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Abstract

The Weibull-tail class of distributions is a sub-class of the Gumbel extreme domain of attraction, and it
has caught the attention of a number of researchers in the last decade, particularly concerning the estimation
of the so-called Weibull-tail coefficient. In this paper, we propose an estimator of this Weibull-tail coefficient
when the Weibull-tail distribution of interest is censored from the right by another Weibull-tail distribution:
to the best of our knowledge, this is the first one proposed in this context. A corresponding estimator
of extreme quantiles is also proposed. In both mild censoring and heavy censoring (in the tail) settings,
asymptotic normality of these estimators is proved, and their finite sample behavior is presented via some
simulations.
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1. Introduction

In recent years, the problem of studying extreme events and estimating extreme quantiles for randomly
censored data has caught the attention of a growing number of researchers, due to the numerous applications
which call for concrete solutions. Examples of such domains of application are non-life insurance, survival
analysis, system or ”material” reliability... Beirlant et al. (2007) and Einmahl et al. (2008) presented a
general method for adapting estimators of the extreme value index in this censorship framework. Worms
and Worms (2014), Beirlant et al. (2019) and Worms and Worms (2015) proposed a more survival analysis-
oriented approach, the two first being restricted to the heavy tail case. Ndao et al. (2014), Ndao et al. (2016)
and Stupfler (2016) extended the framework to data with covariate information. Beirlant et al. (2016)
and Beirlant et al. (2018) proposed bias-reduced versions of two existing estimators. See also Brahimi
et al. (2015), Brahimi et al. (2016) and Brahimi et al. (2018) for other papers on the subject.

However, a number of these works assume that the observed data come from heavy-tailed distributions
(for both the sample of interest and the censoring sample), while many applications for which extreme events
need to be studied do not exhibit a heavy-tail behavior, particularly in the survival analysis domain, where
the censored data are lifetimes of patients or of animals, or time-to-failure of systems or items. For example,
in Gomes and Neves (2011), the authors show that some larynx cancer or leucomia datasets do not exhibit
a heavy right-tail.

We consider in this paper the Weibull-tail framework, where both the censored and censoring distributions
have exponentially decreasing survival functions, driven by a coefficient defined a few lines below and called
the Weibull-tail coefficient. This sub-class of the Gumbel max-domain of attraction has been the topic of
a fair amount of papers in the extreme value analysis literature (Beirlant et al. (1995), Girard (2004,a),
Gardes and Girard (2005), Diebolt et al. (2008), Goegebeur et al. (2010), to name just a few). But, to the
best of our knowledge, all of them took place in the complete data setup. The present paper seems to be
the first to propose an estimator of the Weibull-tail coefficient adapted to random censoring. As a corollary,
a new estimator of extreme quantiles for light-tailed data will be studied.

Let us now detail the exact framework of this paper. We consider the observation of a sample of n
independent couples pZi, δiq1ďiďn where

Zi “ minpXi, Ciq and δi “ IXiďCi . (1)

In this definition, the i.i.d. samples pXiqiďn and pCiqiďn, of respective continuous distribution functions
F and G, are samples from the variable of interest X and of the censoring variable C, measured on n
individual items (insurance claims, hospitalized patients, ...), but for each item or individual, only one of the
two measurements (the lowest one) is observed. The variables X and C are supposed to be independent and
we will suppose in this work that they are non-negative. We will denote by Z1,n ď . . . ď Zi,n ď . . . ď Zn,n
the order statistics associated to the observed sample, and by pδ1,n, . . . , δn,nq the corresponding indicators
of non-censorship.

The goal is to investigate the right-tail of F , and the main assumption of this paper is that, in the
relations

F̄ pxq “ 1´ F pxq “ expp´ΛF pxqq and Ḡpyq “ 1´Gpyq “ expp´ΛGpyqq, (2)

the cumulative hazard functions ΛF and ΛG are semi-parametrically modeled by the relations

ΛF pxq “ x1{θX lF pxq and ΛGpyq “ y1{θC lGpyq, (3)

for some positive parameters θX and θC and slowly varying functions (at `8) lF and lG. This setup is the
one where F and G are said to be Weibull-tailed, and θX and θC are the so-called Weibull-tail coefficients
of F and G.

Our aim is to estimate the coefficient θX using the observed sample pZiqiďn and the observed non-
censoring indicators pδiqiďn. Noting H the cumulative distribution function of the observable Z, and sHpxq “
1´Hpxq “ PpZ ą xq, by independence of the samples X and C we have sHpxq “ sF pxq sGpxq “ expp´ΛHpxqq,
where

ΛHpxq “ ΛF pxq ` ΛGpxq “ x1{θX lF pxq ` x
1{θC lGpxq “ x1{θZ lHpxq, where θZ “ mintθX , θCu

and lH is a slowly varying function at infinity. More details on this function (and on other slowly varying
functions) will be provided later in this paper.

The case where θX ď θC can be viewed as the case where the censoring tail is similar to, or heavier
than, the tail of the variable X of interest, i.e. the censoring is expected to be moderate in the tail (more
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details about this in a few lines). In this case, the Weibull-tail coefficient θZ of the data Z is equal to the
Weibull-tail coefficient θX we wish to estimate, and so this would suggest that trying to define an estimator
of θX adapted to censoring is a waste of time : however, as simulations show (see Section 5), not taking into
account the censoring mechanism, by estimating θX by any non-adapted-to-censoring estimator of θZ based
on the observed data Zi, can often lead to an unreliable estimate of θX . So if theory suggests that the topic
of adapting Weibull-tail estimation to random censoring sounds like a non-problem (in the mild censoring
case), it turns out to be in practice an important issue which needs to be addressed.

The case where θC ă θX is the case where the tail of the censored variable X is heavier than the tail of
the censored variable C, i.e. the censoring is expected to be strong in the tail. In this case, the Weibull-tail
coefficient θZ of the observed data is no longer equal to the one of the original sample X, it is equal to θC :
in this situation, an appropriate strategy needs to be developed, which is detailed below.

Moreover, in practice, it is difficult to know a priori the position of the Weibull-tail coefficient of X with
respect to the one of C : the definition of our estimator of θX (see below) does not presume anything about
this position (however, the rate of convergence and asymptotic variance will differ whether θX is lower than
θC or not).

It is important to note that the position of θX with respect to θC has an important impact on the amount
of censoring in the tail. As a matter of fact, Lemma 3 (in the Appendix) states that the ultimate probability
of non-censoring in the tail (limit of Ppδ “ 1|Z “ zq for z Ñ 8, denoted by p later on) turns out to be
equal to 1 when θX ă θC , to 0 when θX ą θC , and to a constant between 0 and 1 when θX “ θC . It is
however important to remember that this is an asymptotic value, and in practice, for finite sample sizes,
things are less clear-cut (the simulation Section 5 illustrates this). Moreover, other characteristics of the
underlying distributions (for instance, position or scale parameters) may have a non-negligeable impact on
the proportion of censoring, even in the tail : this delicate topic should deserve more attention in subsequent
works. In the sequel, the situation θX ď θC will nonetheless be referred to as the ”mild censoring” setting,
opposed to the ”strong censoring” setting when θC ă θX .

Let us now explain how our estimator is defined. In the non-censored case (i.e. if we could observe
the original data values X1, . . . , Xn), the usual starting point for designing estimators of the Weibull-tail
coefficient is to note that, by slow variation of the function lF defined in p3q, we have, for t large and any
x ą 1, the approximation θX logpΛF ptxq{Λptqq » logpxq. Therefore, for some value k “ kn (the number of
top order statistics used in the estimation) to be chosen, considering t “ Xn´k,n and x “ Xn´j`1,n{Xn´k,n

for every 1 ď j ď k in the above formula leads, after summation, to

θX »

řk
j“1plogpXn´j`1,nq ´ logpXn´k,nqq

řk
j“1plogpΛF pXn´j`1,nqq ´ logpΛF pXn´k,nqqq

, (4)

where X1,n, . . . , Xn,n are the order statistics. As was initiated in Beirlant et al. (1995) and developed in
Girard (2004,a), this suggests define an estimator of θX in the complete data case by

θ̂
pcompleteq
X “

řk
j“1plogpXn´j`1,nq ´ logpXn´k,nqq

řk
j“1plogplogpn{jqq ´ logplogpn{kqqq

, (5)

because log ΛF pxq “ logp´ log sF pxqq and sF evaluated at some order statistic Xn´j`1,n can be naturally
estimated by j{n. However, in the censored setup, the observed variables are the Zi, which are associ-
ated with ΛH , and not with ΛF : therefore the previous trick that led to the deterministic denominator
řk
j“1plogplogpn{jqq ´ logplogpn{kqqq cannot be used. Our proposition in the censored context is simply to

replace, in formula (4), the X’s with the observed Z’s, and to estimate the function ΛF by its Nelson-Aalen
estimator

Λ̂nF pxq “
ÿ

Zi,nďx

δi,n
n´ i` 1

. (6)

This leads to our proposition for estimating θX in the censored setup :

θ̂X,k “

řk
j“1 plogZn´j`1,n ´ logZn´k,nq

řk
j“1

´

log Λ̂nF pZn´j`1,nq ´ log Λ̂nF pZn´k,nq
¯ . (7)

In contrast with the estimator of θX in the complete data framework (and with a number of its variants),
our estimator has a random denominator, which behavior will turn out to be closely related to that of the
numerator.
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Note that our estimator can be written as the ratio

θ̂X,k “
θ̂Z,k
RLn

,

where

θ̂Z,k “

řk
j“1 plogZn´j`1,n ´ logZn´k,nq

řk
j“1plogplogpn{jqq ´ logplogpn{kqqq

and RLn “

řk
j“1

´

log Λ̂nF pZn´j`1,nq ´ log Λ̂nF pZn´k,nq
¯

řk
j“1plogplogpn{jqq ´ logplogpn{kqqq

.

(8)

The numerator θ̂Z,k estimates the Weibull-tail coefficient θZ of the observed Zi (see Theorem 1 in Girard

(2004,a)). As far as only consistency is studied, it is possible to prove consistency of θ̂X,k by proving that
the denominator RLn converges to some crucial value a “ θZ{θX , which is equal to 1 in the mild censoring
cases (θX ă θX or θX “ θC), and is lower than 1 in the strong censoring cases (θC ă θX). This is in fact
deduced from the proof of Theorem 1 and is stated later in this paper (Corollary 1). However, to establish
the asymptotic normality of our estimator, things are more complicated and we invite the interested reader
to have a look at the start of the proof of Theorem 1 in Section 3.

Anyway, it is interesting to note that, in a Weibull-tail situation, a possible correction for censoring could
be to divide an existing estimator of θZ in the complete data setup, by this statistic RLn that somehow
incorporates the censoring information of the data. This is similar to what is proposed in Beirlant et
al. (2007) and Einmahl et al. (2008) for adapting estimators of the extreme value index to the censoring
situation, namely the now well-known ”division by the proportion of non-censoring in the tail” strategy.
However, note that we do not know whether this strategy still leads to valuable estimators when applied to
other estimators of θZ than the basic estimator θ̂Z,k defined in (8).

Concerning now the estimation of extreme quantiles for Weibull-tail censored data, we propose to consider,
for any given small probability pn ă 1{n, the natural estimator of xpn “

sF´ppnq defined by

x̂pn :“ Zn´k,n

ˆ

´ log pn
Λn,F pZn´k,nq

˙θ̂X,k

. (9)

This definition comes from the application, to the values x “ xpn{Zn´k,n and t “ Zn´k,n, of the approxima-
tion x » pΛF ptxq{ΛF ptqq

θX “ p´ log sF ptxq{ΛF ptqq
θX , valid for t large and any x ą 1.

Before going into the details of our results, we indicate here that in this work it is assumed that the
slowly varying functions lF and lG, defined in p3q, both satisfy the classical second order condition SR2 :

@x ą 0,

lF ptxq
lF ptq

´ 1

bF ptq
Ñ KρF pxq, and

lGptxq
lGptq

´ 1

bGptq
Ñ KρGpxq, as tÑ `8, where Kρpxq :“

xρ ´ 1

ρ
, (10)

for some negative constants ρF and ρG, with rate functions bF and bG having constant sign at `8 and
satisfying |bF | P RVρF and |bG| P RVρG (RVρ stands for regular variation, at `8, with index ρ).

Our paper is organized as follows: in Section 2, we state the asymptotic normality result for θ̂n and
x̂pn . Section 3 and 4 is devoted to the proofs. Important lemmas and technical aspects of the proofs are
postponed to the Appendix. In Section 5, we discuss the finite sample behavior of our new estimators.

2. Results

Let us first introduce the following important quantities

a “
θZ
θX

“

"

1 if θX ď θC ,
θC{θX Ps0, 1r if θX ą θC ,

, b “
1´ a

2
and d “

θX
θC

.

Such definitions will be useful to state results in a general way, without having to discuss whether we are in
a mild or in a strong (ultimate) censoring setting.

We have seen in the introduction that the cumulative hazard function ΛH of Z is regularly varying of
order 1{θZ . Setting Λ´H for the generalized inverse of ΛH , we then have

Λ´Hpxq “ xθZ lpxq and ΛF ˝ Λ´Hpxq “ xa l̃pxq,

where l and l̃ are slowly varying at infinity. The second formula is important in our setting since, by definition
of our estimator θ̂X,k, we will have to deal with the quantities ΛF pZn´j`1,nq.
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By Lemma 2 stated in the Appendix, and in its subsequent remark, we know that under assumption
p10q, there exist positive constants cF , cG, c and c̃ such that, for x ą 0,

lF pxq “ cF p1´ x
ρF vF pxqq and lGpxq “ cGp1´ x

ρGvGpxqq,

lpxq “ cp1´ xρvpxqq and l̃pxq “ c̃p1´ xρ̃ṽpxqq,

where |vF |, |vG|, |v| and |ṽ| are slowly varying functions at infinity. Therefore, the functions l and l̃ satisfy an
SR2 condition, with negative second order parameter respectively denoted by ρ and ρ̃ (exact expressions are
provided in Lemma 2) and respective rate function B and B̃, with constant sign at `8 and their absolute
value being regularly varying with respective index ρ and ρ̃. However, for technical reasons, we need to
assume the following stronger conditions noted RlpB, ρq and Rl̃pB̃, ρ̃q, defined by :

R`pB, ρq : There exists a constant ρ ă 0 and a rate function B satisfying Bpxq Ñ 0, as x Ñ `8, such that
for all ε ą 0 and A ą 1, we have

sup
λPr1,As

ˇ

ˇ

ˇ

ˇ

`pλxq{`pxq ´ 1

BpxqKρpλq
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε, for x sufficiently large ,

with |B| being necessarily regularly varying, at `8, with index ρ.

In order to obtain the asymptotic normality of our estimator, we need the sequence pknq (number of top
order statistics to use) to satisfy the following conditions (we will note k “ kn from now on):

H1 : k Ñ `8, k{nÑ 0, log k
logn Ñ 0, as nÑ `8,

and, depending on the censoring strength in the tail, introducing the important notation Lnk “ logpn{kq,

H2 : θX ă θC and

$

&

%

piq
?
k BpLnkq Ñ α

piiq
?
k B̃pLnkq Ñ α̃

piiiq
?
k Ld´1

nk Ñ α1

H3 : θX “ θC and

"

piq Dδ ą 0,
?
k Lρ`δnk Ñ 0, where ρ “ maxpθZρF , θZρGq

piiq
?
k L´1

nk Ñ 0

H4 : θX ą θC and

$

’

’

&

’

’

%

piq
?
kL´bnk Ñ `8

piiq Dδ ą 0,
?
k L´b`ρ̃`δnk Ñ 0, where ρ̃ “ maxpθZρF , θZρG, a´ 1q

piiiq Dδ ą 0,
?
k L

´p1`bq{2`δ
nk Ñ 0

pivq
?
k L´b´ank Ñ 0

See Remark 2 below for a discussion on those conditions. Our main result is the following theorem.

Theorem 1. Let conditions p2q, p3q and p10q hold, as well as RlpB, ρq and Rl̃pB̃, ρ̃q. We assume further
that pknq satisfies conditions H1 and either H2, H3 or H4. We then have, as nÑ8,

?
kL´bnkpθ̂X,k ´ θXq

d
ÝÑ N

ˆ

m,
θ2
X

ac̃

˙

,

where

c̃ “

$

&

%

1 if θX ă θC
cF {pcF ` cGq if θX “ θC
c´aG cF if θX ą θC

and m “

$

&

%

α`
α̃θX
ρ
`
θ2
X

θC

cG
cdF
α1 if θX ă θC ,

0 if θX ě θC .

Remark 1. When θX ď θC , b is equal to 0 and thus, the rate of convergence
?
kL´bnk is the same as in the

non-censored case. It is slower when θX ą θC . The asymptotic variance θ2
X{pac̃q equals θ2

X when θX ă θC
(i.e. the same asymptotic variance as in the non-censored situation), and is larger than θ2

X when θX “ θC ;
nothing can be said in general about its position with respect to θ2

X when θX ą θC .

Remark 2. When θX ă θC , rate functions |B| and |B̃| appearing in assumptions RlpB, ρq and Rl̃pB̃, ρ̃q are
regularly varying of same order ρ “ ρ̃ “ maxpθXρF , d´ 1q (see Lemma 2 in the Appendix), therefore, either
ρ “ d´1 and thus conditions H2 piq, piiq, piiiq essentially involve the same rate condition on kn, or ρ ą d´1
and thus condition H2piq or piiq implies condition H2piiiq, with α1 “ 0.
When θX “ θC , if ρ ě ´1, then condition H3piq implies condition H3piiq, and if ρ ă ´1, the implication is
reversed. When θX ě θC , only one of the conditions H4 piiq, piiiq, pivq remains, depending on the position of
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a and ρ̃.
Moreover, conditions H2piq and H2piiq, involving the regularly varying functions B and B̃, do not appear in
the cases θX ě θC , because they are consequences of H3piq or H4piiq, with α “ α1 “ 0, necessarily.

Before stating the asymptotic normality of our extreme quantile estimator x̂pn defined in p9q, we need to
introduce the following additional conditions (as nÑ8) :

H 11 : logLnk
log logp1{pnq

Ñ 0,

H2pivq :
?
k LθXρFnk Ñ α2.

Theorem 2. Let conditions p2q, p3q and p10q hold, as well as RlpB, ρq and Rl̃pB̃, ρ̃q. We assume further
that pknq satisfies conditions H1, H 11 and either H2, H3 or H4. We then have, as nÑ8,

?
kL´bnk

log logp1{pnq
plog x̂pn ´ log xpnq

d
ÝÑ N

ˆ

m,
θ2
X

ac̃

˙

.

3. Proof of Theorem 1

Remind that

θ̂X,k “
1
k

řk
j“1 plogZn´j`1,n ´ logZn´k,nq

1
k

řk
j“1

´

log Λ̂nF pZn´j`1,nq ´ log Λ̂nF pZn´k,nq
¯ .

Introducing E1, . . . , En n independent standard exponential random variables, such that Zi “ Λ´HpEiq, we

have, since Λ´Hpxq “ xθZ lpxq and ΛF ˝ Λ´Hpxq “ xa l̃pxq with l and l̃ slowly varying at infinity,

logZn´j`1,n ´ logZn´k,n “ θZ log

ˆ

En´j`1,n

En´k,n

˙

` log

ˆ

lpEn´j`1,nq

lpEn´k,nq

˙

(11)

log ΛF pZn´j`1,nq ´ log ΛF pZn´k,nq “ a log

ˆ

En´j`1,n

En´k,n

˙

` log

˜

l̃pEn´j`1,nq

l̃pEn´k,nq

¸

, (12)

Now, let

Mn “
1

k

k
ÿ

j“1

log

ˆ

En´j`1,n

En´k,n

˙

,

and

∆n “
1

k

k
ÿ

j“1

log

˜

Λ̂nF pZn´j`1,nq

ΛF pZn´j`1,nq

ΛF pZn´k,nq

Λ̂nF pZn´k,nq

¸

. (13)

Since the denominator in the expression for θ̂X,k above equals

1

k

k
ÿ

j“1

´

log Λ̂nF pZn´j`1,nq ´ log Λ̂nF pZn´k,nq
¯

“
1

k

k
ÿ

j“1

log ΛF pZn´j`1,nq ´ log ΛF pZn´k,nq `∆n,

we obtain, using p11q, p12q and relation θX “ θZ{a,

θ̂X,k ´ θX “
θZMn `Rn,l

aMn `Rn,l̃ `∆n
´ θX

“ θX
θ´1
X Rn,l ´Rn,l̃ ´∆n

aMn `Rn,l̃ `∆n

“ ´
θX
a

∆n

´

Mn ` a
´1Rn,l̃ ` a

´1∆n

¯´1

`
Rn,l ´ θXRn,l̃

aMn `Rn,l̃ `∆n
,

where

Rn,l “
1

k

k
ÿ

j“1

log

ˆ

lpEn´j`1,nq

lpEn´k,nq

˙

and Rn,l̃ “
1

k

k
ÿ

j“1

log

˜

l̃pEn´j`1,nq

l̃pEn´k,nq

¸

. (14)
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We thus have the following representation, which shows that the behavior of the estimation error is essentially
based on the behavior of the statistic ∆n :

?
kL´bnk

´

θ̂X,k ´ θX

¯

“

ˆ

´
θX
a

˙

?
kL1´b

nk ∆nD
´1
n `

´?
kL1´b

nk Rn,l ´ θX
?
kL1´b

nk Rn,l̃

¯

paDnq
´1

where the denominator Dn “ LnkMn ` a´1LnkRn,l̃ ` a´1Lnk∆n will turn out to converge to 1. It is now
clear that the proof of Theorem 1 then follows from the combination of the following three propositions, the
first one being the most important and the longest to establish. These propositions are proved in the next
three subsections.

Proposition 1. Under the conditions of Theorem 1 we have, as n tends to infinity,

∆n
d
“

1` oPp1q

Lnk

ˆˆ

L1´a
nk

p̂k
c̃
´ a

˙

´ a
`

Ēn ´ 1
˘

˙

` oPpk
´1{2Lb´1

nk q (15)

and ?
kL1´b

nk ∆n
d
ÝÑ N

´

m∆,
a

c̃

¯

,

where Ēn “
1
k

řk
i“1Ei (sample mean of standard exponential variables), and

p̂k :“
1

k

k
ÿ

j“1

δn´j`1,n and m∆ “

$

&

%

´α̃

ˆ

1`
1

ρ

˙

´
θX
θC

cG
cdF
α1 if θX ă θC ,

0 if θX ě θC .

Please note that the exponential variables Ei appearing in the statement of Proposition 1 are not the
same as those introduced at the beginning of this Section.

Proposition 2. Under the conditions of Theorem 1 we have, as n tends to infinity,

?
kL1´b

nk Rn,l
P
ÝÑ

"

α if θX ă θC ,
0 if θX ě θC ,

and
?
kL1´b

nk Rn,l̃
P
ÝÑ

"

α̃ if θX ă θC ,
0 if θX ě θC .

Proposition 3. Under condition H1, we have LnkMn
P
ÝÑ 1, as n tends to infinity.

Remark 3. First, remind that a “ 1 and c̃ “ 1 when θX ă θC . Let us highlight that the convergence
in distribution of

?
kL1´b

nk ∆n stated in Proposition 1 comes from the confrontation between the two terms
appearing in the representation p15q of ∆n : the term in p̂k and the term involving the exponential sample
mean. The convergence in distribution of the term involving p̂k is detailed in Lemma 1 in Subsection 3.1;
this will be the leading term only when θX ą θC (in this setting, the constant b is positive and thus the
exponential term vanishes). When θX ă θC , it will only generate a possible bias, and when θX “ θC it
participates to the asymptotic normality along with the exponential term.

The following corollary is then stated, concerning the statistic RLn defined in equation (8) and discussed
thereafter. Note that this corollary certainly holds with weaker conditions.

Corollary 1. Under the conditions of Theorem 1, as nÑ8, we have RLn
P
ÝÑ a.

Its proof is short, so we will provide it here. With the same notations as in the previous page, we have
readily

RLn “

˜

1

k

k
ÿ

j“1

log logpn{jq ´ log logpn{kq

¸´1
1

Lnk
paLnkMn ` LnkRn,l ` Lnk∆nq,

where the mean inside the large brackets is equivalent to 1{Lnk (see Girard (2004,b) formula p15q, for a
proof). The proof of Corollary 1 thus follows from Propositions 1, 2 and 3.

3.1. Proof of Proposition 1

Starting from the definition of ∆n in p13q, we introduce the first remainder term R
p∆q
1,k by writing

∆n “
1

k

k
ÿ

j“1

log

˜

Λ̂nF pZn´j`1,nq

ΛF pZn´j`1,nq

ΛF pZn´k,nq

Λ̂nF pZn´k,nq

¸

“
1

k

k
ÿ

j“1

˜

Λ̂nF pZn´j`1,nq

ΛF pZn´j`1,nq

ΛF pZn´k,nq

Λ̂nF pZn´k,nq
´ 1

¸

`R
p∆q
1,k .
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Now, using the definition of Λ̂nF in p6q, we obtain

1

k

k
ÿ

j“1

´

Λ̂nF pZn´j`1,nq ´ Λ̂nF pZn´k,nq
¯

“
1

k

k
ÿ

j“1

k
ÿ

i“j

δn´j`1,n

j
“

1

k

k
ÿ

j“1

δn´j`1,n “ p̂k.

Hence, it can easily be checked that

Λ̂nF pZn´k,nq

ΛF pZn´k,nq

´

∆n ´R
p∆q
1,k

¯

“
p̂k

ΛF pZn´k,nq
´

1

k

k
ÿ

j“1

ˆ

ΛF pZn´j`1,nq

ΛF pZn´k,nq
´ 1

˙

`R
p∆q
2,k ,

where

R
p∆q
2,k “

1

ΛF pZn´k,nq

1

k

k
ÿ

j“1

´

Λ̂nF pZn´j`1,nq ´ ΛF pZn´j`1,nq

¯

ˆ

ΛF pZn´k,nq

ΛF pZn´j`1,nq
´ 1

˙

.

Since, @ 1 ď j ď k ` 1, ΛF pZn´j`1,nq “ pΛF ˝ Λ´HqpEn´j`1,nq “ Ean´j`1,n l̃pEn´j`1,nq, where l̃ is slowly
varying and tends to c̃ at infinity (cf Lemma 2, in the Appendix), then

ΛF pZn´j`1,nq

ΛF pZn´k,nq
´1 “

ˆ

En´j`1,n

En´k,n

˙a
l̃pEn´j`1,nq

l̃pEn´k,nq
´1 “

ˆˆ

En´j`1,n

En´k,n

˙a

´ 1

˙

`

ˆ

En´j`1,n

En´k,n

˙a
˜

l̃pEn´j`1,nq

l̃pEn´k,nq
´ 1

¸

,

and, introducing pẼ1, . . . , Ẽkq k independent standard exponential random variable such that, according to

Lemma 4, pEn´j`1,n ´ En´k,nq1ďjďk
d
“ pẼk,k, . . . , Ẽ1,kq, we can write

Λ̂nF pZn´k,nq

ΛF pZn´k,nq

´

∆n ´R
p∆q
1,k

¯

d
“

p̂k
c̃Ean´k,n

`R
p∆q
3,k ´

1

k

k
ÿ

j“1

˜

a
Ẽk´j`1,k

En´k,n

¸

`R
p∆q
4,k `R

p∆q
5,k `R

p∆q
2,k ,

where

R
p∆q
3,k “

p̂k
Ean´k,n

˜

1

l̃pEn´k,nq
´

1

c̃

¸

R
p∆q
4,k “ ´

1

k

k
ÿ

j“1

ˆ

En´j`1,n

En´k,n

˙a
˜

l̃pEn´j`1,nq

l̃pEn´k,nq
´ 1

¸

R
p∆q
5,k “ ´

1

k

k
ÿ

j“1

#˜˜

1`
Ẽk´j`1,k

En´k,n

¸a

´ 1

¸

´ a
Ẽk´j`1,k

En´k,n

+

.

Let us summarize :

∆n
d
“

ΛF pZn´k,nq

Λ̂nF pZn´k,nq

˜˜

p̂k
c̃Ean´k,n

´
a

En´k,n

1

k

k
ÿ

j“1

Ẽj

¸

`

5
ÿ

i“2

R
p∆q
i,k

¸

`R
p∆q
1,k .

But
p̂k

c̃Ean´k,n
´

a

En´k,n

1

k

k
ÿ

j“1

Ẽj “
1

En´k,n

ˆˆ

L1´a
nk

p̂k
c̃
´ a

˙

´ a
`

Ēn ´ 1
˘

˙

`R
p∆q
6,k ,

where Ēn “
1
k

řk
j“1Ẽj and

R
p∆q
6,k “

p̂k
c̃En´k,n

´

E1´a
n´k,n ´ L

1´a
nk

¯

.

Finally,

∆n
d
“

ΛF pZn´k,nq

Λ̂nF pZn´k,nq

˜

1

En´k,n

ˆˆ

L1´a
nk

p̂k
c̃
´ a

˙

´ a
`

Ēn ´ 1
˘

˙

`

6
ÿ

i“2

R
p∆q
i,k

¸

`R
p∆q
1,k . (16)

We shall show, in Lemma 7 in the Appendix, that
?
kL1´b

nk

ř6
i“1R

p∆q
i,k tends to constant. Moreover, we have

?
k
`

Ēn ´ 1
˘ d
ÝÑ Np0, 1q, and, according to Lemmas 5 and 6, both Lnk

En´k,n
and

ΛF pZn´k,nq

Λ̂nF pZn´k,nq
tend to 1 as

nÑ `8. Hence

?
kL1´b

nk ∆n
d
“ p1` oPp1qq

´

Dn ´ a
?
kL´bnk

`

Ēn ´ 1
˘

¯

` p1` oPp1qq
6
ÿ

i“1

R
p∆q
i,k , (17)
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where

Dn “
?
kL´bnk

ˆ

L1´a
nk

p̂k
c̃
´ a

˙

, with b “ p1´ aq{2.

It remains to study the behavior Dn, which is done in the following Lemma.

Lemma 1. Under the assumptions of Theorem 1, we have, as nÑ `8 :

1. If θX ă θC , then Dn “
?
kpp̂k ´ 1q

P
ÝÑ ´

θX
θC

cG
cdF
α1.

2. If θX “ θC , then Dn “
?
k

ˆ

p̂k
p
´ 1

˙

d
ÝÑ N

ˆ

0,
1´ p

p

˙

, where p “ c̃ “
cF

cF ` cG
.

3. If θX ą θC phence a ă 1 and b Ps0, 1{2rq, then Dn
d
ÝÑ Np0, a{c̃q.

Remark 4. Lemma 1 shows, in particular, that the proportion of non-censored data in the tail p̂k tends to
1, if θX ă θC , to p “ c̃ “ cF

cF`cG
, if θX “ θC and to 0 (with rate La´1

nk ) if θX ą θC . This has to be linked to
the result of Lemma 3 (see the Appendix) concerning the limit of the function pp¨q defined below.

When θX ă θC , Lemma 1 states that Dn converges to a constant : hence, via Lemma 7, the leading term in

p17q is
?
kL´bnk

`

Ēn ´ 1
˘

“
?
k
`

Ēn ´ 1
˘ d
ÝÑ Np0, 1q, and we thus obtain as desired

?
kL1´b

nk ∆n
d
ÝÑ Npm∆, 1q

via Lemma 7, where m∆ is defined in the statement of Proposition 1. When θX “ θC , the constant b is still
equal to 0 and both Dn and

?
k
`

Ēn ´ 1
˘

(which are independent) take part into the asymptotic normality

of ∆n, with Dn ´ a
?
k
`

Ēn ´ 1
˘ d
ÝÑ Np0, σ2

∆q in relation p17q, where σ2
∆ “

1´p
p ` a2 “ 1

c̃ . Thus, we obtain
?
kL1´b

nk ∆n
d
ÝÑ Np0, 1

c̃ q. Finally, when θX ą θC ,
?
kL´bnk

`

Ēn ´ 1
˘

tends to 0 and Dn is thus the leading

term : we obtain
?
kL1´b

nk ∆n
d
ÝÑ Np0, ac̃ q.

The rest of the subsection is now devoted to the proof of Lemma 1 .

Let us introduce the function p defined by

ppxq “ Ppδ “ 1|Z “ xq.

Proceeding as in Einmahl et al. (2008), we carry on the proof by considering now that δi is related to Zi
by

δi “ IUiďppZiq,

where pUiqiďn denotes an independent sequence of standard uniform variables, independent of the sequence
pZiqiďn. We denote by Ur1,ns, . . . , Urn,ns the (unordered) values of the uniform sample pertaining to the
order statistics Z1,n ď . . . ď Zn,n of the observed sample Z1, . . . , Zn.

Remind that Zi “ Λ´HpEiq, where E1, . . . , En are independent standard exponential random variables.
We introduce, for every 1 ď i ď n, the standard uniform random variables Vi “ 1 ´ expp´Eiq such that
Zi “ Λ´Hp´ logp1´ Viqq, and define the function

rptq :“ pp ˝ Λ´Hqp´ log tq.

Lemma 3 provides valuable information about the behavior of rp¨q at infinity. We now write,

Dn “
?
kL´bnk

´

L1´a
nk

p̂k
c̃ ´ a

¯

“
L´bnk?
k

k
ÿ

j“1

ˆ

L1´a
nk

c̃
IUrn´j`1,nsďrp1´Vn´j`1,nq ´ a

˙

“
Lbnk
c̃
?
k

k
ÿ

j“1

´

IUrn´j`1,nsďrp1´Vn´j`1,nq ´ IUrn´j`1,nsďrpj{nq

¯

`
L´bnk?
k

k
ÿ

j“1

ˆ

L1´a
nk

c̃
IUrn´j`1,nsďrpj{nq ´ a

˙

“: T1,k ` T2,k

Whatever the position of θX versus θC , we will prove below that the term T1,k above converges to 0 in
probability. It turns out that this amounts to proving that, for some positive sequence vn “ op1{nq (to be

9



chosen later) and some constant c ą 0,

?
kLbnkSn,k

nÑ8
ÝÑ 0 where Sn,k :“ sup

"

|rpsq ´ rptq| ;
1

n
ď t ď

k

n
, |s´ t| ď c

?
k{n , s ě vn

*

. (18)

As a matter of fact, if we introduce the events

An,c “
!

sup1ďjďk |p1´ Vn´j`1,nq ´ j{n| ď c
?
k{n

)

and Bn “ t1´ Vn,n ě vnu ,

then, since |IUďa ´ IUďb|
d
“ IUď|a´b| for any standard uniform U and constants a, b in r0, 1s, it comes

Pp|T1,k| ą δq ď P

˜

1

k

k
ÿ

i“1

IUjď|rp1´Vn´j`1,nq´rpj{nq| ą c̃δ{p
?
kLbnkq

¸

ď P
´?

kLbnkSn,k ą η
¯

` P

˜

1

k

k
ÿ

i“1

IUjďη{p
?
kLbnkq

ą c̃δ{p
?
kLbnkq

¸

` PpBcnq ` PpAcn,cq

for any given δ ą 0 and η ą 0. The second term in the right-hand side is (by Markov’s inequality) lower
than c̃δ{η (which is arbitrarily small), the third term is equal to nvnp1` op1qq “ op1q, and the fourth term is
arbitrarily small (for c large enough) by the weak convergence of the uniform tail quantile process. Therefore,
we are left to prove that

?
kLbnkSn,k “ op1q (i.e. relation (18)), so that T1,k “ oPp1q will be proved. This is

done in the different cases distinguished below, along with the treatment of the main term T2,k.

The whole proof heavily relies on the first and second order developments stated in Lemma 3 of the Appendix,
concerning the function p ˝ Λ´H .

1. Case θX ă θC

In this situation, we have a “ 1, b “ 0, c̃ “ 1 and p “ limzÑ`8 ppzq “ limtŒ0 rptq “ 1 (see Lemma 3 ).
Hence

T2,k “ 1?
k

řk
j“1

`

IUn´j`1,nďrpj{nq ´ 1
˘

d
“ ´ 1?

k

řk
j“1

`

IUjąrpj{nq ´ p1´ rpj{nqq
˘

´ 1?
k

řk
j“1p1´ rpj{nqq

“: ´T 12,k ´ T
2
2,k,

where T 12,k turns out to be a sum of centered independent random variables. Let us now prove that T 12,k “

oPp1q, T
2
2,k tends to Aα1 (here A “ θX

θC
cG
cdF

where α1 is defined in condition H2piiiq) and that
?
kSn,k Ñ 0

(hence, as explained above, T1,k “ oPp1q).

Concerning T 12,k, by definition of rp¨q and thanks to Lemma 3 stated in the Appendix, we have

1´ rpxq “ Ap´ log xqd´1p1` opxqq where d “ θX{θC Ps0, 1r.

Therefore, since logpn{jq{Lnk tends to 1 uniformly in j under condition H1 (Lemma 5), we obtain

VpT 12,kq “
1

k

k
ÿ

j“1

rpj{nqp1´ rpj{nqq ď
1

k

k
ÿ

j“1

p1´ rpj{nqq ď Ld´1
nk Ap1` op1qq,

which implies that VpT 12,kq tends to 0, since d ă 1.

Concerning T 22,k, we have similarly, using now assumption H2piiiq and Lemma 5 (log n{j „ Lnk),

T 22,k “ Ap1` op1qq
?
kpLnkq

d´1 nÑ8
ÝÑ Aα1.

Let us now deal with
?
kSn,k. From now on, let cst denote some generic positive constant. Since rptq

converges to 1 as tŒ 0, and thanks to Lemma 3, we have, for s and t small,

|rpsq ´ rptq| “

ˇ

ˇ

ˇ

ˇ

1

rpsq
´

1

rptq

ˇ

ˇ

ˇ

ˇ

rpsqrptq

ď cst
 

|p´ log tqd´1 ´ p´ log sqd´1| ` |p´ log tqd´1´βvp´ log tq ´ p´ log sqd´1´βvp´ log sq|
(

Introducing the set Zn “ t ps, tq ; 1{n ď t ď k{n , |t´ s| ď c
?
k{n , s ě vn u and reminding that vn “ op1{nq

(an appropriate sequence will be chosen in few lines), it can be checked that applying the mean value theorem
to the function hptq “ p´ log tqd´1 of positive derivative h1ptq “ p1 ´ dqt´1p´ log tqd´2, yields for large n
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(below, u “ ups, tq denotes some appropriate value between s and t)
?
k supps,tqPZn |hptq ´ hpsq| ď supps,tqPZn |h

1puq|.|t´ s| ď cst
?
k 1
vn
Ld´2
nk c

?
k{n “ cst k

nvn
Ld´2
nk .

This is the first step towards the proof of
?
kSn,k “ op1q. The second step requires to do the same job with

the function h̃ptq “ p´ log tqd´1´βvp´ log tq, where vp¨q is slowly varying at infinity. It is known (cf Bingham
et. al. (1987) page 15) that we have xv1pxq{vpxq Ñ 0 and x´βvpxq Ñ 0 as xÑ8, so that

|h̃1ptq| “ |1´ d` β|
1

t
p´ log tqd´2

ˇ

ˇ

ˇ

ˇ

1´ cst
xv1pxq

vpxq

ˇ

ˇ

ˇ

ˇ

x´β |vpxq| ď cst|h1ptq|

where x denoted p´ log tq, which is large when t is close to 0. Therefore, taking into account all the previous
findings, and considering the choice vn “ k´ε{n “ op1{nq, we have proved that for n large

?
kSn,k ď cst k

nvn
Ld´2
nk “ cst.k1`εLd´2

nk “ cst
´?

kL
pd´2q{2`δ
nk

¯2p1`εq

which turns out to be op1q as soon as 0 ă δ ă d{2 thanks to assumption H2piiiq. This ends the proof of
Lemma 1 in the mild censoring case θX ă θC .

2. Case θX “ θC

Here, we also have a “ 1, b “ 0 but now c̃ “ cF
cF`cG

“ p “ limzÑ8 ppzq “ limtŒ0 rptq. It is clear that

T2,k
d
“

1

p

1
?
k

k
ÿ

j“1

`

IUjďrpj{nq ´ rpj{nq
˘

`
1

p

1
?
k

k
ÿ

j“1

prpj{nq ´ pq

“: T 12,k ` T
2
2,k

Let us prove that T 12,k
d
ÝÑ Np0, 1´p

p q, while T 22,k and
?
kSn,k are both op1q.

Concerning T 12,k: we have

VpT 12,kq “
1

p2

1

k

k
ÿ

j“1

rpj{nqp1´ rpj{nqq,

which tends to 1´p
p , since rpj{nq tends to p, uniformly in j (see Lemma 3). We conclude, for this term, using

Lyapunov’s theorem (details are omitted, here rpj{nq ď 1).

Concerning T 22,k, since Lemma 3 of the Appendix yields rptq “ p p1´ p´ log tqρvp´ log tqq, we have (for
some δ ą 0)

T 22,k “ ´
1
?
k

k
ÿ

j“1

plogpn{jqqρvplogpn{jqq “ ´
?
kpLnkq

ρ`δL´δnkvpLnkq
1

k

k
ÿ

j“1

uρn,j

where we noted un,j “ logpn{jq{Lnk, which tends to 1 uniformly in j thanks to condition H1, and used the
fact that vplogpn{jqq „ vpLnkq because v P RV0. The Riemann sum on the right-hand side converges to 1,
so for a choice of δ satisfying assumption H3piq, we have proved that T 22,k “ op1q.

Concerning now
?
kSn,k, we proceed similarly as in the first case. Introducing h̃ptq “ p´ log tqρvp´ log tq

where vp¨q is slowly varying at infinity, we have as previously |h̃1ptq| “ 1
t p´ log tqρ´1`εop1q for tŒ 0 and any

some small ε ą 0. Therefore, Lemma 3, definitions of Sn,k and of the set Zn, along with the mean value
theorem, yield

?
kSn,k “ c̃ sup

ps,tqPZn

|h̃ptq ´ h̃psq| ď cst
?
k sup
ps,tqPZn

t|h̃1puq|.|t´ s|u ď cst
?
k

1

vn
Lρ´1`ε
nk c̃

?
k

n
.

Choosing, in the definition of Sn,k, the sequence vn “ k´ε{n “ op1{nq for some small ε ą 0, we have

?
kSn,k “ cst

´?
kL

pρ´1`εq{p2p1`εqq
nk

¯2p1`εq

“ cst
´?

kL
pρ´1q{2`δ
nk

¯2p1`εq

which turns out to be op1q according to assumption H3piq (if ρ ě 1) or H3piiq (if ρ ă 0), as soon as δ is
sufficiently small. This ends the proof of Lemma 1 in the semi-strong censoring case θX “ θC .

3. Case θX ą θC

Now we are in the situation where a ă 1, b “ p1´aq{2 Ps0, 1{2r, c̃ “ cF
caG

and p “ limzÑ8 ppzq “ limtŒ0 rptq “
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0. Since 1´ a´ b “ b, we have readily

T2,k
d
“

Lbnk
c̃

1
?
k

k
ÿ

j“1

`

IUjďrpj{nq ´ rpj{nq
˘

`
aL´bnk?
k

k
ÿ

j“1

ˆ

L1´a
nk

ac̃
rpj{nq ´ 1

˙

“: T 12,k ` T
2
2,k

Let us prove that T 12,k
d
ÝÑ Np0, ac̃ q, while T 22,k and

?
kLbnkSn,k are both op1q (the latter will guarantee that

T1,k “ oPp1q).

Concerning T 12,k: we have

VpT 12,kq “
L2b
nk

c̃2
1

k

k
ÿ

j“1

rpj{nqp1´ rpj{nqq

Lemma 3 in the Appendix yields the following first order development, as tŒ 0,

rptq “ ac̃p´ log tqa´1p1` optqq “ ac̃p´ log tq´2bp1` optqq. (19)

Since un,j “ logpn{jq{Lnk tends to 1 uniformly in j, under condition H1 (see Lemma 5), it is then easy to
see that VpT 12,kq tends to a

c̃ . We conclude concerning T 12,k using Lyapunov’s theorem (again, details are easy
and omitted).

Concerning T 22,k: we write

L1´a
nk

ac̃
rpj{nq ´ 1 “

˜

L1´a
nk

ac̃
rpj{nq ´

ˆ

Lnk
logpn{jq

˙1´a
¸

`

˜

ˆ

Lnk
logpn{jq

˙1´a

´ 1

¸

and treat these two terms separately. Using the second order formula stated in Lemma 3, we have

1

rptq
“ 1`

p´ log tq1´a

ac̃

`

1´ p´ log tqρ̃vp´ log tq
˘

. (20)

and consequently, for some small δ ą 0,

ac̃

L1´a
nk rpj{nq

“

ˆ

logpn{jq

Lnk

˙1´a
`

1´ plogpn{jqqρ̃vplogpn{jqq ` ac̃plogpn{jqqa´1
˘

“

ˆ

logpn{jq

Lnk

˙1´a
´

1´ Lρ̃`δnk op1q ` ac̃La´1
nk p1` op1qq

¯

where we used condition H1 and the slow variation of v, which guarantees that vplogpn{jqq „ vpLnkq and
x´δvpxq Ñ 0 as xÑ8. Now, since ρ̃ “ maxpθZρF , θZρG, a´ 1q ě a´ 1, it comes

L1´a
nk

ac̃
rpj{nq ´

ˆ

Lnk
logpn{jq

˙1´a

“ p1` op1qqLρ̃`δnk op1q

and therefore the first term of T 22,k is equal to a
?
kL´b`ρ̃`δnk op1q, which tends to 0 under condition H4piiq.

The second term of T 22,k is

a
?
kL´bnk

1

k

k
ÿ

j“1

˜

ˆ

Lnk
logpn{jq

˙1´a

´ 1

¸

.

But
´

Lnk
logpn{jq

¯1´a

´ 1 “ pa ´ 1q logpk{jq
Lnk

p1 ` op1qq with 1
k

řk
j“1 logpk{jq tending to 1. So the second term of

T 22,k is equal to

apa´ 1q
?
kL´1´b

nk p1` op1qq,

and this quantity tends to 0 under condition H4pivq.

Concerning now
?
kLbnkSn,k, we have

Sn,k “ sup
ps,tqPZn

|rptq ´ rpsq| ď sup
ps,tqPZn

ˇ

ˇ

ˇ

ˇ

1

rptq
´

1

rpsq

ˇ

ˇ

ˇ

ˇ

sup
ps,tqPZn

trptqrpsqu.

Thanks to the first order relation (19), the second supremum of the right-hand side is lower than a constant

times L
2pa´1q
nk . The first supremum will be handled with the more precise second order development (20),
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which yields

sup
ps,tqPZn

ˇ

ˇ

ˇ

ˇ

1

rptq
´

1

rpsq

ˇ

ˇ

ˇ

ˇ

“ cst

#

sup
ps,tqPZn

|hptq ´ hpsq| ` sup
ps,tqPZn

|h̃ptq ´ h̃psq|

+

where we define hptq “ p´ log tq1´a and h̃ptq “ p´ log tq1´a`ρ̃vp´ log tq. Contrary to the functions arisen
in case 1, the functions h and h̃ tend to infinity instead of vanishing to 0, when t Œ 0 : this will be
counterbalanced by the second supremum. Studying derivatives of the functions h and h̃, and again using
a first order Taylor expansion, we obtain via similar computations as in the previous cases, for n large and
any ε ą 0 (with the choice vn “ k´ε{n),

sup
ps,tqPZn

ˇ

ˇ

ˇ

ˇ

1

rptq
´

1

rpsq

ˇ

ˇ

ˇ

ˇ

ď cst.k1{2`εL´ank .

Therefore, gathering the two suprema, we have (for some small value of δ ą 0 depending on ε)

?
kLbnkSn,k ď cst.k1`εLb´ank L

2pa´1q
nk “ cst.k1`εL´1´b

nk “ cst
´?

kL
´p1`bq{2`δ
nk

¯2p1`εq

which, by assumption H4piiiq, converges to 0 as nÑ8.

3.2. Proof of Proposition 2

Remind from p14q that

Rn,l “
1

k

k
ÿ

j“1

log

ˆ

lpEn´j`1,nq

lpEn´k,nq

˙

and Rn,l̃ “
1

k

k
ÿ

j“1

log

˜

l̃pEn´j`1,nq

l̃pEn´k,nq

¸

.

Let A ą 1. Under condition RlpB, ρq, we have for all ε ą 0 and t sufficiently large

p1´ εqBptqKρpxq ď
lptxq

lptq
´ 1 ď p1` εqBptqKρpxq p@1 ď x ď Aq.

We only prove the result for Rn,l, the proof for Rn,l̃ being very similar, using Rl̃pB̃, ρ̃q instead of RlpB, ρq.
Note that

Rn,l “
1

k

k
ÿ

j“1

log p1` ξj,nq ,

where ξj,n “
lpEn´j`1,nq

lpEn´k,nq
´ 1 tends to 1 uniformly in j, because l is slowly varying and

En´j`1,n

En´k,n
tends to 1

uniformly in j, according to Lemma 5. Hence, using the following inequality,

x´ x2{2 ď logp1` xq ď x p@x ě ´1{2q

and the fact that xj,n :“
En´j`1,n

En´k,n
ě 1 tends to 1 uniformly in j, we obtain that for all ε ą 0 and n sufficiently

large,

Rn,l ď
1

k

k
ÿ

j“1

ˆ

lpEn´j`1,nq

lpEn´k,nq
´ 1

˙

ď p1` εqBpEn´k,nq
1

k

k
ÿ

j“1

Kρpxj,nq,

omitting the lower bound, which is treated similarly. Since Kρp1`xq „ x when x tends to 0, then Kρpxj,nq „
En´j`1,n´En´k,n

En´k,n
, uniformly in j. By Lemma 4,

En´j`1,n´En´k,n
En´k,n

d
“

Ẽk´j`1,k

En´k,n
. Hence, it is easy to prove that

En´k,n
1

k

k
ÿ

j“1

Kρpxj,nq
P
ÝÑ 1.

Since B is regularly varying and
En´k,n
Lnk

Ñ 1, then
BpEn´k,nq
En´k,n

„
BpLnkq
Lnk

and consequently

?
kL´bnkBpLnkqp1` oPp1qq ď lim inf

?
kL1´b

nk Rn,l ď lim sup
?
kL1´b

nk Rn,l ď
?
kL´bnkBpLnkqp1` oPp1qq.

We conclude using assumption RlpB, ρq and conditions H2piq, H3piq or H4piiq, because |B| is regularly
varying of order ρ, and we have ρ “ ρ̃ when θX ď θC , and ρ ď ρ̃ when θX ą θC (see Lemma 2).
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3.3. Proof of Proposition 3

Recall that

Mn “
1

k

k
ÿ

j“1

log

ˆ

En´j`1,n

En´k,n

˙

.

Since
En´j`1,n

logpn{jq

P
ÝÑ 1 and Lnk

logpn{jq

P
ÝÑ 1, uniformly in j “ 1, . . . , k (see Lemma 5), then

En´j`1,n

En´k,n

P
ÝÑ 1,

uniformly in j “ 1, . . . , k. By Lemma 4, pEn´j`1,n ´ En´k,nq1ďjďk
d
“ pẼk,k, . . . , Ẽ1,kq. Therefore

Mn
d
“

1

k

k
ÿ

j“1

log

˜

1`
Ẽk´j`1,k

En´k,n

¸

“ p1` oPp1qq
1

En´k,n

1

k

k
ÿ

j“1

Ẽj ,

with 1
k

řk
j“1Ẽj Ñ 1, a.s. Hence, LnkMn also tends to 1, in probability.

4. Proof of Theorem 2

Starting from xpn “
sF´1ppnq and the definition of x̂pn in p9q, we obtain

logpxpnq “ θX log logp1{pnq ` logpl̄F p´ logppnqqq,

logpx̂pnq “ θ̂X,k log logp1{pnq ´ θ̂X,k logpΛ̂nF pZn´k,nqq ` logpZn´k,nq.

Hence

logpx̂pn{xpnq “ pθ̂X,k ´ θXq log logp1{pnq ´ θ̂X,k log
´

Λ̂nF
ΛF
pZn´k,nq

¯

´ pθ̂X,k ´ θXq logpΛF pZn´k,nqq

`
 

´ logpl̄F plogp1{pnqqq ´ θX logplF pZn´k,nqq
(

,

“: Q1,n `Q2,n `Q3,n `Q4,n.

First of all, the result of Theorem 1 implies that
?
kL´bnk

log logp1{pnq
Q1,n “

?
kL´bnkpθ̂X,k ´ θXq

d
ÝÑ N

ˆ

m,
θ2
X

ac̃

˙

.

Then, Lemma 6 (stated in the Appendix) implies that pΛ̂nF {ΛF qpZn´k,nq ´ 1 “ OP

´

1{p
?
kΛF pZn´k,nqq

¯

.

Hence ?
kL´bnk

log logp1{pnq
Q2,n “ OPp1q

1

Lbnk log logp1{pnqΛF pZn´k,nq

P
ÝÑ 0.

Now, remind that ΛF pZn´k,nq “ ΛF ˝ Λ´HpEn´k,nq “ Ean´k,n l̃pEn´k,nq. Hence, the asymptotic normality of

pθ̂X,k ´ θXq yields
?
kL´bnk

log logp1{pnq
Q3,n “ OPp1q

logpLnkq

log logp1{pnq

˜

a
logpEn´k,nq

logpLnkq
`

logpl̃pEn´k,nqq

logpLnkq

¸

.

The additional condition H 11 of Theorem 2, along with Lemma 5, imply that this term tends to 0 in proba-
bility.

Finally, Lemma 2 implies that

Q4,n “ ´ log
`

1´ logp1{pnq
θXρF v̄plogp1{pnq

˘

´ θX log
´

1´ ZρFn´k,nvpZn´k,nq
¯

,

where v and v̄ are slowly varying. Hence,
?
kL´bnk

log logp1{pnq
Q4,n tends to 0 as soon as there exist some 0 ă δ ă 1

such that
?
kL´bnk

log logp1{pnq
plog 1{pnq

θXρF`δ “ Op1q and
?
kL´bnk

log logp1{pnq
ZρF`δn´k,n “ OPp1q. Remind that Zn´k,n “

EθZn´k,nlpEn´k,nq. Hence, condition H 11 guarantees that we only need to show that
?
kL´b`θXρFnk “ Op1q

and
?
kL´b`θZρFnk “ Op1q. When θX “ θZ ă θC , this is due to the additional condition H2pivq. When

θX “ θZ “ θC , it is due to condition H3piq. Finally, when θX ą θZ “ θC , it is due to H4piiq.
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5. Finite sample comparisons

In this section, we illustrate, using a few simulations, the finite sample performances of our estimators
of θX and xpn (for small pn), in terms of observed bias and mean squared error (MSE). The sample size
n “ 500 has been considered.

We consider two classes of distributions of Weibull-tail type, for the target X and the censoring variable
C :

• Weibullp1{θq with c.d.f. 1´ expp´x1{θq (x ą 0), which Weibull-tail coefficient is θ.

• Gammapa, bq with c.d.f.
şx

0
Γpaq´1baua´1e´budu (x ą 0), which Weibull-tail coefficient is 1.

We consider two cases : a Weibull distribution censored by another Weibull distribution and a Gamma
distribution censored by a Weibull distribution. In each case, we consider three situations with θX ă θC ,
θX “ θC or θX ą θC , corresponding to different intensities of the censoring in the tail.

In Figures 1 and 2, we compare our estimator θ̂X,k defined in p7q with the estimator θ̂
pcompleteq
X defined in

p5q, which is applied to the X sample as if it was observed (of course, in practice, it is not, so the comparison

is of theoretical interest only). We also compare it with θ̂Z,k defined in p8q, which is the same expression as

θ̂
pcompleteq
X but applied to the observed sample Z.

For each considered distribution, 2000 random samples of length n “ 500 are generated ; median bias and
MSE of the above-mentioned estimators are plotted against different values of kn, the number of excesses
used.

This small simulation study shows that for finite sample sizes, as expected, using an estimator (here θ̂Z,k)

not adapted to censoring yields inaccurate results, even in the case θX ă θC , where θ̂Z,k is consistent for
estimating θX . The case θX “ θC is particular : since the censored and the censoring distributions have
the same Weibull-tail coefficient, it seems that θ̂Z,k succeeds in reaching its target. We also see that our

proposed estimator θ̂X,k has good performances, comparable to those of θ̂
pcompleteq
X in the non-censored case.

Note that the bias of θ̂X,k does not vary much, whereas the MSE deteriorates when the censoring becomes
stronger.

In Figure 3, we illustrate the result of Remark 4 concerning the convergence of p̂k, the proportion of non-
censored data in the tail, when the sample size n tends to `8. For three different situations corresponding
to θX ă θC (p̂k Ñ p “ 1), θX “ θC (p̂k Ñ p “ 1{2 for the distributions considered) or θX ą θC (p̂k Ñ p “ 0),
we present plots of p̂k against kn for three sample sizes n “ 500, 5000, 50000.

We can see that the convergence of p̂k is very slow : In particular, in practice, when θX ă θC , the
proportion of non-censored data in the tail is quite far from 1. This explains why one needs to take the
censoring mechanism into account for the estimation of θX and why the existing estimators, defined in the
non-censored setting, should not be used.

Now in Figures 4 and 5, for the value pn “ 0.01, we compare our estimator x̂pn defined in p9q with the
following estimator

x̂Z,pn “ Zn´k,n

ˆ

´ log pn
logpn{knq

˙θ̂Z,k

,

which is the estimator defined in the non-censored setting, in Gardes and Girard (2005), but applied to the
observed sample Z. We also compare it with the existing estimator defined, in a more general censored
setting, by equation p8q in Einmahl et al. (2008) :

x̂EFGpn “ Zn´k,n ` âk
pp1´ F̂npZn´kqq{pnq

γ̂c,Mom ´ 1

γ̂c,Mom
,

where γ̂c,Mom is the moment estimator of the extreme value index γX of F adapted to censoring (note that
γX is equal to 0 in the Weibull-tail situation), and F̂n stands for the Kaplan-Meier estimator of the c.d.f.
F . We refer to Einmahl et al. (2008) for the expression of âk.

We clearly see that the estimator x̂Z,pn (not adapted to censoring) is inaccurate for the estimation of
xpn . Indeed, x̂Z,pn actually estimates the quantile of H̄ “ F̄ Ḡ ď F̄ and therefore underestimates xpn , as
showed in our plots. We also show that our proposed estimator is competitive, especially in term of bias,
although the MSE is often higher than that of the existing estimator x̂EFGpn .
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(a) Weibullp2q censored by Weibullp2{3q, where θX “ 1{2 and θC “ 3{2.
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(b) Weibullp2q censored by Weibullp2q, where θX “ 1{2 “ θC .
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(c) Weibullp2q censored by Weibullp5q, where θX “ 1{2 and θC “ 1{5.

Figure 1: Comparison of bias and MSE of the estimators θ̂X,k (solid black), θ̂
pcompleteq

X (dotted blue) and θ̂Z,k (dashed red)
for a Weibull distribution censored by another Weibull distribution.
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(a) Gammap0.8, 1q censored by Weibullp2{3q, where θX “ 1 and θC “ 3{2.
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(b) Gammap0.8, 1q censored by Weibullp1q, where θX “ 1 “ θC .
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(c) Gammap0.8, 1q censored by Weibullp2q, where θX “ 1 and θC “ 1{2.

Figure 2: Comparison of bias and MSE of the estimators θ̂X,k (solid black), θ̂
pcompleteq

X (dotted blue) and θ̂Z,k (dashed red)
for a Gamma distribution censored by a Weibull distribution.
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Figure 3: Comparison of the proportion of non-censoring in the tail p̂k for Weibullp2q (θX “ 1{2) censored, respectively, by
Weibullp2{3q (θC “ 3{2 ą θX , p “ 1), Weibullp2q (θC “ 1{2 “ θX , p “ 1{2) and Weibullp5q (θC “ 1{5 ă θX , p “ 0) for n “ 500
(solid black), n “ 5000 (dotted blue) and n “ 50000 (dashed red).
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(a) Weibullp2q censored by Weibullp2{3q, where θX “ 1{2 and θC “ 3{2.
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(b) Weibullp2q censored by Weibullp2q, where θX “ 1{2 “ θC .
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(c) Weibullp2q censored by Weibullp5q, where θX “ 1{2 and θC “ 1{5.

Figure 4: Comparison of bias and MSE of the estimators x̂pn (solid black), x̂Zpn (dashed red) and x̂EFG
pn (dotted blue) of the

quantile xpn (pn “ 0.01), for a Weibull distribution censored by another Weibull distribution.
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(a) Gammap0.8, 1q censored by Weibullp2{3q, where θX “ 1 and θC “ 3{2.
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(b) Gammap0.8, 1q censored by Weibullp1q, where θX “ 1 “ θC .
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(c) Gammap0.8, 1q censored by Weibullp2q, where θX “ 1 and θC “ 1{2.

Figure 5: Comparison of bias and MSE of the estimators x̂pn (solid black), x̂Zpn (dashed red) and x̂EFG
pn

(dotted blue) of the
quantile xpn (pn “ 0.01), for a Gamma distribution censored by a Weibull distribution.
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6. Appendix

6.1. Details on the second order conditions

Remind that the starting assumption of this paper is relation p3q,

ΛF pxq “ x1{θX lF pxq and ΛGpxq “ x1{θC lGpxq,

where lF and lG are slowly varying. It is then easy to prove that

Λ´F pxq “ xθX l̄F pxq, Λ´Gpxq “ xθC l̄Gpxq, ΛHpxq “ x1{θZ lHpxq,Λ
´
Hpxq “ xθZ lpxq and ΛF ˝ Λ´Hpxq “ xa l̃pxq,

where θZ “ minpθX , θCq, a “ θZ{θX , and l̄F , l̄G, l and l̃ are slowly varying. More precisely, we have the
following Lemma, under the second order condition p10q.

Lemma 2. Under p2q, p3q and p10q, we have,

lF pxq “ cF p1´ x
ρF vpxqq and lGpxq “ cGp1´ x

ρGvpxqq,

l̄F pxq “ c´θXF p1´ xθXρF vpxqq and l̄Gpxq “ c´θCG p1´ xθCρGvpxqq,

lHpxq “ cHp1´ x
ρHvpxqq, lpxq “ c´θZH p1´ xρvpxqq and l̃pxq “ c̃p1´ xρ̃vpxqq,

for different slowly varying functions generically noted v, with

cH “

$

&

%

cF if θX ă θC
cF ` cG if θX “ θC
cG if θX ą θC

, c̃ “ c´aH cF “

$

&

%

1 if θX ă θC
cF {pcF ` cGq if θX “ θC
c´aG cF if θX ą θC

,

ρH “

$

&

%

maxpρF , 1{θC ´ 1{θXq if θX ă θC
maxpρF , ρGq if θX “ θC
maxpρG, 1{θX ´ 1{θCq if θX ą θC

, ρ “ θZρH “

$

&

%

maxpθXρF , d´ 1q if θX ă θC
maxpθXρF , θXρGq if θX “ θC
maxpθCρG, a´ 1q if θX ą θC

,

and

ρ̃ “

"

ρ if θX ď θC
maxpθCρG, θCρF , a´ 1q if θX ą θC

.

The proof of this Lemma is based on Theorem B.2.2 in de Haan and Ferreira (2006) as well as the concept
of de Bruyn conjugate (see Proposition 2.5 in Beirlant et al. (2004)). Details are ommited for brevity.

Remark 5. It is clear that all the aforementioned slowly varying functions satisfy the second order condition
SR2 with the corresponding second order parameters defined in the previous Lemma. In particular, rate

functions B and B̃ associated, respectively, to l and l̃ satisfy xρ̃vpxq

B̃pxq
Ñ ´1{ρ̃ and xρvpxq

Bpxq Ñ ´1{ρ, as xÑ `8,

with v, the appropriate slowly varying function (see again Theorem B.2.2 in de Haan and Ferreira (2006)) .

Remind that the function p has been defined by ppxq “ Ppδ “ 1|Z “ xq at the start of the proof of Lemma 1.
The following Lemma provides useful developments of p and p ˝Λ´H . In particular, it provides details about
the rate of convergence of ppxq, as xÑ `8. Its proof is based on the fact that

ppxq “
Ḡpxqfpxq

Ḡpxqfpxq ` F̄ pxqGpxq
,

where f and g are respectively the derivatives of F and G, as well as on the results of Lemma 2. It is omitted
for brevity.

Lemma 3. Under p2q, p3q and p10q, we have

1

ppxq
“ 1`

θX
θC

x
1
θC
´ 1
θX
lGpxq

lF pxq
p1` op1qq.

In particular, as xÑ `8,

ppxq Ñ

$

&

%

1 if θX ă θC ,
c̃ “ cF {pcF ` cGq if θX “ θC ,
0 if θX ą θC .
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Moreover, we have

if θX ă θC , 1{pp ˝ Λ´Hqpxq “ 1` d
cG
cdF
xd´1p1´ x´βvpxqq ,

if θX “ θC , pp ˝ Λ´Hqpxq “ c̃p1´ xρvpxqq,

if θX ą θC , 1{pp ˝ Λ´Hqpxq “ 1`
1

ac̃
x1´ap1´ xρ̃vpxqq,

where d “ θX{θC , v is a generic notation for a slowly varying function and

´β “ maxpθXρF , θXρG, d´ 1q.

6.2. Technical Lemmas

Let E1, . . . , En be n iid standard exponential random variables.

Lemma 4. According to Lemma 1.4.3. in Reiss (1989), we have

pEn´j`1,n ´ En´k,nq1ďjďk
d
“ pẼk´j`1,kq1ďjďk,

where Ẽ1, . . . , Ẽk are k independent standard exponential random variables.

Lemma 5. Under condition H1, we have, as nÑ `8,

En´k,n
Lnk

P
ÝÑ 1,

En´j`1,n

logpn{iq
P
ÝÑ 1, uniformly on j “ 1, . . . k and

?
kpEn´k,n ´ Lnkq

d
ÝÑ Np0, 1q.

We refer to Girard (2004,b) for the proof of this Lemma.

Lemma 6. If we consider the classical random censoring model p1q with continuous distribution functions
F and G of the variables X and C, then the following in-probability results hold :

ˇ

ˇ

ˇ
Λ̂nF pZn´j`1,nq ´ ΛF pZn´j`1,nq

ˇ

ˇ

ˇ
“ OPp1{

?
j ´ 1q, for j “ 2, . . . , k ` 1,

ˇ

ˇ

ˇ
Λ̂nF pZn,nq ´ ΛF pZn,nq

ˇ

ˇ

ˇ
“ OPp1q.

The first statement is a part of Theorem 1 in Csorgo (1996). For the second statement, one has to make a
careful examination of Theorem 2.1 in Zhou (1991), in a narrower context, since the samples pXiq and pCiq
we consider are i.i.d. , whereas Zhou considers possibly non-identically distributed censoring variables Ci.
In pages 2269-2270 of the mentioned paper, one can find out that the maximum observed value (named Tn)
does not have to be excluded from the probability bound (2.3) : it can indeed be proved, by following the
steps of the proof of (2.3), that for every n,

@ε ą 0, P
”

suptďZn,n

ˇ

ˇ

ˇ
Λ̂nF ptq ´ ΛF ptq

ˇ

ˇ

ˇ
ą ε

ı

ď 6ε2{3.

So the second statement of Lemma 6 follows.

6.3. Treatment of the remainder or bias terms R
p∆q
i,k , related to the main statistic ∆n

These terms appear in the representation p16q of ∆n. We have the following results :

Lemma 7. Under the assumptions of Theorem 1, as n tends to infinity,
?
kL1´b

nk R
p∆q
i,k

P
ÝÑ 0, for j P t1, 2, 5, 6u

?
kL1´b

nk R
p∆q
3,k

P
ÝÑ ´

α̃

ρ
if θX ă θC and 0 if θX ě θC .

?
kL1´b

nk R
p∆q
4,k

P
ÝÑ ´α̃ if θX ă θC and 0 if θX ě θC .

Proof of Lemma 7
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‚ Remind that

R
p∆q
1,k “ ∆n ´

1

k

k
ÿ

j“1

˜

Λ̂nF pZn´j`1,nq

ΛF pZn´j`1,nq

ΛF pZn´k,nq

Λ̂nF pZn´k,nq
´ 1

¸

“
1

k

k
ÿ

j“1

plogp1` ξj,nq ´ ξj,nq ,

where

ξj,n “
Λ̂nF pZn´j`1,nq

ΛF pZn´j`1,nq

ΛF pZn´k,nq

Λ̂nF pZn´k,nq
´ 1

Introducing ∆j “ Λ̂nF pZn´j`1,nq ´ ΛF pZn´j`1,nq, for j “ 1, . . . , k ` 1, we have readily

ξj,n “
ΛF pZn´k,nq

Λ̂nF pZn´k,nq

ˆ

∆j
ΛF pZn´k,nq

ΛF pZn´j`1,nq
´∆k`1

˙

1

ΛF pZn´k,nq
.

But Lemma 6 implies that |∆j | “ OPp1{
?
j ´ 1q for all j “ 2, . . . , k ` 1, |∆1| “ OPp1q and

ΛF pZn´k,nq

Λ̂nF pZn´k,nq

tends to 1, in probability. Let E1, . . . , En be n independent standard exponential random variable such that
1

ΛF pZn´k,nq
“

E´an´k,n
l̃pEn´k,nq

, where l̃ tends to c̃ at infinity. Moreover,
ΛF pZn´k,nq

ΛF pZn´j`1,nq
ď 1 and

En´k,n
Lnk

tends to 1 (see

Lemma 5). Thus, we obtain |ξ1,n| ď p1` oPp1qq
´

OPp1q `OPp1{
?
kq
¯

L´ank p1{c̃` oPp1qq and

|ξj,n| ď p1` oPp1qq
´

OPp1{
a

j ´ 1q `OPp1{
?
kq
¯

L´ank p1{c̃` oPp1qq, for j “ 2, . . . , k.

Therefore ξ2
1,n ď OPp1qL

´2a
nk and

ξ2
j,n ď OPp1q

L´2a
nk

j ´ 1
for j “ 2 . . . , k.

Consequently, since a ą 0, sup1ďjďk |ξj,n| tends to 0, in probability, and thus, using the inequality 0 ď
x´ logp1` xq ď x2 (@x ě ´1{2), we obtain,

0 ď ´R
p∆q
1,k ď

1

k

k
ÿ

j“1

ξ2
j,n.

But 1
k

řk
j“11{j „ log k

k . Hence

0 ď ´
?
kL1´b

nk R
p∆q
1,k ď OPp1q

log k
?
k
L1´b´2a
nk .

Let ε ą 0. We have 1´ b´ 2a “ 3b´ 1, and so we want

?
kplog kq´1L1´3b

nk “ pkε{ log kq
´?

kL
p1´3bq{p1´2εq
nk

¯1´2ε

to go to `8. This is automatic when 0 ď b ď 1{3. If b ą 1{3 (i.e. when θX ą 3θC), we can write p1 ´
3bq{p1´2εq “ 1´3b´δ for some positive δ and small enough ε, and we have

?
kL1´3b`δ

nk “
?
kL´bnkˆL

´2b`1´δ
nk

: the first factor goes to infinity (it is the CLT rate, assumption H4piq), and the second factor as well for δ
(i.e. ε) small enough because b is always smaller than 1{2.

‚ Remind that

R
p∆q
2,k “

1

ΛF pZn´k,nq

1

k

k
ÿ

j“1

´

Λ̂nF pZn´j`1,nq ´ ΛF pZn´j`1,nq

¯

ˆ

ΛF pZn´k,nq

ΛF pZn´j`1,nq
´ 1

˙

and that
ΛF pZn´k,nq

ΛF pZn´j`1,nq
“ x´aj,n

l̃pEn´k,nq

l̃pEn´j`1,nq
, where xj,n “

En´k,n
En´j`1,n

Ñ 1, uniformly on j (see Lemma 5). Hence,

using the fact that sup1ďjďk |Λ̂nF pZn´j`1,nq ´ ΛF pZn´j`1,nq| “ OPp1q (see Lemma 6), we obtain

|R
p∆q
2,k | ď OPp1q

E´an´k,n

l̃pEn´k,nq

˜

1

k

k
ÿ

j“1

|x´aj,n ´ 1| `
1

k

k
ÿ

j“1

x´aj,n

ˇ

ˇ

ˇ

ˇ

ˇ

l̃pEn´k,nq

l̃pEn´j`1,nq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.
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Introducing, once again, Ẽ1, . . . , Ẽk, k independent standard exponential random variables, such that,
En´j`1,n´En´k,n

En´k,n

d
“

Ẽk´j,k
En´k,n

(see Lemma 4), and using a Taylor expansion, we have

|R
p∆q
2,k | ď OPp1qE

´a
n´k,n

˜

1

k

k
ÿ

j“1

Ẽk´j,k
En´k,n

`
1

k

k
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

l̃pEn´k,nq

l̃pEn´j`1,nq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

Since Ēn “
1
k

řk
j“1Ẽj and

En´k,n
Lnk

tend to 1, in probability, the first term of the right hand side multiplied

by
?
kL1´b

nk tends to 0, by the fact that
?
kL´a´bnk tends to 0 under condition H2piiiq, H3piiq or H4pivq. For

the second term of the right hand side, we proceed as for Rn,l̃ (see the proof of Proposition 2), by using the

fact that condition Rl̃pB̃, ρ̃q implies R1{l̃p´B̃, ρ̃q and again that
?
kL´a´bnk tends to 0.

‚ Remind that

R
p∆q
3,k “

p̂k
Ean´k,n

˜

1

l̃pEn´k,nq
´

1

c̃

¸

,

where, according to Lemma 2, we have 1´ l̃pxq
c̃ “ xρ̃vpxq, with v slowly varying. Hence,

R
p∆q
3,k “ p1` oPp1qqE

´a
n´k,n

p̂k
c̃
Eρ̃n´k,nvpEn´k,nq.

We prove, in Lemma 1, that L1´a
nk

p̂k
c̃ tends to a. Moreover, since v is slowly varying and

En´k,n
Lnk

tends to 1

(see Lemma 5), we obtain
?
kL1´b

nk R
p∆q
3,k “ ap1` oPp1qq

?
kL´b`ρ̃nk vpLnkq.

This term tends to 0 in the case θX ě θC , under condition H3piq or H4piiq. In the case θX ă θC , we use the

fact that xρ̃vpxq

B̃pxq
Ñ ´ 1

ρ̃ (see Remark 5 in the Appendix). Thus,

?
kL1´b

nk R
p∆q
3,k “ ´

1

ρ̃
p1` oPp1qq

?
kL´bnkB̃pLnkq,

which tends to ´ α̃
ρ under condition H2piiq, since ρ “ ρ̃, in this case.

‚ Remind that

R
p∆q
4,k “ ´

1

k

k
ÿ

j“1

ˆ

En´j`1,n

En´k,n

˙a
˜

l̃pEn´j`1,nq

l̃pEn´k,nq
´ 1

¸

.

The treatment of this term is very similar to that of Rn,l̃ (see the proof of Proposition 2). It relies on

condition Rl̃pB̃, ρ̃q, as well as H2piiq, H3piq or H4piiq. It is thus omitted.

‚ Remind that

R
p∆q
5,k “ ´

1

k

k
ÿ

j“1

#˜˜

1`
Ẽk´j`1,k

En´k,n

¸a

´ 1

¸

´ a
Ẽk´j`1,k

En´k,n

+

.

This term is 0 in the case θX ď θC (a “ 1). So, we only consider the case θX ą θC (where 0 ă a ă 1). It

is clear (see Lemmas 4 and 5) that ξj,n “
Ẽk´j`1,k

En´k,n

d
“

En´j`1,n

En´k,n
´ 1 tends to 0, uniformly in j. Hence, by a

Taylor expansion, we obtain

R
p∆q
5,k “ ´p1` oPp1qq

1
k

řk
j“1

apa´1q
2 ξ2

j,n

d
“ p1` oPp1qq

ap1´aq
2

1
E2
n´k,n

1
k

řk
j“1Ẽj

2
„

ap1´aq
2 L´2

nk , (in probability),

and we conclude using H4pivq.

‚ Finally, remind that

R
p∆q
6,k “

p̂k
c̃En´k,n

´

E1´a
n´k,n ´ L

1´a
nk

¯

.

This term is 0 in the case θX ď θC (a “ 1). So, we only consider the case θX ą θC , where 0 ă a ă 1 and p̂k
tends to 0 (see Lemma 1 in Subsection 3.1). By the mean value theorem,

E1´a
n´k,n ´ L

1´a
nk “ p1´ aqL´ank

˜

rLnk
Lnk

¸´a

pEn´k,n ´ Lnkq,
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where rLnk is between Lnk and En´k,n. Hence
rLnk
Lnk

tends to 1 and, since
?
kpEn´k,n ´Lnkq

d
ÝÑ Np0, 1q (see

Lemma 5), we have
?
kL1´b

nk |R
p∆q
6,k | ď oPp1qL

´b´a
nk “ oPp1q.
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