) for the optimal total cost of the dynamic
scheduling of emergency surgery.

More specifically, LB = Eω
[
θ(ω)

]
where
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θ(ω) = min
Ti(ω),Ok(ω)

 ∑
i∈R∪E(ω)

αi · Ti(ω) +
∑
k∈K

βk ·Ok(ω)

 (3)

subject to ∑
k∈K

xik(ω) = 1,∀i ∈ R ∪ E(ω) (4)

yij(ω) + yji(ω) ≥ xik(ω) + xjk(ω)− 1,∀i, j ∈ R ∪ E(ω), k ∈ K (5)

cik(ω) ≤Mxik(ω),∀i ∈ R ∪ E(ω), k ∈ K (6)

cik(ω) ≥ (ak + pi(ω))xik(ω),∀i ∈ R ∪ E(ω), k ∈ K (7)

cik(ω) ≥ (ri(ω) + pi(ω))xik(ω),∀i ∈ R ∪ E(ω), k ∈ K (8)

cjk(ω) ≥ cik(ω) + pj(ω)−M(1− yij(ω))

−M(2− xik(ω)− xjk(ω)),∀i, j ∈ R ∪ E(ω), k ∈ K (9)

Ok(ω) ≥ cik(ω)− bk,∀i ∈ R ∪ E(ω), k ∈ K (10)

Ti(ω) ≥ cik(ω)− pi(ω)− di(ω),∀i ∈ R ∪ E(ω), k ∈ K (11)

xik(ω) = 1,∀i ∈ Rk (12)

yij(ω) = 1,∀k ∈ K, i, j ∈ Rk : i precedes j (13)

cik(ω) ≤ bk + pi(ω),∀i ∈ E(ω), k ∈ K (14)

(di(ω)− dj(ω))yij(ω) ≤Mzij(ω),∀i, j ∈ E(ω) (15)

cik(ω)− pi(ω) ≤ rj(ω)zij(ω) +M(1− zij(ω)),

∀i, j ∈ E(ω), k ∈ K (16)

cik(ω)− pi(ω) +Mzij(ω) ≥ rj(ω)(1− zij(ω)),

∀i, j ∈ E(ω), k ∈ K (17)

Ok(ω), Ti(ω) ≥ 0, xik(ω), yij(ω), zij(ω) ∈ {0, 1} (18)

where xik(ω) is a binary variable equal to 1 if surgery i is assigned to OR k,
yij(ω) is a binary variable equal to 1 if i precedes j, zij(ω) is a binary variable
equal to 1 if i starts before the arrival of j, cik(ω) is the completion time of
surgery i in OR k, Ok(ω) is the overtime of OR k, and M is a big number.
The first part of the formulation from (4) to (11) is similar to the classical
parallel machine scheduling mathematical programming model and the reader
is referred to [30] for detailed explanation. Constraints (12)-(13) impose the
fixed elective surgery plan. Constraint (14) forbids insertion of emergencies to
an OR after its closing time bk. Constraints (15)-(17) ensure the EDD order for
queued emergency surgeries. The EDD rule must be applied only to emergency
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surgeries being queued concurrently; this concurrence condition is modeled by
means of the variable zij(ω).

The EDD constraints (15)-(17) are very important for the tightness of the
lower bound. A preliminary numerical experiment shows that the lower bound
becomes really poor without these constraints. The gap observed between the
lower bound obtained not-including EDD constraints and the best dynamic
scheduling results is 15% farther (on average) than the lower bound obtained
including EDD constraints.

4 Dynamic emergency insertion strategies

The exact resolution of the optimal dynamic insertion problem with continuous
time and hybrid state space with both discrete and continuous state variables
is intractable. For this reason, we propose in this section a policy improvement
procedure and several simple heuristic strategies.

4.1 A policy improvement procedure

From Section 3.2, the optimal total expected cost and the optimal control after
the occurrence of an event at time t with state S(t) are determined as follows:

V (S(t), t) = min
u∈A(S,t)

Q(S(t), u, t)

where A(S(t), t) is the set of possible actions. Q(S(t), u, t) is known as the Q-
function and denotes the optimal total expected cost by starting with state S(t)
and action u under the assumption that the subsequent decisions are made by
the optimal policy. To overcome the intractability of the Q-function, we resort
to its approximation by a given policy π and define the following policy π′:

π′(S, t) = argminu∈A(S,t)Q
π(S, u, t)

where Qπ(S, u, t) denotes the total expected cost by starting with state S and
action u under the assumption that the subsequent decisions are made by the
policy π. This procedure is known in stochastic dynamic programming as policy
improvement and the following result confirms the improvement for our problem
with continuous time and hybrid state space.

Property 2. V π
′
(S(t), t) ≤ V π(S(t), t) where V π

′
(S(t), t) and V π(S(t), t) are

total expected cost under policies π′ and π.

Proof. Modify the emergency arrival processes with emergency arrival cut off
if L emergencies have arrived. It can be easily shown that the resulting cost
functions V π

′,L(S(t), t) and V π,L(S(t), t) converge increasingly to V π
′
(S(t), t)

and V π(S(t), t) as L increases. In the remaining proof, the index L is omitted
for simplicity. Under the on-going assumption, there are at most 3L + 2|R| +
|K| events for which a decision is needed. Let V π

′

n (S(t), t) and V πn (S(t), t)
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denote the cost functions after n events. We prove the property by induction
on n. As no more decision is needed after 3L + 2|R| + |K| events, we have
V π
′

3L+2|R|+|K|(S(t), t) = V π3L+2|R|+|K|(S(t), t). Assume that the property holds

for V π
′

n+1(S(t), t) and V πn+1(S(t), t) and we prove it for n. By definition,

V π
′

n+1(S(t), t) = E
[
Cn(S, π′(S, t), t) + V π

′

n+1(Sn+1(t), tn+1)
]

≤ E
[
Cn(S, π′(S, t), t) + V πn+1(Sn+1(t), tn+1)

]
= Qπn(S, π′(S, t), t)

= min
u=A(S,t)

Qπn(S, u, t)

≤ Qπn(S, π(S, t), t)

= V πn (S(t), t)

with Cn(S, π′(S, t), t) being the cost incurred before the occurrence of the
next event, Sn+1 and tn+1 the state and the time of the next event where the
first inequality is from the induction assumption. The property is then shown
by induction.

4.2 Heuristic strategies

This subsection proposes a stochastic optimization algorithm relied on the policy
improvement procedure and introduces some simple emergency insertion rules
that will be used to identify efficient implementation of the optimal dynamic
emergency insertion strategies.

ASAP1 Emergencies are served in EDD order and As Soon As Possible when-
ever an OR is released. When two or more ORs are available, the emergency
surgery is inserted into the OR that finishes for first all its remaining elective
surgeries under the assumption of no emergency insertion and surgery times re-
placed by their mean. It is worth noticing that ASAP1 is close to the emergency
insertion rule used in the hospital.

ASAP2 Similar to ASAP1 but with emergencies served in the First Come
First Served (FCFS) order.

DDIP Similar to ASAP1 but with insertion of emergencies allowed only when
their Due Date Is Passed.

MTC When an event occurs at time t and the emergency queue is not empty,
this strategy determines the insertion of the emergency surgery with the ear-
liest due date that minimizes the Marginal Total Cost (MTC). If the minimal
marginal total cost is achieved by immediate insertion in an OR available at t,
then the emergency is inserted and otherwise no action is taken at time t. The
minimal MTC is checked for all possible insertions in any OR and at any loca-
tion by replacing surgery times of on-going surgeries by their conditional mean
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and all other surgery times by their mean. More specifically, let {[0], [1], ..., [n]}
be the set of remaining surgeries of OR k with [0] being the on-going one and all
others being the remaining elective surgeries of the OR. Consider the insertion
of the emergency e of due date de after surgery [i]. Then the total cost TC(k, i)
of the OR after insertion becomes:

TC(k, i) = min
i∈{0,..,n}

n∑
j=1

α[j]

(
c[j] − E

[
p[j]

]
− d[j]

)+
+ αe (ce − E[pe]− de)+

+ βk
(
c[n] − bk

)+
subject to

c[0] = E
[
s[0] + p[0] : s[0] + p[0] ≥ t

]
c[j] = max(r[j], c[j−1]) + E

[
p[j]

]
,∀0 < j ≤ i

ce = c[i] + E
[
p[e]

]
c[i+1] = max(r[i+1], ce) + E

[
p[i+1]

]
c[j] = max(r[j], c[j−1]) + E

[
p[j]

]
,∀j > i+ 1

The mean conditional completion time c[0] of all on-going surgeries is eval-
uated by Monte Carlo simulation. Our numerical experiments show that it
is enough to check the earliest insertion of all OR plus the next insertion of
ORs available at t. This is the MTC strategy implemented for the numerical
experiments.

SO This Stochastic Optimization strategy is a policy improvement of the
MTC strategy that is proved numerically to be the best among the simple
rules. More specifically, π′(S, t) = argminu∈A(S,t)Q

MTC(S, u, t). Further, the
Q-function is evaluated by the sample average of a finite set of scenarios ΩN ,
i.e. QMTC(S, u, t) ≈ 1

|ΩN |
∑
ω∈ΩN QMTC(S, u, t;ω). A set of 400 scenarios,

used in all our numerical experiments, is found by preliminary experiments to
be enough for a good trade-off between computational efficiency and solution
quality. Further, for the sake of computational efficiency, we replace in MTC the
mean conditional completion time c[0] of all on-going surgeries by their actual
completion times in the corresponding scenario ω ∈ ΩN .

5 Numerical Experiments

This section presents numerical results for (i) comparison of different heuristic
policies, (ii) analysis of the impact of elective surgery plan and (iii) a principal
component analysis to show how the near optimal policy SO differs from best
simple heuristic policy MTC.
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Table 1: Specialties Data

Specialty case-mix E[pj ] std dev(pj)
Digestive Surg. 7.4% 161.2 90.5
Obstetrics 7.1% 98.8 73.8
Opthalmology 9.2% 42.8 15.8
Orthopedics 9.6% 146.5 86.7
Plastic Surg. 7.6% 135.4 77.9
Proctology 15.5% 43.1 14.6
Stomatology 5.2% 141.0 110.1
Urology 15.2% 97.4 100.8
Vascular Surg. 8.2% 125.3 71.4
Emergency Surg. 15.0% 109.7 68.0

5.1 Experimental Setting

This subsection first presents the surgical activity data collected from a hospital
that will serve as basis for the test instance generation. We also discuss how
different policies are evaluated.

5.1.1 Data collected from a hospital

The test instances of this paper are based on real data from the Saint-Joseph
Hospital (Paris, France) with 41,556 surgeries and a total surgery time of 71,120
hours in 2016. The hospital has 18 ORs. The regular opening time is 480
minutes from 8:00 to 16:00. Each weekday of an OR is split in OR blocks of
either half-day of 4h or a day of 8h. Half of the OR blocks are blocks of 8h.
There are nine surgery specialties managed according to a cyclic Master Surgery
Schedule (MSS). The available OR-blocks are assigned to specialties and, within
the same specialty, to surgeons.

The surgical activity collected data are reported in Table 1 in which column
2 is the case-mix of the specialty, column 3 the mean surgery time and column
4 its standard deviation. The surgery times are clearly specialty dependent and
are assumed to be of log-normal distribution. Emergency surgeries, about 16%
of the total surgery time, arrive according to a stationary Poisson process of rate
of one every 514 minutes. The hospital OT manager reserves a slack time for
the emergency surgery demand and the OR blocks are reduced by 16% during
the elective surgery planning.

5.1.2 Instances

For all test instances, there are 8 ORs. The waiting time targets are 60 minutes
for all elective surgeries and uniformly distributed for emergency ones among
three values: 0, 60 and 120. There are 9 types of elective surgeries correspond-
ing to specialties of Table 1. Tardiness costs and overtime cost used in the
experiments are given in Table 2.
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To generate test instances, the following parameters are also considered: (i)
elective surgery planning model, (ii) the OR blocks of each specialty, (iii) the
surgery plan of each OR block, (iv) emergency arrival rate, (v) ORs without
closing time.

The elective surgery planning model can be either MSS which assigns OR
blocks to specialties or Open Schedule (OS) without OR-block-to-specialty as-
signment. With equal probability, each OR has either a single block of 8h or
2 blocks of 4h. For each OR block, a specialty is randomly sampled according
to the case-mix of Table 1. Emergency arrival rate is either u=16% of the OT
activity or 2u = 32%. The length BlockLength of each OR-block is reduced ac-
cordingly to BlockLength∗ = BlockLength×(1−u) or BlockLength×(1−2u).
The OR with the smallest assigned elective surgery workload is selected to be
on night duty, i.e. with bk =∞.

The elective surgery plan depends on the model used. For each OR block,
a new elective surgery n of the selected specialty for MSS and of a randomly
generated specialty for OS is added as long as the following holds:

n∑
j=1

E[pj ] ≤ BlockLength∗ + 0.5E[pn] (19)

The release times of all elective surgeries are determined by left-shifting and by
using mean surgery time.

The surgery sequencing decision is needed for OS but unnecessary for MSS
as all surgeries of each OR block are identical for MSS. Surgeries in different OR
blocks of the OS model are sequenced according to one of the following priority
rules:

BII Elective surgeries of different OR blocks are sequenced in order to mini-
mize the maximal break-in-interval discussed in Section 2. That problem is not
solved to optimality; the Fixed Goal Values greedy heuristic proposed in [12]
has been implemented;

LEPT Elective surgeries in the same OR block are sequenced according to
the Longest Expected Processing Time first rule;

SEPT Elective surgeries in the same OR block are sequenced according to
the Shortest Expected Processing Time first rule.

24 MSS instances and 24 OS instances are generated with half instances for
each emergency arrival rate (u = 16% and 2u = 32%).

5.1.3 Simulation setting

All five heuristic policies (SO, MTC, ASAP1, ASAP2, DDIP) are evaluated
by simulation with 1000 replications and with common random variables for
all policies. All experiments are run on a machine equipped with a 3.5Ghz
processor and 16GB of RAM.
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Table 2: Cost Structures

Structure elective tardiness emergency tardiness overtime
Cost1 0.33 0.33 0.33
Cost2 0.50 0.25 0.25
Cost3 0.25 0.25 0.50
Cost4 0.25 0.50 0.25

In the following, we check the simulation accuracy and computation time on
some preliminary test instances with OS elective schedule given by SEPT.

Table 7 in Appendix A shows the simulation accuracy including mean to-
tal cost and 95% confidence half-width. The simulation accuracy seems good
enough for a correct ranking of different heuristic policies. Higher number of
replications would lead to better simulation accuracy but requires significantly
higher computation time, especially for the SO policy.

Table 8 in Appendix A gives the computation time for decision making at
each decision epoch. The simple heuristics (MTC, ASAP1, ASAP2, DDIP)
require only really short computation time. The most sophisticated SO policy
takes at most 8 seconds with an average of less than 1 second. Such computation
time is quite reasonable for health-care application.

5.2 Numerical Results

For each instance, the cost CostA of each policy A, the cost of the best heuristic
policy CostBest and the lower bound LB of the optimal cost are calculated.
Then, the following indicators are determined

GAPBest,LB :=
CostBest − LB

LB
(20)

GAPA,Best :=
CostA − CostBest

CostBest
(21)

In order to evaluate the impact of the elective surgery schedule, the cost
CostA,Y of the coupling of policy A and elective schedule Y is calculated as
well, the following indicator is then determined

DevA,Y :=
CostA,Y

minA′,Y ′{CostA′,Y ′}
− 1 (22)

GAPBest,LB , about the tightness of the lower bound and the quality of the
best policy, is given in Table 3. GAPA,Best, about the percentage deviation of
each heuristic policy A from the best policy, is given in Table 4 for MSS instances
and in Table 5 for OS instances with cost structure Cost1, and in Appendix A for
other cost structures. Each line gives the average, the minimal, the maximal and
the number of best solutions reached over 12 instances. DevA,Y , on the impact
of elective surgery schedule, concerns only OS instances and is given in Table 6
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Table 3: Best vs. LB Deviation (%)

u 2u
Avg. Min. Max. Avg. Min. Max.

MSS 8.6 4.2 16.4 10.5 4.9 19.2
OS 12.4 8.8 19.8 16.7 13.0 22.0

Table 4: MSS – Policy vs. Best Deviation (%)

Cost1 u 2u
Avg. Min. Max. #1 Avg. Min. Max. #1

SO 0.1 0.0 0.9 9 0.3 0.0 1.8 9
MTC 1.9 0.0 10.0 3 9.2 4.8 12.4 0
ASAP1 14.7 1.0 28.3 0 8.3 0.0 24.6 2
ASAP2 14.9 0.9 28.6 0 9.1 0.0 25.1 1
DDIP 18.1 8.0 31.1 0 31.3 25.1 34.8 0

Cost2 u 2u
Avg. Min. Max. #1 Avg. Min. Max. #1

SO 0.1 0.0 1.1 10 0.1 0.0 1.2 10
MTC 1.7 0.0 8.0 2 8.8 5.9 17.2 0
ASAP1 20.1 0.1 44.7 0 16.8 0.0 46.6 1
ASAP2 20.3 0.4 44.4 0 17.1 0.0 47.6 1
DDIP 18.5 6.3 33.9 0 31.6 21.8 44.2 0

Cost3 u 2u
Avg. Min. Max. #1 Avg. Min. Max. #1

SO 0.1 0.0 0.7 10 0.2 0.0 1.7 9
MTC 1.6 0.0 8.0 2 6.0 2.7 14.5 0
ASAP1 15.4 3.8 25.2 0 7.2 0.0 22.7 3
ASAP2 15.7 4.0 26.0 0 7.8 0.2 23.3 0
DDIP 18.2 8.5 30.3 0 27.5 20.5 31.7 0

Cost4 u 2u
Avg. Min. Max. #1 Avg. Min. Max. #1

SO 0.1 0.0 1.0 11 0.4 0.0 2.0 9
MTC 3.6 0.1 24.2 0 13.1 8.7 26.3 0
ASAP1 8.1 0.0 17.5 1 3.2 0.0 10.7 3
ASAP2 8.6 0.2 17.3 0 3.8 1.1 11.3 0
DDIP 20.1 11.8 25.7 0 32.5 29.4 34.4 0

for cost structure Cost1 and in the Appendix A for other cost structures. In
OS instances tables, the first letter of the rule that sequences the initial elective
surgery plan (S: SEPT, L: LEPT and B: BII) prefixes the name of the policy.

The main observations are as follows.
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Table 5: OS – Policy vs. Best Deviation (%)

Cost1 u 2u
Ave. Min. Max. #1 Ave. Min. Max. #1

B-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
B-MTC 4.2 1.6 8.2 0 13.9 1.0 22.6 0
B-ASAP1 8.1 6.0 9.5 0 6.4 3.4 10.6 0
B-ASAP2 8.4 6.1 9.9 0 6.8 3.9 11.0 0
B-DDIP 10.2 8.2 12.7 0 21.3 16.1 26.0 0
L-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
L-MTC 6.2 3.9 9.0 0 20.5 14.7 25.6 0
L-ASAP1 7.0 5.7 9.6 0 6.3 3.5 10.3 0
L-ASAP2 7.2 5.7 9.8 0 6.8 3.5 10.9 0
L-DDIP 9.9 8.6 11.8 0 21.4 17.2 24.7 0
S-SO 0.1 0.0 0.6 10 0.0 0.0 0.0 12
S-MTC 1.3 0.0 5.7 2 6.0 1.3 14.3 0
S-ASAP1 7.7 5.8 9.4 0 5.7 2.5 9.4 0
S-ASAP2 8.0 6.2 9.8 0 6.2 3.3 10.1 0
S-DDIP 10.4 8.5 12.2 0 21.5 17.1 26.0 0

Table 6: OS – The Impact of Proactive Schedule (%)

Cost1 u 2u
Ave. Min. Max. #1 Ave. Min. Max. #1

B-SO 9.8 0.0 20.1 1 5.9 0.1 13.4 0
B-MTC 14.3 4.5 23.7 0 20.4 13.3 29.5 0
B-ASAP1 18.7 8.4 30.4 0 12.6 4.2 24.0 0
B-ASAP2 19.0 8.2 30.7 0 13.1 4.0 24.4 0
B-DDIP 21.0 9.9 32.2 0 28.4 16.2 38.8 0
L-SO 43.4 20.7 65.1 0 19.3 7.7 28.4 0
L-MTC 52.1 31.5 72.7 0 43.6 31.3 55.5 0
L-ASAP1 53.5 29.3 77.3 0 26.8 13.3 41.7 0
L-ASAP2 53.8 29.2 77.3 0 27.4 13.5 42.4 0
L-DDIP 57.7 33.2 80.8 0 44.7 28.6 58.2 0
S-SO 0.3 0.0 3.0 9 0.0 0.0 0.0 12
S-MTC 1.6 0.0 5.7 2 6.0 1.3 14.3 0
S-ASAP1 7.9 5.8 10.9 0 5.7 2.5 9.4 0
S-ASAP2 8.3 6.2 11.0 0 6.2 3.3 10.1 0
S-DDIP 10.7 8.5 13.9 0 21.5 17.1 26.0 0

Best policy vs LB From Table 3, the deviation of the best policy from the
lower bound is reasonably tight. As a result, it is meaningful to assess the
performance of other heuristic policies with respect to the Best policy, i.e. with
respect to GAPA,Best. Further, the perfect information bound integrating the
property of EDD order of emergencies seems quite tight.
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Policy ranking The overall ranking is SO, MTC, ASAP1, ASAP2, DDIP.
Results in tables 4-6 and 9-12 show that SO is the best and DDIP the worst in
the majority of instances. SO is close to the best when it is not the best. MTC
is often ranked second. The poor performance of DDIP shows the importance
of anticipating the waiting time targets of emergency surgeries. The superiority
of SO can be explained as follows. Whereas MTC considers only the head
of the emergency queue and neglects the entire emergency queue, the policy
improvement makes possible for SO to overcome the MTC blindness by taking
into account all emergencies.

Benefit of efficient emergency insertion The gap between the best and
worst policies is significant and often more than 20% (with the maximum gap
of 47.6% and an average of 19.0%). With respect to ASAP1 which is similar to
the hospital practice, the SO policy improves by 8.6% on average.

When hospital-like ASAP policies perform reasonably The perfor-
mance of the ASAP policies improve when (i) the overtime cost is high (Cost3 ),
(ii) the emergency tardiness cost is high (Cost4 ), and (iii) the emergency de-
mand is high (2u). ASAP1 even becomes the best for some MSS instances
fulfilling the above conditions. Under these scenarios, the capacity of the clos-
ing ORs is quickly saturated. Then, the opportunity for a cleverer algorithm as
SO to parallelize the work in the queue on multiple ORs is significantly reduced.

Impact of elective surgery schedule Whereas the elective schedule has
significantly higher impact on the performance than the emergency insertion
policy, both contribute significantly to the overall performance of the system.
Contrary to the observation of [12], the SEPT elective schedule is significantly
better than the BII elective schedule. In all test instances, LEPT elective sched-
ule is the worst.

How the near optimal SO policy differs from simple MTC policy A
principal component analysis (PCA), given in Appendix B, is performed to
understand how SO policy differs from MTC and how problem data and state
information change the real time decision. We summarize the key findings on the
correlation of the emergency insertion decision with various state information.
First, a higher correlation with the time of the day for MTC than for SO is
observed, implying failure of MTC to insert appropriately late emergencies due
to its shortsighted perspective. Second, a higher correlation with the night-duty
OR insertion for MTC than for SO is observed, implying more ORs insertion
exploited by SO and more the night-duty OR insertion by MTC. The correlation
is surprisingly decreasing for SO but stable for MTC as the emergency demand
increases from u to 2u. Third, MTC has a higher sensitivity to the head-of-queue
tardiness than SO, confirming again the myopic nature of MTC.

The PCA results sustain the conclusion about the SO capability to overcome
the MTC shortsighted perspective over the future and the emergencies queue.
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SO appears able to foresee the decision impact over the performance and over
future emergency arrivals. This result strengthens our conclusions about the
quality of SO in recovering the weakness of MTC matching the purpose of a
policy improvement algorithm.

6 Conclusion

This paper addresses the dynamic scheduling problem of randomly arriving
emergency surgeries in an Operating Theater (OT) composed of several Operat-
ing Rooms (ORs) shared between elective and emergency surgeries. We consid-
ered different Waiting Time Targets (WTTs) to characterize different emergency
levels of emergency surgeries. An event-based stochastic programming model is
proposed to minimize the total cost incurred by exceeding waiting time targets
of emergency surgeries, elective surgery delay and surgical team overtime. As
the problem is hard to solve, we defined two simple As Soon As Possible emer-
gency insertion policies (ASAP1 and ASAP2), we proved the optimality of the
EDD (Earliest Due Date first) rule for queued emergencies and, on the basis of
the EDD rule, we developed a simple heuristic policy (MTC) and a Stochastic
Optimization (SO) policy improvement algorithm of the MTC policy. A perfect
information lower bound for the cost of the dynamic scheduling of emergency
surgery is provided as well.

A testbed of several instances that cover different specific initial surgery
plan and emergency flow is used. Numerical results reveal that both MTC and
SO overcome simple ASAP emergency insertion policies regardless of the initial
schedule of elective surgeries and SO gives the best result in most of the cases.
The MTC performance is reduced when the weight on emergency tardiness and
the flow of emergencies increases. The obtained results also show that the initial
schedule of elective surgeries has an important impact.

A future research can focus on the relaxation of the assumption that the
initial schedule of elective surgeries is given and cannot be changed (Assumption
A3). The impact on the system of a deep rescheduling has to be taken into
account in this case. Another research direction can be to establish dynamically
which ORs cope with night duty. Another one can be to extend the model
proposed in this paper to consider the cancellation and postponement to another
day of elective surgeries. The challenge is to define how these decisions are
made and under which conditions. Since the optimality of the EDD rule for
queued emergencies relies on the unique distribution of their surgery times, a
further research direction can be to consider different distribution functions for
emergency surgeries involving this information in the dynamic scheduling.

A Tables

In this Appendix, Table 7 shows the simulation accuracy and Table 8 gives the
computation time for decision making at each decision epoch. Table 9 shows
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Table 7: Simulation Accuracy with 1000 replications

MSS OS
u 2u u 2u

Cost1 SO 285 ± 18 321 ± 30 334 ± 26 430 ± 36
MTC 314 ± 23 343 ± 36 339 ± 26 445 ± 40
ASAP1 366 ± 25 366 ± 33 360 ± 27 450 ± 36
ASAP2 367 ± 25 371 ± 33 360 ± 27 453 ± 36
DDIP 353 ± 23 431 ± 38 370 ± 27 518 ± 41
LB 250 ± 17 283 ± 29 304 ± 25 360 ± 34

Cost2 SO 215 ± 19 301 ± 28 408 ± 31 398 ± 31
MTC 214 ± 19 325 ± 32 406 ± 31 406 ± 32
ASAP1 221 ± 20 334 ± 30 452 ± 33 437 ± 32
ASAP2 222 ± 20 340 ± 31 452 ± 33 438 ± 32
DDIP 233 ± 20 378 ± 34 448 ± 33 481 ± 36
LB 205 ± 19 275 ± 28 368 ± 29 342 ± 29

Cost3 SO 203 ± 17 263 ± 27 363 ± 24 431 ± 30
MTC 203 ± 17 276 ± 30 362 ± 24 435 ± 32
ASAP1 213 ± 17 259 ± 26 389 ± 25 465 ± 31
ASAP2 214 ± 17 259 ± 26 390 ± 25 467 ± 31
DDIP 228 ± 17 336 ± 33 390 ± 25 517 ± 35
LB 193 ± 16 234 ± 26 323 ± 23 360 ± 28

Cost4 SO 208 ± 17 442 ± 48 294 ± 21 555 ± 52
MTC 209 ± 18 481 ± 56 307 ± 24 652 ± 73
ASAP1 205 ± 17 449 ± 48 305 ± 21 561 ± 53
ASAP2 206 ± 17 450 ± 48 306 ± 21 568 ± 53
DDIP 238 ± 19 587 ± 59 325 ± 23 697 ± 68
LB 195 ± 17 413 ± 48 256 ± 19 478 ± 50

Table 8: Algorithms Computational Time in milliseconds

algo Avg. St.Dev. Min. Max.
SO 911.9 1170.8 0.0 8241.7
MTC 0.4 1.0 0.0 43.8
ASAP1 0.1 1.0 0.0 44.1
ASAP2 0.1 1.0 0.0 42.8
DDIP 0.1 1.0 0.0 43.4

the GAPA,Best average, minimum and maximum for each algorithm, over 24
OS instances and for costs structures Cost2, Cost3 and Cost4. Table 10 shows
the DevA,Y average, minimum and maximum for each algorithm over 24 OS
instances and for costs structures Cost2, Cost3 and Cost4. In both the tables,
results for the three possible initial schedules SEPT, LEPT and BII are marked
respectively with the letters S, L and B.
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B Principal Component Analysis (PCA)

In this Appendix, we report detailed results of the PCA performed over a dataset
collected running the simulation. The PCA dataset entry is:

D1 replication,

D2 event time t,

D3 total expected overtime cost at t,

D4 total expected electives delay cost at t,

D5 emergency queue head tardiness cost at t,

D6 total emergency queue tardiness cost at t,

D7 emergency insertion is on the night-duty OR,

D8 decision (insert=1, not-insert=0)

The PCA analysis covers only methods SO and MTC. We keep such restric-
tion since for simple rule based algorithms, the decision can be derived directly
given the state of the system.

In Table 11, for fields D2, D3, D4, D5, D6 and D7, the average, the minimum
and the maximum correlation coefficient between the field and the decision
D8 are shown for 12 MSS instances and for each considered costs structures.
Table 12 follows the same structure of Table 11 and shows results for 12 OS
instances and for each considered costs structures. For OS instance, no rule is
applied for the elective surgeries release time. For each OR, the sequence of the
elective surgeries is random.

A simulation run evaluates 1000 replications for each instance. The order of
magnitude is 10 for the number of events for a simulation replication; so, the
PCA analysis is performed on a large dataset giving a good level of accuracy.

In a global view, the variation of the costs structure does not have a great
impact over the correlation coefficients of the fields and the emergency insertion
decision.

The most interesting and useful result comes looking at the correlation be-
tween the simulation time and the insertion decision. Such correlation is always
stronger for MTC than for SO. This means that MTC is prone to insert emer-
gencies later when SO inserts earlier.

Secondly, there is a strong correlation between the insertion decision and
field D7. This is quite obvious since there is no overtime for the night-duty OR.
A not obvious result is that such correlation decreases for SO as the emergencies
flow increases when it remains stable for MTC.

A quite strong correlation between the expected total overtime D3 and the
insertion decision is revealed, such correlation is stable as the costs structure and
the emergencies flow vary. We can suppose that a certain amount of overtime
is an intrinsic characteristic of evaluated instances.
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The correlation of the emergency insertion decision with the emergency
queue total tardiness D6 and the queue head tardiness D5 is significant; such
correlations increase with the emergencies flow and mostly for OS instances,
both for SO and MTC. MTC appears more sensible to the queue head tardi-
ness, this is because it is prone to insert emergencies later.

The emergency insertion correlation with D4 is weak throughout the ex-
periments set, we can suppose that the 60 minutes target waiting time for the
elective surgeries is a loose constraint on our instances.

Considering the dominance of SO over MTC (see Subsection 5.2), we can
argue that the PCA results sustain the conclusion about the SO capability to
overcome the MTC shortsighted perspective over the future and the emergen-
cies queue. SO appears able to foresee the decision impact over the perfor-
mance estimating also the expectation of future emergency arrivals. This result
strengthens our conclusions about the quality of SO in recovering the weakness
of MTC matching the purpose of a policy improvement algorithm.
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Table 9: OS – Policy vs. Best Deviation (%)

Cost2 u 2u
Ave. Min. Max. #1 Ave. Min. Max. #1

B-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
B-MTC 1.4 0.1 3.7 0 7.7 1.1 12.9 0
B-ASAP1 12.9 10.2 15.5 0 15.7 9.5 25.9 0
B-ASAP2 13.0 10.4 15.7 0 16.0 10.0 25.9 0
B-DDIP 12.2 9.5 15.2 0 24.0 19.2 29.9 0
L-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
L-MTC 2.2 0.4 4.6 0 11.3 8.4 14.7 0
L-ASAP1 10.0 7.2 12.4 0 13.7 7.6 22.2 0
L-ASAP2 10.2 7.4 12.6 0 14.0 8.0 22.3 0
L-DDIP 11.2 8.9 13.1 0 23.1 16.9 29.3 0
S-SO 0.1 0.0 0.7 10 0.0 0.0 0.0 12
S-MTC 0.5 0.0 1.6 2 3.8 1.4 10.1 0
S-ASAP1 12.8 9.0 15.5 0 13.8 9.9 20.9 0
S-ASAP2 12.9 9.0 15.7 0 14.2 10.2 21.1 0
S-DDIP 11.9 9.5 15.1 0 23.3 19.7 27.3 0

Cost3 u 2u
Ave. Min. Max. #1 Ave. Min. Max. #1

B-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
B-MTC 2.7 0.8 5.3 0 12.3 0.3 25.0 0
B-ASAP1 8.0 5.8 9.6 0 6.7 3.4 10.0 0
B-ASAP2 8.1 5.9 9.7 0 7.0 3.9 10.7 0
B-DDIP 9.4 8.0 10.8 0 18.7 15.6 22.3 0
L-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
L-MTC 4.9 2.0 6.8 0 17.7 13.2 23.0 0
L-ASAP2 7.0 4.7 8.7 0 6.2 3.5 9.3 0
L-ASAP1 7.0 4.7 8.7 0 5.9 3.3 9.1 0
L-DDIP 9.2 7.5 10.5 0 18.6 15.9 21.8 0
S-SO 0.2 0.0 0.7 7 0.0 0.0 0.0 12
S-MTC 0.6 0.0 3.6 5 4.3 0.8 14.5 0
S-ASAP1 7.9 5.5 9.7 0 6.1 4.0 8.0 0
S-ASAP2 8.0 5.5 10.0 0 6.5 4.1 8.6 0
S-DDIP 9.2 7.4 10.9 0 19.0 16.4 21.3 0

Cost4 u 2u
Ave. Min. Max. #1 Ave. Min. Max. #1

B-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
B-MTC 10.9 7.4 18.1 0 27.7 10.7 41.5 0
B-ASAP1 4.9 2.3 6.4 0 2.6 0.7 7.1 0
B-ASAP2 5.2 2.6 6.9 0 3.4 1.9 7.9 0
B-DDIP 12.2 9.7 13.8 0 25.9 22.5 28.7 0
L-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
L-MTC 15.1 10.2 18.4 0 33.0 23.9 39.6 0
L-ASAP1 4.0 2.5 5.6 0 2.2 0.4 4.8 0
L-ASAP2 4.3 2.6 6.0 0 2.9 1.2 5.5 0
L-DDIP 10.8 8.9 13.5 0 24.6 21.3 26.9 0
S-SO 0.0 0.0 0.0 12 0.0 0.0 0.0 12
S-MTC 3.9 0.4 11.5 0 14.0 5.1 29.5 0
S-ASAP1 4.3 2.7 5.3 0 2.0 1.0 3.9 0
S-ASAP2 4.7 3.2 5.5 0 2.9 1.6 4.8 0
S-DDIP 12.5 10.4 14.0 0 26.4 24.5 29.5 0
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Table 10: OS – The Impact of Proactive Schedule (%)

Cost2 u 2u
Ave. Min. Max. #1 Ave. Min. Max. #1

B-SO 13.1 0.0 32.8 1 9.6 0.0 21.7 3
B-MTC 14.7 1.6 34.2 0 17.9 6.5 31.5 0
B-ASAP1 27.8 12.0 49.9 0 26.8 11.9 48.7 0
B-ASAP2 28.0 12.3 50.1 0 27.2 12.3 48.8 0
B-DDIP 27.0 11.7 49.7 0 35.9 21.3 53.5 0
L-SO 61.8 31.7 94.7 0 33.7 15.5 51.9 0
L-MTC 65.3 33.9 98.0 0 48.7 30.9 64.9 0
L-ASAP1 78.2 46.1 115.0 0 52.1 29.4 74.2 0
L-ASAP2 78.4 46.3 115.2 0 52.5 29.5 74.5 0
L-DDIP 80.0 48.1 116.1 0 64.5 41.3 86.0 0
S-SO 0.3 0.0 2.8 9 0.4 0.0 3.0 9
S-MTC 0.7 0.0 3.0 2 4.2 1.5 10.1 0
S-ASAP1 13.0 9.0 15.5 0 14.3 9.9 20.9 0
S-ASAP2 13.2 9.0 15.7 0 14.7 10.2 21.1 0
S-DDIP 12.1 9.5 15.1 0 23.9 19.7 27.3 0

Cost3 u 2u
Ave. Min. Max. #1 Ave. Min. Max. #1

B-SO 6.1 0.0 14.0 2 5.0 0.0 12.1 1
B-MTC 8.9 2.0 16.1 0 17.8 7.3 29.7 0
B-ASAP1 14.6 5.8 23.3 0 12.0 4.9 22.0 0
B-ASAP2 14.7 6.1 23.4 0 12.4 4.8 22.7 0
B-DDIP 16.0 8.0 24.4 0 24.6 15.6 32.7 0
L-SO 29.8 13.8 43.9 0 16.5 7.8 25.6 0
L-MTC 36.1 20.7 49.3 0 37.1 23.5 46.8 0
L-ASAP1 38.9 22.7 56.5 0 23.4 12.2 34.0 0
L-ASAP2 39.0 23.1 56.5 0 23.8 12.1 34.3 0
L-DDIP 41.7 25.6 57.9 0 38.2 25.0 49.9 0
S-SO 0.3 0.0 1.4 7 0.0 0.0 0.5 11
S-MTC 0.6 0.0 3.6 3 4.4 0.8 14.5 0
S-ASAP1 8.0 5.5 9.7 0 6.2 4.0 8.0 0
S-ASAP2 8.1 5.5 10.0 0 6.6 4.1 8.6 0
S-DDIP 9.3 7.4 10.9 0 19.0 16.4 21.3 0

Cost4 u 2u
Ave. Min. Max. #1 Ave. Min. Max. #1

B-SO 8.1 0.0 18.1 1 3.8 0.0 8.4 2
B-MTC 19.8 10.4 28.5 0 32.4 16.8 45.9 0
B-ASAP1 13.4 2.3 23.7 0 6.5 1.4 13.0 0
B-ASAP2 13.8 2.6 23.9 0 7.3 1.9 13.9 0
B-DDIP 21.2 12.2 32.2 0 30.5 26.5 35.3 0
L-SO 36.9 19.0 53.0 0 13.0 6.4 19.5 0
L-MTC 57.5 40.8 72.5 0 50.1 36.7 60.9 0
L-ASAP1 42.5 23.4 59.5 0 15.4 7.8 22.7 0
L-ASAP2 42.9 23.9 59.7 0 16.3 8.3 23.5 0
L-DDIP 51.7 35.1 69.2 0 40.7 33.4 46.8 0
S-SO 0.1 0.0 1.1 11 0.1 0.0 1.3 10
S-MTC 4.0 0.4 11.5 0 14.1 5.8 29.5 0
S-ASAP1 4.4 3.5 5.3 0 2.2 1.1 3.9 0
S-ASAP2 4.8 3.8 5.5 0 3.0 2.0 4.8 0
S-DDIP 12.6 10.4 14.8 0 26.6 24.5 29.5 0
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Table 11: MSS – PCA

u 2u
Ave. Min. Max. Ave. Min. Max.

Cost1 SO D2 0.3 0.2 0.4 0.3 0.2 0.4
D3 0.2 0.1 0.3 0.2 0.1 0.3
D4 0.1 0.1 0.1 0.1 0.1 0.1
D5 0.1 0.1 0.2 0.2 0.1 0.2
D6 0.1 0.1 0.1 0.1 0.1 0.2
D7 0.6 0.4 0.8 0.4 0.3 0.6

MTC D2 0.4 0.3 0.6 0.4 0.3 0.5
D3 0.2 0.1 0.4 0.2 0.1 0.3
D4 0.1 0.0 0.1 0.1 0.1 0.1
D5 0.1 0.1 0.2 0.2 0.1 0.2
D6 0.1 0.1 0.2 0.1 0.1 0.2
D7 0.6 0.5 0.8 0.6 0.4 0.8

Cost2 SO D2 0.4 0.1 0.5 0.3 0.2 0.5
D3 0.2 0.1 0.4 0.2 0.1 0.3
D4 0.1 0.0 0.1 0.1 0.1 0.1
D5 0.1 0.1 0.2 0.2 0.1 0.3
D6 0.1 0.1 0.2 0.1 0.1 0.2
D7 0.6 0.4 0.7 0.5 0.3 0.6

MTC D2 0.5 0.2 0.6 0.4 0.3 0.6
D3 0.2 0.1 0.5 0.2 0.1 0.3
D4 0.1 0.0 0.1 0.1 0.1 0.1
D5 0.1 0.1 0.2 0.2 0.1 0.3
D6 0.1 0.1 0.2 0.1 0.1 0.2
D7 0.6 0.5 0.8 0.6 0.4 0.8

Cost3 SO D2 0.3 0.1 0.4 0.3 0.2 0.4
D3 0.2 0.1 0.3 0.2 0.1 0.3
D4 0.1 0.0 0.1 0.1 0.1 0.1
D5 0.1 0.1 0.2 0.2 0.1 0.2
D6 0.1 0.1 0.2 0.1 0.1 0.2
D7 0.6 0.4 0.8 0.5 0.3 0.6

MTC D2 0.4 0.2 0.6 0.4 0.3 0.5
D3 0.2 0.1 0.4 0.2 0.1 0.3
D4 0.1 0.0 0.1 0.1 0.1 0.2
D5 0.1 0.1 0.2 0.2 0.1 0.2
D6 0.1 0.1 0.2 0.1 0.1 0.2
D7 0.6 0.5 0.8 0.6 0.4 0.8

Cost4 SO D2 0.3 0.2 0.4 0.3 0.2 0.4
D3 0.2 0.1 0.2 0.2 0.1 0.2
D4 0.1 0.1 0.1 0.1 0.1 0.2
D5 0.1 0.1 0.2 0.2 0.1 0.2
D6 0.1 0.1 0.1 0.1 0.1 0.2
D7 0.5 0.4 0.7 0.4 0.3 0.5

MTC D2 0.4 0.2 0.6 0.4 0.3 0.5
D3 0.2 0.1 0.4 0.2 0.1 0.3
D4 0.1 0.1 0.1 0.1 0.1 0.1
D5 0.1 0.1 0.2 0.2 0.1 0.2
D6 0.1 0.1 0.1 0.1 0.1 0.2
D7 0.6 0.5 0.8 0.5 0.4 0.7
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Table 12: OS – PCA

u 2u
Ave. Min. Max. Ave. Min. Max.

Cost1 SO D2 0.3 0.3 0.4 0.3 0.3 0.3
D3 0.3 0.2 0.3 0.2 0.2 0.2
D4 0.0 0.0 0.1 0.0 0.0 0.1
D5 0.2 0.1 0.2 0.2 0.2 0.2
D6 0.1 0.1 0.2 0.2 0.1 0.2
D7 0.6 0.5 0.6 0.5 0.4 0.5

MTC D2 0.5 0.4 0.6 0.5 0.5 0.6
D3 0.4 0.3 0.4 0.3 0.3 0.4
D4 0.1 0.0 0.1 0.1 0.1 0.1
D5 0.2 0.1 0.2 0.2 0.2 0.3
D6 0.1 0.1 0.2 0.2 0.1 0.2
D7 0.6 0.6 0.7 0.6 0.6 0.7

Cost2 SO D2 0.4 0.4 0.5 0.4 0.4 0.4
D3 0.3 0.3 0.3 0.3 0.2 0.3
D4 0.0 0.0 0.1 0.0 0.0 0.1
D5 0.2 0.1 0.2 0.2 0.2 0.2
D6 0.1 0.1 0.2 0.2 0.2 0.2
D7 0.6 0.6 0.6 0.5 0.5 0.5

MTC D2 0.5 0.5 0.6 0.5 0.5 0.6
D3 0.4 0.3 0.4 0.3 0.3 0.4
D4 0.1 0.0 0.1 0.1 0.1 0.1
D5 0.2 0.1 0.2 0.3 0.2 0.3
D6 0.1 0.1 0.2 0.2 0.2 0.2
D7 0.6 0.6 0.7 0.7 0.6 0.7

Cost3 SO D2 0.4 0.3 0.4 0.3 0.3 0.3
D3 0.3 0.2 0.3 0.2 0.2 0.3
D4 0.0 0.1 0.1 0.0 0.0 0.1
D5 0.2 0.1 0.2 0.2 0.2 0.2
D6 0.1 0.1 0.2 0.2 0.1 0.2
D7 0.6 0.6 0.6 0.5 0.4 0.5

MTC D2 0.5 0.4 0.6 0.5 0.4 0.6
D3 0.4 0.3 0.4 0.3 0.3 0.4
D4 0.1 0.0 0.1 0.1 0.1 0.1
D5 0.2 0.1 0.2 0.2 0.2 0.3
D6 0.1 0.1 0.2 0.2 0.1 0.2
D7 0.6 0.6 0.7 0.6 0.6 0.7

Cost4 SO D2 0.3 0.2 0.3 0.3 0.2 0.3
D3 0.2 0.2 0.2 0.2 0.2 0.2
D4 0.0 0.0 0.1 0.1 0.0 0.1
D5 0.1 0.1 0.2 0.2 0.2 0.2
D6 0.1 0.1 0.1 0.1 0.1 0.2
D7 0.5 0.5 0.5 0.4 0.4 0.4

MTC D2 0.5 0.4 0.5 0.5 0.4 0.5
D3 0.3 0.3 0.4 0.3 0.3 0.3
D4 0.1 0.0 0.1 0.2 0.1 0.2
D5 0.1 0.1 0.2 0.2 0.2 0.2
D6 0.1 0.1 0.1 0.2 0.2 0.2
D7 0.6 0.6 0.6 0.6 0.5 0.7
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