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Fast HOG based Person Detection devoted to a Mobile Robot with a
Spherical Camera

A. A. Mekonnen, C. Briand, F. Leraslé, A. Herbulot

Abstract—In this paper, we present a fast Histogram of prevalent types of omnidirectional cameras: dioptric, atgn
Oriented Gradients (HOG) based person detector. The detector ide ang|e coverage via combination of Shaped lenses;
adopts a cascade of rejectors framework by selecting discrimi- catadioptric, those that combine a classical camera with a

nant features via a new proposed feature selection framework . . . . . . .
based on Binary Integer Programming. The mathematical shaped mirror; and polydioptric, the kind which use muéipl

programming explicitly formulates an optimization problem to ~ cameras—with overlapping fields of view—oriented in vasiou
select discriminant features taking detection performance and directions. Both dioptric and catadioptric cameras suffen

computation time into account. The learning of the cascade pronounced geometric distortions, significantly non-omif
classifier and its detection capability are validated using a resolutions, and high sensitivity to illumination changes

proprietary dataset acquired using the Ladybug2 spherical - . . .
camera and the public INRIA person detection dataset. The the other hand, polydioptric cameras provide real omni-

final detector achieves a comparable detection performance as directional view without pronounced geometric, resolatio
Dalal and Triggs [2] detector while achieving on average more and/or illumination artifacts. But, as a result of their ragak

than 2.5x - 8x speed up depending on the training dataset. they result in a high resolution image that demands high
. INTRODUCTION computational resources for processing. Thdybug2 is one

For decades it has been demonstrated that the autonomy” Fh Kind of camera manufactgred by I.qut Qrey Inc [11].
an autonomous mobile robot highly depends on its environ- € Ladybug? (fig. _1a) ISa spherical omn|d|rept|onal camera
ment perception capabilities. For example, if one conside??/s\:,em;?:ttﬁgg;ggsOsflxthC:r;:ﬁIriS rr:; ?sntEegC'; z:fnhe;\'ﬁysto
autonomous robot navigation, the success depends on ifie ¢ P )

robot’s ability to perceive its surrounding well and its lapi a maximum resolu_tlon oﬁQ24x768 p|>_<els resultmg n a
to distinguish obstacles from free paths. With such comside‘%oox1750 pixels stitched high resolution panoramic image

ation, an omnidirectional camera is the quintessentiad@en g:)go) %r?t)ér;r;cee fﬁ;?irli)\/s\}és;ﬁzamﬁ agt gﬁiﬂ%ﬁﬁ?ﬁ:ﬁ:ﬁeﬁre
An omnidirectional camera usually provide8@)° Field Of 9 P

View (FOV) in the horizontal direction and sometimes ever rovided by the manufacturer [11].

cover more thari20° in the vertical plane, pretty much the In_ this work, we are interested in developmg a person_de-
tection system to detect people around a mobile robot using a

essential surrounding. As a consequence, they are gaini . .
g g y 9 I'jgdybugz camera. As stated previously, this camera does not

much appreciation and use in robotic applications, inclgdi " A .
but not limited to: robot localization, mapping, ground otb suffer from_ t_he severe geometrlc/|I.IL.Jm|nat|on artifacéstae
other omnidirectional camera families. Clearly, the pesee

navigation, etc., [15]. One such application is detectién 0|n ower stipulated by the high resolution images is a major
people in the vicinity of a mobile robot be it for active 9p P y 9 9 J

interaction or social considerations during navigation ir!1O ottleneck that makes classical person detection appesach

crowded environments. With a complete horizontal FOV, thmfea:smle. Any application that intends to use these camer

oo = ppriseof ay sty i s complete surogs 23 0 A4° o conaderaton,n i paper ve prepoe
which allows it to be better reactive and considerate [9].[2 P P y

only tries to optimize over detection performance, but also
optimizes over computation time required by the detector.
We build upon the original Histogram of Oriented Gradients
(HOG) features proposed by Dalal and Triggs [2], features
that have proven useful for almost a decade and are still
used by some of the state-of-the-art person detectors [3]
: though at the expense of CPU resources. We formulate
@ (b) _ a feature selection problem optimized via Binary Integer
Fig. 1: Ladybug2 camera and a stitched, and unwrapped image. Programming BIP) [13] taking detection performance and
computation time into consideration to implement a person
Contrary to their amenities, omnidirectional cameras argetector that has comparable detection performance to the
not trivial to use. The actual technique used to cover WidSriginaI detector proposed by Dalal and Triggs and yet on
FOV governs the added difficulty. Currently, there are threg\,erage is more thahitimes faster on theadybug2 images.
e This paper is organized as follows: section Il discusses
NRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulousendera . . .
Univ_de Toulouse, UPS, LAAS, F-31400 Toulouse, France Emai€lated works briefly, section Il presents the overview of
{aamekonn, cyril.briand, frederic.lerasle, ariane.hety@laas.fr our framework followed by feature pools and details of our




improved classifier learning in sections IV and V respec€PU resources it is impossible to directly ud®G based
tively. Experiments and results are presented in section \etectors. One has to resort to cheap features at the cost
and finally, the paper concludes with concluding remarks iof reduced detection performance or their fusion with other
section VII. sensors, foreg. with Laser Range Finders (LRFs) [22].
Another possibility could be to constrain the region of
interest within the images using hypothesis generated from
To date, various perspective camera based person detectottser fast modesg.g. from LRF [10].
have been proposed (see comprehensive surveys in [3], [7])In this work we present a person detector with a cascade
When considering a camera on a moving vehicle, as in @nfiguration similar to Viola and Jones [17]. Each node of
mobile robot, the detector has to rely on information pethe cascade considers the origitBDG features tweaked to
frame and can not rely on stationary or slowly changinde suited for feature selection (discussed in section I\, B
background assumptions/models. In this vein, the first majdor actual feature selection, and AdaBoost for feature titeig
successful breakthrough was the work of Dalal and Triggs [2hg and classification. Contrary to most feature selection
which introduced and usddOG features with a lineasVM  techniques that rely on boosting techniques where impbrtan
classifier. To dateHOG is the most discriminative feature features are selected taking the error rate into considaerat
and no other single feature has been able to supersede it [8k use BIP to select discriminant features that have thé leas
It has also been successfully used for person detection in @mbined computation time and yet fulfill the False Positive
(RGB + D) data [14]. Rate (FPR) and True Positive Rate (TPR) requirements of
The main downside oHOG based detectors is the assothe node. To the best of our knowledge this is new in the
ciated computation time. These features are extracted fitgerature. This paper claims three main contributions:
by computing the gradient, then by constructing a histogram 1) We develop and present a mathematical formulation
weighted by the gradient in an atomic region called a cell. ~ pased on BIP for feature selection taking both compu-
Histograms of neighboring cells are grouped into a single  tation time and detection performance into considera-
block, cross-normalized and concatenated to give a feature tjon.

vector per block. The final extracted feature within a given 2) We present imp|ementati0n details of a detector based
detection window is the concatenation of the feature vector on the above formulation.

of constituent blocks (in one instance this amounted to a 3) We present a thorough and comparative evaluation of

Il. RELATED WORKS

3780 dimensional vector in [2]). For an arbitrary given image the proposed detector with Dalal and Trigg®G de-
frame, person detection proceeds by testing all possible  tector on a proprietary dataset collected wititlybug?2
locations (position and scale), a.k.a sliding window appto camera and on the INRIA public person dataset.

with this high dimensional vector which indeed reduceg,,qp though this work is presented with emphasis on a
the speed significantly. To improve this, Zie al. [21], gpherical camera, it is equivalently applicable to imagesf

reformulated the problem as a feature selection procedufg,ssical cameras as demonstrated with validation on acgpubl
over HOG block size using AdaBoost in an attentional y5¢aset.

cascade structure. The cascade structure, pioneered lay Vio
and Jones [17], spreads the detection process into various [Il. FRAMEWORK OVERVIEW
nodes that reject a majority of negative windows, allowing
only positive windows to progress through the entire cascad ( -
This speeds up detection drastically. Another alternative
is to parallelize the detection process over multiple pro-

=
cessors [12], but, this necessitates the use of specialized ! - _r
=

~

Image
Stitching

Graphical Processing Unit (GPU).

Some works have managed to go beyond Dalal and Triggs
detector. But, they had to either combiH®G with multiple
other featuresgg. with Local Binary Patterns [18], with
edgelets and covariance descriptors [20]) or consider & par

based approacheg. [6]). Combining HOG with other fea- M

Sliding Window ‘
Candidate Genration
]

Attentional Cascade Configuration

Ladybug2 Camera System ‘

tures has showed advantages over detection performance a:
well as speed. Part based approaches, on the other hand, tr

\ 1! E:
to infer the presence of different parts of a person’s bodl an ‘\ % ) % /‘
aggregate the confidence to detect a person. Comparatively, f F
these kind of approaches lead to improved results primarily Fig. 2: On-line detector framework.
because they can handle multiple poses and partial occlu-
sions. But consequentially, they incur increased computat  In this work, we adopt the attentional cascade detector
time. configuration pioneered by Viola and Jones [16]. Each node

When dealing with panoramic images from omnidirectejects negative windows and passes along potential positi
tional cameras in autonomous robots with limited embeddesindows onto the next stage. Only those classified as true




detection by all nodes are considered as true targets. Thigll-known that BIP isNP-hard in the strong sense but,
structure has gained wide acceptance and has even bégpractice, branch-and-cut techniques are able to solge hu
applied in recent part-based approaches [5]. binary integer program very fastly [13], [19]. Finally, diste

Fig. 2 depicts the final detector applied on live imagéidaBoost takes the features selected by the BIP module and
streams. The different images from thadybug2 cameras builds a strong classifier by weighting and combining them.
are first projected onto a spherical calibrated mesh [118yTh
are then blended along their overlapping fields of view to
form a stitched sphere. This sphere is finally unwrapped Description: As it has been mentioned,
to form a panoramic view. Candidate windows are theno other single feature has been able to
generated via a sliding window approach and fed to theuperseddlOG feature [3]. Hence, nat-
attentional cascade classifier. At each stage of the cascadally, we have resorted to use #HOG
k, k € {1,2,..., K}, a significant proportion of the negative features are extracted first by computing
samples are rejected and only those that make it till the eride gradient, then by constructing a his-
are considered as true detections. togram weighted by the gradient in an

A key issue in cascaded detector configuration is howtomic region called a cell. Histograms of
to select which features to use in each node. Classicallygighboring cells are grouped into a single™ |
many authors have resorted to AdaBoost, one variant of tidock, cross-normalized and concatenategtiy. 4: Feature
boosted classifiers family, for feature selection and cembio give a feature vector per block. The finalparameterized by
nation e.g. [16], [21]. But, this approach, which is quite extracted feature within a given detection(®:¥:w:h)-
suitable when dealing with homogeneous features with theindow is the concatenation of the vectors from each feature
same computational time, selects features solely based llock (for a detailed explanation please refer to [2]).
their detection performance. When considering featurels wit In this work, we use the originaHOG features pro-
varying computation time, it is wise to take this factor intoposed by Dalal and Triggs [2] along with their widely
consideration. To address this, we propose a novel featupeeferred/used computationge. a cell size of8x8 pixels,
selection and classifier learning scheme illustrated inJig. a feature block size o2x2 cells and ar8 pixel horizontal
and detailed in section V. and vertical stride. For a giveéx128 image window, this

results in arx15 feature block layout (each feature block is

IV. FEATURE PooL

x.y)

Positive Samples

( ] ( 1 [ ] a 36 dimensional vector). Now to get a pool of features, lets
v ﬁ e e oo o | Pl reature oo ection introduce an operatd? that takes a starting locatiom,{),
lE AN J

__________ N ol e e width (w), and height£), and concatenates all feature blocks
1 Fisher LDA ( e \ within this region. Hence, for a specific input, the operator
. (Projection Vectors, . strono ;
4 . Pareto-Front Discrete Q(x,y,w, h) returns a concatenated feature which makes one
Negative Samples omputation| - Computation AdaBoost Classifier . R .
J U J component of our feature pool (fig. 4). Using all possible

values ofz,y,w, and h in a given image region made of
Fig. 3: Proposed feature selection and classifier learning scheme. HOG feature blocks furnishes the considered feature pool,
F, represented as a set in eq. 1. With #xé5 feature block
Given positive and negative training samples, Fishersonsidered in the work, this results in a totallgb2 features
Linear Discriminant Analysis (Fisher LDA) is used to obtainthat make up our feature pool.
a projection hyperplane that would maximize the interslas
1?ca;tter .w?rillefmi{]imizingl (tg.e intra—((j:I.ass stgatttla\?) thrme.achf = {Qz,y,w,h) 0< 2 < T7,0<y< 15
eature in the feature pool (discussed in section IV) a datis
tree is learned which results in a specific TPR and FPR on I<w<(T-a)l<h<(5- y)}l
a validation set. Next, taking these two criteria as well as (1)
computation time, Pareto-Front analysis [1] is used tocedu In summary, in the works of Dalal and Triggs, all resulting
the number of features considered. This step is employed feature blocks extracted from tlidx128 image window are
decrease the number of features to a size manageable by thacatenated, giving a single high dimensional vectoh-wit
BIP module. Using this reduced feature set, an optimizatioexactly 7x15x36 dimensions—as a final feature. Whereas, in
problem is formulated via BIP to select relevant featureb wi our case, we end up with a pool of features with dimensions
the smallest computation time, that fulfill the TPR and FPRanging from36 (smallest) to7x15x36 (highest).
requirements of the node. Computation Time: The features in our feature pool are
BIP is a special case of integer programming wheref varying dimensions. Incidentally, the associated tiadenh
decision variables are required to be 0 or 1 (rather thao extract them varies. Since the smallest building unit is a
arbitrary integers). It aims at minimizing a given linearsingleHOG feature block, determining the computation time
objective functionf = c.z subject to the constraints that of each feature obtained using the above defiteaperator
A.x > b, wherex represents the vector of 0-1 variablesis straight forward. Each feature obtained usfagontains
(to be determined)¢ and b are known coefficient vectors, an integral multiple of individuaHOG blocks. If it takesr
A is a matrix of coefficients (called constraint matrix). It ismilliseconds to compute the feature vector of a single hlock



then it takesn.r milliseconds for a feature made up of

blocks using thé) operator. With this, the computations time%
for the different features in the pool varies from the snsdlle
7, to the highest105.7 milliseconds. :

Computati Tifne (msec)

mput

So

V. CLASSIFIERLEARNING WITH COMPUTATION TIME
CONSIDERATION

In the adopted cascade configuration, each node of tigy. 5: Exemplary extracted Pareto Front. Each of 17@2 features are
cascade is influenced by the implementation choice of wealetted as a blue dot using their TPR, FPR, andvalues. The extracted
learners, the weak classifiers that are trained on eacinetistj d°minant features (that make the Pareto Front) are shown edttriangular

. . markers. The plot is shown iBD as well as projecte@D plots to aid
feature of the feature pool; feature selection algorithmat t yisyalization.
chooses a subset of the features taking selected perfoemanc
criteria into consideration; feature weighting and conrin
algorithm; and data mining techniques that try to robustifyhe optimization problem to select pertinent features that
the classification performance of each node. satisfy both the node TPR and FPR requirements with the

minimum possible computation time is detailed subsequentl

A. Weak Learners The parameters of the proposed BIP are:

These are each of the weak classifiers that are trained 0§ N ¢ 7: number of training images/samples;
each distinct feature of the feature pogl, Each unique o 27 c 7: number of weak learners considerée,|/ *|;
weak classifier is associated with and trained on a uniqug . ¢ {~1,1}: y; = 1 for positive samples, elsg = —1
single feature. Recall that, we have chosen to use Fisher (pegative samples);

LDA to determine a projection hyperplane to project the o hi; € {0,1}: hy; = 1 if weak learnerj detects sample
multi-dimensional feature vectors to obtain a scalar value ; o pe positive, elsé; ; = 0;

Then, a decision tree is learned (equivalent to having plelti 7pp < [0,1]; minimum true positive rate required at
thresholds), per feature, to provide a binary classificatio  the considered node of the cascade:

output. Fisher LDA is preferred over complex classifierelik o rpp c [0, 1]: maximum false positive rate at the node;
an SVM because of its comparatively short training duration 7; € R: computation time of weak learngr

Given the large amount of features in the considered featureDecision Variables: The BIP decision variables are the
pool, employing SVM would lead to an overwhelming train'following.

ing period. In addition, Fisher LDA leads to a weak learner
that is easy to integrate with boosting methods. Once a wealk
learner is trained on a given training set, it is characéetiz

by three performance indicator parameters: its True Resiti
Rate (TPR), False Positive Rate (FPR) and computation time
(15; 7 €{0,1,...,1791}). Fisher LDA is implemented using
the alglib C++ mathematical librafy

08 R .

06 . 3 o ais .

0 04 PR 04 05 06 07 08 09 10 01 0z 03 04 05 05
FPR

u; € {0,1}: u; = 1 if weak learnerj is selected, else
u; = 0;

t; € {0,1}: t; = 1 if a positive samplei has been
detected as positive (true positive) by at least one
selected weak learner, elgse= 0;

fi € {0,1}: f; = 1 if a negative sampleé has been
detected as positive (false positive) by at least one
B. Pareto Front Analysis selected classifier, elsg = 0.

Recall that the total number of weak learners or featurd® total, there arg2N + M) binary variables in the BIP,

considered is1792. As it will come evident in section Wwhich is quite compact. _
V-C this amount of features is too much for a tractable Objective Function and Constraints:

optimization. Henc_e, the number of featu_re_must be pre- | in Zjﬂil T, (1)
reduced. To do this, Pareto Front Analysis is used to ex- st t < ZM JESTY S Vi (2)
tract the dominant features—based on their TPR, FPR, and™ ' = 1_351 2 I U

computation time. A simple algorithm outlined in [1] is fij% 2 hwug[ . V(i 9) (3)
used to select the dominant features that maximize TPR, St > (L, HH)TPR (4)
and minimize both FPR and computation time. Fig. 5 shows Zi-vﬂ fi < (N — vazl %)FPR (5)
an exemplary instance of extracted front amongst the whole uj, t;, fi € {0,1} V(i,7) (6)

depicted feature pool. The exact number of features exiact
depends on their properties (TPR, FPR, ang but in our
experiments the retained features never exceeded

The objective function(1) aims at minimizing the com-
putation time. Constraints (2)-(5) express that a givee rat
of detection quality has to be reached (depending on the
C. Binary Integer Programming number of true and false positives). Constraints (2) link

The BIP based feature selection makes the core of tHd ti variables so that; = 0 if image i has not been
work's contribution. Provided the BIP is handed a few!'e!l"Técognized.Constraints (3) link; and f; variables so

number of weak learners or featurgs, such thay * c ;, thatfi = 1 if a negative imagei has been recognized as
positive by at least one selected classifier. Constraint (4)

1ALGLIB Project — http://www.alglib.net/ expresses that the ratEPR of true positives, obtained



with the selected classifiers, has to be reached. Similarlyindows, it is safe to assume only,,*FPR windows will
constraint (5) expresses that the rat® R of false positives, pass onto the next stage. With this, if the total computation
obtained with the selected classifiers, must not be exceedeidhe taken by nodé to evaluate a single candidate window is
The total number of constraints {(8V(M + 1) 4+ 2), which  represented by}, the total computation time for a cascade
could be huge for largeV and M values. This optimization with K nodes,(x, is: (x = Y. r—1 N, (FPR*=1.¢;. If
formulation is implemented using the Gurobi c++ library.[8] we represent the time taken by Dalal and Triggs HOG to
. evaluate a single window to hg;o¢, the average speed up
D. Discrete AdaBoost with respect to Dalal and Triggs detector would be given by
Once the BIP furnishes a set of weak learners/features thaj. 2.
fulfill the requirements set forth on the respective cascade Average Speed Up: ——- )
node, the selected features are weighted and combined to r—1 (FPRG=D s G

obtain a strong classifier per nod_e using AdaBoost. In. this But, recall that¢yo and ¢, are both integral multiples
work, our implementation of the discrete AdaBoost of Violaof 7, the time taken to evaluate a single HOG feature block.
and Jones [16] has been used because of its ease and gpRE simplifies the computation further and it becomes @rati

strong classifier construction behavior. Evidently, anyeot of number of constituent HOG feature blocks weighted by
boosting framework that can accommodate a binary wegKke cumulative EPR in the denominator.

learner could be used.

Croa

B. Dataset

Experiments are carried out using two different sets of
The complete cascade structure of the final detector iatasets. The first one is the public INRIA person detection
built at the end of the training process. The training precesiataset [2]. The training set for this dataset consists 4624
involved is trivial. It relies on a labeled positive and neéga  cropped positive instances and 1218 images free of persons
sets first to learn the set of relevant features and then {gut of which many negative train/test cropped windows
use these features to train the AdaBoost classifier in eagBuld be generated). The test set contains 1132 positive
node of the cascade. To include vast number of negatiVestances and 453 person free images for testing purposes.
training samples, the mining technique presented by Violghis is the most widely used dataset for person detector

and Jones [17] is adopted. First, the node is constructedlidation and comparative performance analysis.
using a provided positive and negative samples. Once this
kil

is done, the trained nodes of the cascade (up to the curr
node) are subjected to a lot of negative samples (in hundre
of thousands). The mislabeled negative samples are kept
training consequent nodes of the cascade and the proce .
(NS

continues until a tractable amount of negative samples ha

been tested. Fig. 6: sample positive (the first four) and negative (the last fonmrages
taken from theLadybug2 dataset

E. Cascade Construction

VI. EXPERIMENTS AND RESULTS

A. Evaluation metrics The second dataset is our proprietary dataset acquired

To evaluate the detection performance, we have chosen4gingLadybug2 camera mounted on a mobile robot (referred
use the Pascal Visual Object Classification (VOC) evaluatic?S -adybug Dataset hencefdifhit contains 1990 positive
metrics [4] as it is the well established and commonly useg?MPles annotated by hand. It also contains 50 person free
metrics in object detection/classification tasks. The waval full resolution images acquired from our robotic and other
tion involves a Precision-Recall curve and a single scaldP0ms in the laboratory. Some 10000 negative windows
quantity called Average Precision (AP), which is basically® randomly sampled from these images. Sample cropped

the area under the Precision-Recall curve. To determirgethePOSitive and negative instances are shown in fig. 6. The test
values the True Positives, False Positive, True Negativé, aS€t contains 1000 manually cropped positive samples and 30

False Negatives of the test set are determined via a p&erson free images.
window approach [3]. The per-window approach relies o Regults

cropped labeled positive and negative train and test se&t. Th

L . : Validation: In this framework the parameters that need to
training is performed using these cropped images and the -
test likewise (please refer [3] for details). be specified are per node TPR and FPR and the depth of the

Computation time taken by the cascaded detector—relatifi§cision tree to use. Another factor is the Fisher LDA weight

to Dalal and Triggs detector—is another parameter takeq%)mputatlon. The Fisher LDA weights could be computed

into account. Since number of person containing candidafd'¢¢ Using a subset of the training set and then the same

windows are relatively very small compared to the number Ovy(talght?_ W”.I bte lése?h n al! t:te cascatd? nodes. .Ihe" other
total candidate windows generated from person free Zoneag’erna Ve 15 1o do the weight computation specilically on
the total number of windows tested by cascade is highly 2pjease visit http: // homepages. | aas. fr/ aamekonn/ i r os_
influenced by the FPR. This means, if there Aig candidate 2013/ for more illustrations



each node. To validate all this, the Ladybug Dataset trginin D e e R T
set is divided into #0% training and40% validation set and 08 ‘
various train-validation cycles are performed to detestire '
effect of each parameter. c o6

First, it is observed that computing Fisher LDA weights 2
per each node makes the classifier overfit on the training §04,. '|-o-Cascade FPR =0.40, AP 0.9956 %
set leading to a very deteriorated performance on the val ' *gzzszgi Eiizg-zg' ’;E 822? m
idation sgt. Hence, Fisher LDA is computed once, and the 0al | Dalal and Triggs Hoé, AP 0.9987 A
same weights are used throughout the cascade constructic ' ¢
Second, using a decision tree of depth2o8howed better [ 7
performance on the validation se1.16% higher than the Fes 0.9 092 094 096  0.98 1

.. Recall
next best) as can be seen from the precision-recall Curﬁg. 8: Comparative Precision-Recall curve for selected cascatitoe

in fig. 7. Third, varying the FPR showed little variation inand Dalal and Triggs detector on the Ladybug Dataset.
AP but slightly better & 0.1% higher) results are obtained
when using an FPR @f.4 and0.6 during training. Evidently,

higher FPR paves way to more number of cascade nodes but
doe,s nnt nececcAarv rearllt in mnre comniitation time,

1 B
0.8]
co6 . Y @ (b) () (d)
kel .
g <o Tree Depth 1, AP 0.9838 R i Fig. 9: lllustration of Selected HOG features of the firstrfou
£ o4 -a-Tree Depth 2, AP 0.9858 ERE R cascade nodes using FPR ®f and decision tree depth of
T TreeDepth 3, APOSBAZ |t 2. Clearly, the features become more computationally time
-4-Tree Depth 5, AP 0.9571 O S NG\ : s P y
0.2 Tree Depth 10, AP 0.8683 T consuming as one progresses down the nodes of the cascade.
->-Tree Depth 15, AP 0.8520
8.8 0.;35 019 0.55 1

Fig. 7: Precision-Recall cur\F/zeeCfe(l)"r various tree classifier depths. public datase_t and _eventually compare its performance with
Dalal and Triggs given the dataset has a lot of intra-class
Ladybug Dataset: Three different cascade classifiers arédnd inter-class variation. Again with this dataset, a denis
learned using FPR df 4, 0.5, and0.6 but with fixed decision tree depth of2 is used. Three different cascade structures
tree depth of2. The results obtained are summarized irfé leamed using an FPR of5, 0.6, and 0.7. Table I

table I. summarizes the results obtained.
TABLE [|: Comparative summary of learned cascade classifiers ohABLE Il: Comparative summary of learned cascade classifiers on
Ladybug Dataset with varying FPR and Dalal and Triggs detect INRIA Dataset with varying FPR and Dalal and Triggs detector
Method K (No. of Cas- Average Speed Up Average Method K (No. of Cas- Average Speed Up Average
cade Nodes) over [2] Precision cade Nodes) over [2] Precision
Cascade with FPR = 0.4 6 8.72x 0.9956 Cascade with FPR = 0.5 8 2.46 0.9066
Cascade with FPR =05 9 9.22x 0.9951 Cascade with FPR = 0.6 11 2.98 0.9133
Cascade with FPR = 0.6 11 9.68x 0.9927 Cascade with FPR = 0.7 13 4.01 0.9198
Dalal and Triggs [2] - 1.0x 0.9987 Dalal and Triggs [2] - 1.0x 0.9826

As can be clearly seen from the table, with a less than
0.5% detection performance loss (AP loss), our cascade

detector resulted in an 8.72x speed up on Dalal’'s detectbr an e %Q: ““

with a less than % loss resulted in a 9.68x speed up. Dalal 08 _— - , Wb

and Triggs detector performance is obtained by training the . . ‘ o)
open-sourced detector with the Ladybug dataset training 506 ‘;
data. Fig. 8 show the precision-recall curve corresponding 8 ! _— — : 2 [
to the runs in table I. The features selected in the first four & 04 °§Z§§Z§Z T e | %
nodes of the cascade structure obtained using an FRRL of 0.2l-| = Cascade FPR —07 AP00188 ’gn
are shown in fig. 9 superimposed on an average gradient -+-Dalal and Triggs HOG, AP 0.9826| %
image of the positive data. o 0s Y — 3

INRIA Person Dataset: Tests on this dataset are carried . Recall

. ig. 10: Comparative Precision-Recall curve on INRIA person dataset
out to see the performance of our cascaded classifier on aE .
ven on the challenging INRIA dataset, our cascaded
3available hereht t p: / / pascal . inrial pes.fr/soft/olt/ detector resulted in dx speed up with a less tham, AP
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loss with a node FPR of 0.7. The corresponding Precision-
Recall plot is shown in fig. 10.

D. Comments

The results obtained from both datasets show there is
an average speed up by using out cascade framework i[ri]
all cases. Of course, for difficult dataset, more features ar
required to attain the fixated detection performance. Tis i
turn decreases the overall all speed gain as shown by tH@
results from the INRIA dataset. This detector is ported on
a B21R mobile robot called Rackham with an onboarded3]
Ladybug2 camera, the detector detects people running at
a little less than 2 fps on a PIlIl 850 MHz BCFig. 11 [4]
shows sample detection orLadybug2 image. The results are
shown as they are without any post-processing (grouping o[f5]
overlapping detection). The learning/training phase isied

(6]

(7]

Fig. 11: Sample person detection on thadybug2 image.

(8]
[9]
out on a core i7 PC with an 8 GB of RAM. The two
major time consuming parts are the Fisher LDA weight
computation at the beginning and the BIP optimizatio0]
(specially when huge data is considered). But, no cascade
configuration that confirms to the current adopted scheme
exceeded a 24h training period. [11]
VII. CONCLUSIONS ANDPERSPECTIVES (12]

In conclusion, a person detection framework that makes
use of the proven discriminant HOG features in a casca
configuration has been presented. A new feature selection
technique based on mathematical programming has be@fl
devised to select features with good detection performance
and less computation time. The complete final learnings]
system has been validated on a proprietary dataset acquii?é:j
using Ladybug2 camera, a sensor which is interesting bu
surprisingly marginally used in the robotics community—
perhaps due to the time consumption with the associated higf!
resolution images. The methodology is also quite suitadle f ;g
conventional cameras (see our evaluation on public dataset
The final results show comparable detection performan
to that of Dalal and Triggs detector while speeding up th
detection by more thafx on thelLadybug2 images.

In the near future, we will use this detector in a tracking2°!
by-detection framework to track all passers-by in the robot
surrounding when navigating in crowds. The tracking infor-
mation will then be used to realize a socially acceptabl&!!
human aware navigation via control law based on visual
servoing techniques.

e
T0]

[22]

4Please seehttp://honepages. | aas. fr/aanekonn/iros_
2013/ for a video of the live run on the robot.

0003.
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