N

N

Estimation of extremes for Weibull-tail distributions in
the presence of random censoring

Julien Worms, Rym Worms

» To cite this version:

Julien Worms, Rym Worms. Estimation of extremes for Weibull-tail distributions in the presence of
random censoring. Extremes, 2019, 22 (4), p667-704. 10.1007/s10687-019-00354-2 . hal-02024397

HAL Id: hal-02024397
https://hal.science/hal-02024397
Submitted on 19 Feb 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02024397
https://hal.archives-ouvertes.fr

ESTIMATION OF EXTREMES FOR WEIBULL-TAIL DISTRIBUTIONS IN THE
PRESENCE OF RANDOM CENSORING

Julien Worms (1) & Rym Worms' (2)

(1) Université Paris-Saclay/Université de Versailles-Saint-Quentin-En-Yvelines
Laboratoire de Mathématiques de Versailles (CNRS UMR 8100),
F-78035 Versailles Cedex, France,
e-mail : julien.wormsQuvsq.fr

(2) Université Paris-Est
Laboratoire d’Analyse et de Mathématiques Appliquées
(CNRS UMR 8050),
UPEMLV, UPEC, F-94010, Créteil, France,

e-mail : rym.worms@u-pec.fr

Abstract

The Weibull-tail class of distributions is a sub-class of the Gumbel extreme domain of attraction, and it
has caught the attention of a number of researchers in the last decade, particularly concerning the estimation
of the so-called Weibull-tail coefficient. In this paper, we propose an estimator of this Weibull-tail coefficient
when the Weibull-tail distribution of interest is censored from the right by another Weibull-tail distribution:
to the best of our knowledge, this is the first one proposed in this context. A corresponding estimator
of extreme quantiles is also proposed. In both mild censoring and heavy censoring (in the tail) settings,
asymptotic normality of these estimators is proved, and their finite sample behavior is presented via some
simulations.
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1. Introduction

In recent years, the problem of studying extreme events and estimating extreme quantiles for randomly
censored data has caught the attention of a growing number of researchers, due to the numerous applications
which call for concrete solutions. Examples of such domains of application are non-life insurance, survival
analysis, system or "material” reliability... Beirlant et al. (2007) and Einmahl et al. (2008) presented a
general method for adapting estimators of the extreme value index in this censorship framework. Worms
and Worms (2014), Beirlant et al. (2019) and Worms and Worms (2015) proposed a more survival analysis-
oriented approach, the two first being restricted to the heavy tail case. Ndao et al. (2014), Ndao et al. (2016)
and Stupfler (2016) extended the framework to data with covariate information. Beirlant et al. (2016)
and Beirlant et al. (2018) proposed bias-reduced versions of two existing estimators. See also Brahimi
et al. (2015), Brahimi et al. (2016) and Brahimi et al. (2018) for other papers on the subject.

However, a number of these works assume that the observed data come from heavy-tailed distributions
(for both the sample of interest and the censoring sample), while many applications for which extreme events
need to be studied do not exhibit a heavy-tail behavior, particularly in the survival analysis domain, where
the censored data are lifetimes of patients or of animals, or time-to-failure of systems or items. For example,
in Gomes and Neves (2011), the authors show that some larynx cancer or leucomia datasets do not exhibit
a heavy right-tail.

We consider in this paper the Weibull-tail framework, where both the censored and censoring distributions
have exponentially decreasing survival functions, driven by a coefficient defined a few lines below and called
the Weibull-tail coefficient. This sub-class of the Gumbel max-domain of attraction has been the topic of
a fair amount of papers in the extreme value analysis literature (Beirlant et al. (1995), Girard (2004,a),
Gardes and Girard (2005), Diebolt et al. (2008), Goegebeur et al. (2010), to name just a few). But, to the
best of our knowledge, all of them took place in the complete data setup. The present paper seems to be
the first to propose an estimator of the Weibull-tail coefficient adapted to random censoring. As a corollary,
a new estimator of extreme quantiles for light-tailed data will be studied.

Let us now detail the exact framework of this paper. We consider the observation of a sample of n
independent couples (Z;,0;)1<i<n Where

Zi = min(Xi, Cz) and 51 = ]Ix,igci. (1)

In this definition, the ii.d. samples (X;);<n and (C;)i<n, of respective continuous distribution functions
F and G, are samples from the variable of interest X and of the censoring variable C, measured on n
individual items (insurance claims, hospitalized patients, ...), but for each item or individual, only one of the
two measurements (the lowest one) is observed. The variables X and C' are supposed to be independent and
we will suppose in this work that they are non-negative. We will denote by 7, , < ... < Z;, < ... < Z,,
the order statistics associated to the observed sample, and by (01, ...,0n,n) the corresponding indicators
of non-censorship.

The goal is to investigate the right-tail of F', and the main assumption of this paper is that, in the
relations

F(z) =1-F(z) = exp(—Ap(z)) and G(y) = 1-G(y) = exp(—Ac(y)). (2)
the cumulative hazard functions Arp and Ag are semi-parametrically modeled by the relations
Ap(z) = 2/%1p(z) and Ac(y) =y *la(y), 3)

for some positive parameters 6x and 6¢ and slowly varying functions (at +o) g and lg. This setup is the
one where F' and G are said to be Weibull-tailed, and fx and ¢ are the so-called Weibull-tail coefficients
of F' and G.

Our aim is to estimate the coefficient 6x using the observed sample (Z;);<, and the observed non-
censoring indicators (d;)i<,. Noting H the cumulative distribution function of the observable Z, and H(x) =
1— H(x) = P(Z > x), by independence of the samples X and C' we have H(z) = F(z)G(x) = exp(—Ag()),
where

Ap(z) = Ap(z) + Ag(z) = 2% p(z) + 2V/%1g(x) = /971y (x), where 60z = min{fx,0c}
and [y is a slowly varying function at infinity. More details on this function (and on other slowly varying
functions) will be provided later in this paper.

The case where fx < 6¢ can be viewed as the case where the censoring tail is similar to, or heavier
than, the tail of the variable X of interest, i.e. the censoring is expected to be moderate in the tail (more
2



details about this in a few lines). In this case, the Weibull-tail coefficient 6, of the data Z is equal to the
Weibull-tail coefficient 8x we wish to estimate, and so this would suggest that trying to define an estimator
of fx adapted to censoring is a waste of time : however, as simulations show (see Section 5), not taking into
account the censoring mechanism, by estimating 6 x by any non-adapted-to-censoring estimator of 6 based
on the observed data Z;, can often lead to an unreliable estimate of fx. So if theory suggests that the topic
of adapting Weibull-tail estimation to random censoring sounds like a non-problem (in the mild censoring
case), it turns out to be in practice an important issue which needs to be addressed.

The case where 0o < 0x is the case where the tail of the censored variable X is heavier than the tail of
the censored variable C, i.e. the censoring is expected to be strong in the tail. In this case, the Weibull-tail
coefficient 8z of the observed data is no longer equal to the one of the original sample X, it is equal to 0 :
in this situation, an appropriate strategy needs to be developed, which is detailed below.

Moreover, in practice, it is difficult to know a priori the position of the Weibull-tail coefficient of X with
respect to the one of C : the definition of our estimator of fx (see below) does not presume anything about
this position (however, the rate of convergence and asymptotic variance will differ whether 0y is lower than
f¢c or not).

It is important to note that the position of 8x with respect to 8¢ has an important impact on the amount
of censoring in the tail. As a matter of fact, Lemma 3 (in the Appendix) states that the ultimate probability
of non-censoring in the tail (limit of P(6 = 1|Z = z) for z — o0, denoted by p later on) turns out to be
equal to 1 when 0x < 0, to 0 when 6x > 6¢, and to a constant between 0 and 1 when 0x = 0. It is
however important to remember that this is an asymptotic value, and in practice, for finite sample sizes,
things are less clear-cut (the simulation Section 5 illustrates this). Moreover, other characteristics of the
underlying distributions (for instance, position or scale parameters) may have a non-negligeable impact on
the proportion of censoring, even in the tail : this delicate topic should deserve more attention in subsequent
works. In the sequel, the situation 6x < 8- will nonetheless be referred to as the "mild censoring” setting,
opposed to the ”strong censoring” setting when 6o < 0x.

Let us now explain how our estimator is defined. In the non-censored case (i.e. if we could observe
the original data values Xji,...,X,,), the usual starting point for designing estimators of the Weibull-tail
coefficient is to note that, by slow variation of the function [r defined in (3), we have, for ¢ large and any
x > 1, the approximation 0x log(Ar(tz)/A(t)) ~ log(x). Therefore, for some value k = k,, (the number of
top order statistics used in the estimation) to be chosen, considering t = X, », and = Xy, j 11,0/ Xn—k.n
for every 1 < j < k in the above formula leads, after summation, to

~ Z?:](log(X7L—j+1,7z) - log(X,L_hn))
S (log(Ap(Xn—jt1,n)) — log(Ap(Xn—rn)))

where X ,,,..., X, are the order statistics. As was initiated in Beirlant et al. (1995) and developed in
Girard (2004,a), this suggests define an estimator of fx in the complete data case by

(4)

é(complete) _ Z?:l(log(Xn—j"Flv") - log(Xn—kﬂl)) (5)
X S¥_ (log(log(n/4)) — log(log(n/k)))’

because log Ar(z) = log(—log F(z)) and F evaluated at some order statistic X,,_;;1,, can be naturally
estimated by j/n. However, in the censored setup, the observed variables are the Z;, which are associ-
ated with Ay, and not with Ar : therefore the previous trick that led to the deterministic denominator
Z?Zl(log(log(n/ 7)) — log(log(n/k))) cannot be used. Our proposition in the censored context is simply to
replace, in formula (4), the X’s with the observed Z’s, and to estimate the function Ap by its Nelson-Aalen
estimator 5

App(z) = >, —2— (6)

n—i+1

Zin<T

This leads to our proposition for estimating fx in the censored setup :
k
Zj:l (10g anjJrl,n - log ank,n)
Z?:l (log AnF(Zn—j-&-l,n) - log AnF(Zn—k,n))

In contrast with the estimator of fx in the complete data framework (and with a number of its variants),
our estimator has a random denominator, which behavior will turn out to be closely related to that of the
numerator.

(7)

Ox k=

3



Note that our estimator can be written as the ratio

Z?:l (10g AnF(anijl,n) - 1Og AnF(ank,n))
S (log(log(n/j)) — log(log(n/k)))

k
R C (logZy_ii1m —log Zn_ ko
07 = 2= (0B Zn—ji1n ~10B Zn-kn) RL, =

S (log(log(n/j)) — log(log(n/k)))

(8)
The numerator ézyk estimates the Weibull-tail coefficient 6, of the observed Z; (see Theorem 1 in Girard
(2004,a)). As far as only consistency is studied, it is possible to prove consistency of 0 x,k by proving that
the denominator RL,, converges to some crucial value a = 0z /0x, which is equal to 1 in the mild censoring
cases (fx < Ox or 6x = 0¢), and is lower than 1 in the strong censoring cases (fc < 6x). This is in fact
deduced from the proof of Theorem 1 and is stated later in this paper (Corollary 1). However, to establish
the asymptotic normality of our estimator, things are more complicated and we invite the interested reader
to have a look at the start of the proof of Theorem 1 in Section 3.

Anyway, it is interesting to note that, in a Weibull-tail situation, a possible correction for censoring could
be to divide an existing estimator of f in the complete data setup, by this statistic RL, that somehow
incorporates the censoring information of the data. This is similar to what is proposed in Beirlant et
al. (2007) and Einmahl et al. (2008) for adapting estimators of the extreme value index to the censoring
situation, namely the now well-known ”division by the proportion of non-censoring in the tail” strategy.
However, note that we do not know whether this strategy still leads to valuable estimators when applied to
other estimators of 8z than the basic estimator éz’k defined in (8).

Concerning now the estimation of extreme quantiles for Weibull-tail censored data, we propose to consider,
for any given small probability p, < 1/n, the natural estimator of x,, = F'~(p,) defined by

A — 1ngn éx,k
=Znkn
T b (An,F(an,n)

This definition comes from the applicixtion, to the values © =z, /Zp_kn and t = Z,,_j, ,,, of the approxima-
tion z ~ (Ap(tx)/Ap(t))?* = (—log F(tx)/Ap(t))?%, valid for t large and any x > 1.

Before going into the details of our results, we indicate here that in this work it is assumed that the
slowly varying functions I and I, defined in (3), both satisfy the classical second order condition SR2 :

9)

lF(Efw)) -1 lG((tz)) _
Ir(t la(

Vo > 0, FbFW - KPF (33)7 and GZ)GW - Kpc; (JJ), as t — +0o0, where Kp(m) = D ’ (10)
for some negative constants prp and pg, with rate functions bp and bg having constant sign at 400 and
satisfying |br| € RV, and |bg| € RV, (RV, stands for regular variation, at 400, with index p).

P —1

Our paper is organized as follows: in Section 2, we state the asymptotic normality result for 6,, and
Zp, - Section 3 and 4 is devoted to the proofs. Important lemmas and technical aspects of the proofs are
postponed to the Appendix. In Section 5, we discuss the finite sample behavior of our new estimators.

2. Results

Let us first introduce the following important quantities
92_ 1 if Ox < 0¢, b_l_a Ox
- 90/9){ G]O,l[ if Ox >90, ’ - 2 00.

Such definitions will be useful to state results in a general way, without having to discuss whether we are in
a mild or in a strong (ultimate) censoring setting.

a =

Ox

We have seen in the introduction that the cumulative hazard function Ay of Z is regularly varying of
order 1/07. Setting Ay, for the generalized inverse of A, we then have

Ay (z) = 2%1(z) and ApoAg(x) = 2%(x),

where [ and [ are slowly varying at infinity. The second formula is important in our setting since, by definition
of our estimator fx j, we will have to deal with the quantities Ap(Z,—j41,n)-
4



By Lemma 2 stated in the Appendix, and in its subsequent remark, we know that under assumption
(10), there exist positive constants cg, cg, ¢ and é such that, for > 0,
lp(z) =cp(l —xProp(z)) and lg(z) = cq(l — zPCug(x)),
l(x) = c(1 — zPv(x)) and I(z) = &(1 — 2Po(x)),
where |vp|, [vg|, [v] and || are slowly varying functions at infinity. Therefore, the functions I and [ satisfy an
SR2 condition, with negative second order parameter respectively denoted by p and p (exact expressions are
provided in Lemma 2) and respective rate function B and B, with constant sign at +00 and their absolute

value being regularly varying with respective index p and p. However, for technical reasons, we need to
assume the following stronger conditions noted R;(B, p) and R;(B, p), defined by :

Ry(B, p) : There exists a constant p < 0 and a rate function B satisfying B(z) — 0, as x — +00, such that
for all ¢ > 0 and A > 1, we have

wp | H)/0@) 1
Ae[1,A4] B(x)Kp()‘)

with | B| being necessarily regularly varying, at +oo, with index p.

— 1| < ¢, for x sufficiently large ,

In order to obtain the asymptotic normality of our estimator, we need the sequence (k) (number of top
order statistics to use) to satisfy the following conditions (we will note k = k,, from now on):

Hy : k— 40, k/n— 0, 285 0 asn — +oo0,

' logn

and, depending on the censoring strength in the tail, introducing the important notation L, = log(n/k),

(i) VEB(Lnk) —
H,: 0x <60 and (i1) VE B(Lni) — &
(iii) VE LI — o
(i) 36 > O,\/%LZZ‘S — 0, where p = max(0zpr,0zpc)
(i))VEk L} -0
i) \/EL;,S - 4o
i) 36 > 0, \/ELT_L,?“M — 0, where p = max(0zpr,0zpg,a — 1)
iii) 36 > 0, VE LTV o
() VL7~ =0

See Remark 2 below for a discussion on those conditions. Our main result is the following theorem.

Hglex=90 and {

(
H4lex>9(j and E

Theorem 1. Let conditions (2), (3) and (10) hold, as well as Ry(B,p) and Ry(B,p). We assume further
that (ky) satisfies conditions Hy and either Hy, Hs or Hy. We then have, as n — o0,

~ 92
\/EL;IS(GX,/? - GX) —d) N <m7 ;é) )

where
1 if Ox < Oc abx  Okco ,
¢=1 cr/(cr +cg) iffx =0c and m=1{ *7" P Oc o if 0x < Oc,
cger if 0x > O0¢c 0 iffx > 00

Remark 1. When 0x < 0¢, b is equal to 0 and thus, the rate of convergence \/EL;,i’ is the same as in the
non-censored case. It is slower when 0x > 0c. The asymptotic variance 9%/(6@) equals 93( when 0x < O¢
(i.e. the same asymptotic variance as in the non-censored situation), and is larger than 6% when 0x = 0c ;
nothing can be said in general about its position with respect to 6% when Ox > Oc.

Remark 2. When 0x < 0c, rate functions | B| and | B| appearing in assumptions R;(B, p) and Ry(B, p) are
reqularly varying of same order p = p = max(0xpr,d — 1) (see Lemma 2 in the Appendix), therefore, either
p = d—1 and thus conditions Hs (i), (i1), (1i1) essentially involve the same rate condition on ky, or p > d—1
and thus condition Hy(i) or (it) implies condition H(iit), with o = 0.

When 0x = 0¢, if p = —1, then condition H3(i) implies condition Hs(ii), and if p < —1, the implication is
reversed. When 0x = 0, only one of the conditions Hy (i1), (iii), (iv) remains, depending on the position of
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a and p.
Moreover, conditions Ha(i) and Hs (i), involving the reqularly varying functions B and B, do not appear in
the cases 0x = O, because they are consequences of Hs(i) or Ha(ii), with o = o/ = 0, necessarily.

Before stating the asymptotic normality of our extreme quantile estimator Z,,, defined in (9), we need to
introduce the following additional conditions (as n — o0) :

/. log Lk
Hl " loglog(1/pn) -0,

Hy(iv) : \/ELZ’,ipF —a.
Theorem 2. Let conditions (2), (3) and (10) hold, as well as Ry(B,p) and Ry(B,p). We assume further
that (ky) satisfies conditions Hy, H] and either Hy, Hs or Hy. We then have, as n — o0,

VEL?

) d 0%
—a (1 —1 — N .
IOg log(l/pn) ( 0g Lpy og xpn) <m7 ad )

3. Proof of Theorem 1

Remind that .
A %Z]‘:l (log anjJrl,n - IOg ank,n)

0X,k = — — .
%2?21 (log AnF(Zn—j-k—l,n) - log ATLF(Zn—k,TL))

Introducing Ei, ..., E, n independent standard exponential random variables, such that Z; = A, (E;), we
have, since A (z) = 2921(z) and Ap o Ay (x) = 2%l(z) with [ and [ slowly varying at infinity,

E,_; UEn—j+1.n)
108 Zn—it1m — 108 Zy_jom = 0710 ’”“”‘>+1o (W 11
8 Zn—j+1, g Zn—r, z g( Foin g Err) (11)
E,_; UE,_;
log Ap(Zy—ji1,n) —1og Ap(Zy_k.n) = alog <L]+1") + log M , (12)
Enfk,n Z(En—k,n)
Now, let
k
1 B, i1
M _ n—j+1,n
" kzlog( Enom >
Jj=1 ’
and

1 u AnF(Zn— j+1 n) AF(Zn—k n)
A, == log SRR : . 13
kj; ( AF(Zn*j+1,n) AnF(ank,n) ( )

Since the denominator in the expression for fx ; above equals

k k
1 N N 1
EZ <IOgAnF(Zn—j+17n) - IOgAnF(Zn—k,n)> = EZ logAF(Zn—j-ﬁ-l,n) - IOgAF(Zn—k,n) + An;
Jj=1

Jj=1

we obtain, using (11), (12) and relation 0x = 0z /a,

N 07M, + R,
bxn=0x = 3= Rn7l~+’An —Ox
0% Rt — R, ;— A
R VA R,;+ A,
Ox -1 Rni—0xR, ;

= —=A, (M,,L+ R -+ *1An) + ,
a a nd T @ aMn—i—Rn[-l-An

where

1 Z(En_an)) 1 I(En_ji1m)
Ryy =Y log [~ ) and R, ;=) log [ 20 ) 14
! k & ( Z(En*k?fﬂ) ol kj:1 & Z(En—km) ( )



We thus have the following representation, which shows that the behavior of the estimation error is essentially
based on the behavior of the statistic A,,

. 0
VEL (0xr — 0x) = (j) VELLP MWD, + (VLG Rag — 0xVELIL'R, ;) (aDy) ™

where the denominator D,, = L, M, + a 'L,xR, ita L\, will turn out to converge to 1. It is now
clear that the proof of Theorem 1 then follows from the combination of the following three propositions, the
first one being the most important and the longest to establish. These propositions are proved in the next
three subsections.

Proposition 1. Under the conditions of Theorem 1 we have, as n tends to infinity,
1 1 p _
A, & 1Eor) Lo g) —a (B —1) ) +oe(k V2L (15)
Lnk " C "
and “
VELL Ay =5 N (ma, %),
¢
where E,, = %Zle E; (sample mean of standard exponential variables), and

k ~ 1 HX ca 2 .
P 1 —all+—-|———=a iffx <bc,
Tk 2 n—j+ln ond ma = ( P) do et M =te

0 if0x =0
Please note that the exponential variables F; appearing in the statement of Proposition 1 are not the
same as those introduced at the beginning of this Section.

Proposition 2. Under the conditions of Theorem 1 we have, as n tends to infinity,

1—b P a if 0x < 0c, l-bp _ P a  if0x < 0c,
\/ELM Ry, { 0 iffx > 60, and \/%Lnk R, ; { 0 iffx >0

Proposition 3. Under condition Hy, we have L, M, 2, 1, as n tends to infinity.

Remark 3. First, remind that a = 1 and ¢ = 1 when 0x < O¢c. Let us highlight that the convergence
in distribution of \/EL}L?’A” stated in Proposition 1 comes from the confrontation between the two terms
appearing in the representation (15) of A, : the term in Py and the term involving the exponential sample
mean. The convergence in distribution of the term involving py is detailed in Lemma 1 in Subsection 3.1;
this will be the leading term only when 0x > 0¢ (in this setting, the constant b is positive and thus the
exponential term vanishes). When 0x < Oc, it will only generate a possible bias, and when 0x = O¢ it
participates to the asymptotic normality along with the exponential term.

The following corollary is then stated, concerning the statistic RL,, defined in equation (8) and discussed
thereafter. Note that this corollary certainly holds with weaker conditions.

Corollary 1. Under the conditions of Theorem 1, as n — o0, we have RL,, .

Its proof is short, so we will provide it here. With the same notations as in the previous page, we have
readily

i -1
1 1
RLn = (k) Z IOg IOg(n/j) - log log(n/k‘)> r(aLnan + LnkRn,l + LnkAn)y
T nk

where the mean inside the large brackets is equivalent to 1/L, (see Girard (2004,b) formula (15), for a
proof). The proof of Corollary 1 thus follows from Propositions 1, 2 and 3.

3.1. Proof of Proposition 1

Starting from the definition of A,, in (13), we introduce the first remainder term RgAk) by writing

1 AnF(an i+1 n) AF(ank n)
A'n, . log ) ~ >
k Z ( AF(ZN—j+1:n) AnF(ank,n)

_ lzk: Aar(Zn—ji1n) Ap(Zn—kn) 1) s @
k AF(Zn—j+17") AnF(Zn—k,n) b
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Now, using the definition of A, in (6), we obtain

k k
kZ ( wi(Zn—jtim) — Mur(Zn_pom ) = ;Z ; On el ;;5n—j+1,n = Pk

Hence, it can easily be checked that

AnF(ank n) (A) ﬁk 1 - n—j+1 n) (A)
Snflen—kn) (A, — R S 7J 1) +R
AF<Z71,—k,n) ( Lk ) AF(Zn—k n k g n k n) 2k
where .
1 1 /. Ar(Zp—om)
RY = — Nor(Zp—; —Ap(Zp—; R 7).
2,k AF(ank,n) k]; ( nF( n ]+1,n) F( n J+1,n)) <AF(an+1,n)
Since, V1 < j < k+1, Ap(Zn—jy1n) = (Ar o Ag)(Enjr1n) = Eg_j+17nl~(En,j+1,n), where [ is slowly

varying and tends to ¢ at infinity (cf Lemma 2, in the Appendix), then

AF(Zn—j+1,n)_1 _ <En—j+1,n>a Z(~En—j+1,n)_1 _ ((En—j+1,n>a _ 1>+(En—j+1,n>a Z(~En—j+1,n) _q
AF(ank,n) Enfk,n l(En—k,n) Enfk,n Enfk,n Z(En—k,n) ’

and, introducing (El, ceey E‘k) k independent standard exponential random variable such that, according to
Lemma 4, (En—jt1,n — En—kn)i<j<k 4 (Ek,;€7 . E~'1’k), we can write
M (Zn—tn) ( (A d D &) 1 Enjiig (A) (A) N)
SnklEnkn) (A _ R )= RA “hegrtk ) L R + R + R,
AF(Zn—k,n) Lk éEf{_k,n - 3k k]; ¢ En—k,n * - - 2k
where
(A) Pk 1 1
RS N F =
n—k,n l(Enfk,n) c
k a [7
RELAk) _ _lz (En—J-H,n) <Z(~En—]+1 n) )
kj:l En—kn Z(Enfk,n)

Let us summarize :

But

Ap(Zoiw) (1 (( B N
A iA n—~r,n Ll aT_a —aE—l R() +R A) 16
" Ar(Zo—kn) \ Bnkom nkog Z Lk (16)
We shall show, in Lemma 7 in the Appendix, that \/EL}l;b Z?:l Rii) tends to constant. Moreover, we have

Vk(E, —1) ~4, N(0,1), and, according to Lemmas 5 and 6, both ZEak— and ArZu—km) tond to 1 as
n—k,n A,LF(Zn—k,n)

n — +00. Hence

VELLPA, £ (1 + 0p(1)) (Dn —aVkL;t (B, — 1)) (1+op(1 Z R, (17)



where

= \/EL:”? (Ll a? — a) , with b= (1 —a)/2.
It remains to study the behavior D,,, which is done in the following Lemma.

Lemma 1. Under the assumptions of Theorem 1, we have, as n — 4+ :

1 Ifx <6 , then Dy = VE(p — 1) F> X G o1,
90 CF

R 1
2. IfOx = bc thenDn=\/%<p’“—1> —>N<O,p), where p = &= —F

D p cr t+ca
3. If 0x > 0¢c (hence a <1 and b€]0,1/2[), then D, -4, N(0,a/¢).

Remark 4. Lemma 1 shows, in particular, that the proportion of non-censored data in the tail py tends to
1,if0x <Oc, top=2¢= CFCfCG, if 0x = 0c and to 0 (with rate Ligl) if Ox > 0. This has to be linked to
the result of Lemma 3 (see the Appendiz) concerning the limit of the function p(-) defined below.

When 6x < ¢, Lemma 1 states that D,, converges to a constant : hence, via Lemma 7, the leading term in
(17)is VkL,} (E, — 1) = Vk (B, — 1) ~%, N(0,1), and we thus obtain as desired VAL °A,, —% N(ma, 1)
via Lemma 7, where ma is defined in the statement of Proposition 1. When 0x = f¢, the constant b is still
equal to 0 and both D,, and vk (En — 1) (which are independent) take part into the asymptotic normality
of A, with D,, — av'k (E, — 1) 4, N(0,03%) in relation (17), where 03 = 1771” +a® = 1. Thus, we obtain

VELEPA, <, N(0,%). Finally, when 6x > 6c, VkL, ) (E, — 1) tends to 0 and D,, is thus the leading
term : we obtain \/EL;I’A” 4, N(0,9).

The rest of the subsection is now devoted to the proof of Lemma 1 .

Let us introduce the function p defined by
p(z) =P =1|Z = z).
Proceeding as in Einmahl et al. (2008), we carry on the proof by considering now that d; is related to Z;
by
0 = I[Ui<17(zi)’

where (U;);<n denotes an independent sequence of standard uniform variables, independent of the sequence
(Zi)i<n. We denote by Uy ), ..., U,y the (unordered) values of the uniform sample pertaining to the
order statistics Z; , < ... < Z,,,, of the observed sample Z1,..., Z,.

Remind that Z; = A5 (E;), where Ey,. .., E, are independent standard exponential random variables.
We introduce, for every 1 < ¢ < n, the standard uniform random variables V; = 1 — exp(—FE;) such that
Zi = Ay (—log(1 —V;)), and define the function

r(t) = (po Ag)(~log?).

Lemma 3 provides valuable information about the behavior of r(-) at infinity. We now write,

l1—a
Lnk —a
U[n J+1, n]gr(l Vn—j+1,n)

( Uln—j+1,n1<r(1=Vo—jt1,n) _HU[n_j+1,n]<T(j/n))

= VkL,p <L’}Lk‘a : ~ a)

S
55

1
L (e
\/’Z( z I[U['n. jr1,mSr(i/m) T

=: Tl,k + T27k

Whatever the position of §x versus ¢, we will prove below that the term T} above converges to 0 in
probability. It turns out that this amounts to proving that, for some positive sequence v, = o(1/n) (to be

9



chosen later) and some constant ¢ > 0,

<t <

VELL,Sn =50 where S, := sup{ [r(s) —r(t)] ; %

1
- s —t| < cVk/n, s> n} (18)
As a matter of fact, if we introduce the events

Ape = {suplgjgk [(1=Vojsin) —i/n| < cf/n} and B, ={1—V,, > uv,},

then, since |Iy<q — Iy<p| 4 Iy<ja—p| for any standard uniform U and constants a, b in [0, 1], it comes

k
1 ~
P(|Tikl>6) < P (k D, <l 1=V ys10)—rGiym)| > 65/(\/EL21€)>
i=1

k
< P(VELLSuk>n) + P (;Z Ly, coivize,) > 55/(VELgk)> + P(BS) + P(AS )
for any given 6 > 0 and 7 > 0. The second term in the right-hand side is (by Markov’s inequality) lower
than ¢d/n (which is arbitrarily small), the third term is equal to nv, (14 0(1)) = o(1), and the fourth term is
arbitrarily small (for ¢ large enough) by the weak convergence of the uniform tail quantile process. Therefore,
we are left to prove that vVkLY, S, . = o(1) (i.e. relation (18)), so that T} s = op(1) will be proved. This is
done in the different cases distinguished below, along with the treatment of the main term 75 k.

The whole proof heavily relies on the first and second order developments stated in Lemma 3 of the Appendix,
concerning the function po Ay

1. Case Ox < 0¢

In this situation, we have a = 1, b =0, ¢ = 1 and p = lim, , o, p(z) = limpor(t) = 1 (see Lemma 3 ).
Hence

k
TZ,k = ﬁzj‘:l ( Un—j+1,n<r(j/n) — 1)
d k ; k i
= i (ysrm = A =r(i/n) = X5 (1 = r(i/m)
= _T2/,k: - Té’,kv

where TQ”  turns out to be a sum of centered independent random variables. Let us now prove that TQI,k =
op(1), Ty, tends to Ao’ (here A = 0—"%‘? where o is defined in condition Hs(iii)) and that V.S, — 0
’ CF )
(hence, as explained above, T3, = op(1)).
Concerning T5 ;,, by definition of r(-) and thanks to Lemma 3 stated in the Appendix, we have
1—r(z) = A(~logz)? 1 (1 + o(x)) where d=0x/0c €]0,1][.

Therefore, since log(n/j)/Lnk tends to 1 uniformly in j under condition H; (Lemma 5), we obtain

,_.
w\»—‘

k k
UT4) = £ L)L =r (/) < T 0= Gm) < L AG -+ o),

which implies that V(73 ;) tends to 0, since d < 1.
Concerning TQ”,,C, we have similarly, using now assumption Hs(iii) and Lemma 5 (logn/j ~ Lyk),
Ty} = AL+ o()Vk(Lyi)™' =5 Ad/.

Let us now deal with \/ESmk. From now on, let ¢st denote some generic positive constant. Since ()
converges to 1 as t \, 0, and thanks to Lemma 3, we have, for s and ¢ small,

1 1
r(s) —r(®)] = i) r(s)r(t)

< est {|(—logt)t — (—logs)? | + |(—logt) " Pu(—logt) — (—log s)? ' Pu(—logs)|}

Introducing the set Z,, = { (s,t); 1/n <t <k/n, |t —s| < cv/k/n, s = v, } and reminding that v,, = o(1/n)
(an appropriate sequence will be chosen in few lines), it can be checked that applying the mean value theorem
to the function h(t) = (—logt)?~! of positive derivative h'(t) = (1 — d)t=(—logt)?~2, yields for large n

10



(below, u = u(s,t) denotes some appropriate value between s and t)
VESUP(q ez, [1(E) = h(s)] < sup e, W ()|t = 5| < estVRL L eV/n = st A= LI,

This is the first step towards the proof of \/ESn’k = o(1). The second step requires to do the same job with
the function h(t) = (—logt)?~1=Pv(—logt), where v(-) is slowly varying at infinity. It is known (cf Bingham
et. al. (1987) page 15) that we have zv’(z)/v(x) — 0 and z—%v(z) — 0 as z — 0, so that

W () =|1—d+ B%(— logt)?=2 |1 — cstxv/(x)‘ xPlu(z)| < est|h ()]

v(z)
where x denoted (—logt), which is large when ¢ is close to 0. Therefore, taking into account all the previous
findings, and considering the choice v,, = k~¢/n = o(1/n), we have proved that for n large

2(1+e€)
\/ESWC cst—— Ld 2 = cst. k;HGLd 2 = cst (\fL(d 2)/2”)

which turns out to be o(1) as soon as 0 < § < d/2 thanks to assumption Hz(ii). This ends the proof of
Lemma 1 in the mild censoring case fx < 6¢.

2. Case 0x = 0¢
Here, we also have a = 1, b = 0 but now ¢ = —%£— = p = lim,_, p(2) = limy\ o 7(¢). It is clear that

crptca
k
Z (4/n) —

’UM—‘

k
d 11
Thy = gﬁz (HUjgr(j/n) (J/”
i—1
= Ty + T3
Let us prove that T , 4, N(0,2 ) while 73, and \fSn & are both o(1).

Concerning T5 ;,: we have
11¢
VTZk ;%Z r(i/n)(1 —r(j/n)),

which tends to 1%”, since r(j/n) tends to p, uniformly in j (see Lemma 3). We conclude, for this term, using
Lyapunov’s theorem (details are omitted, here r(j/n) < 1).

Concerning T3, , since Lemma 3 of the Appendix yields r(¢) = p (1 — (—log?)?v(—logt)), we have (for
some J > 0)

k k
" - 1
T3 = Z log(n/4)) v(log(n/§)) = —=Vk(Luk)? L, go( %Z

where we noted u, ; = log(n/j)/Lnk, which tends to 1 uniformly in j thanks to condition H7, and used the
fact that v(log(n/j)) ~ v(Lnk) because v € RVy. The Riemann sum on the right-hand side converges to 1,
so for a choice of ¢ satisfying assumption H3(i), we have proved that 7, = o(1).

Concerning now v/kS,, x, we proceed similarly as in the first case. Introducing h(t) = (—logt)*v(—logt)
where v(-) is slowly varying at infinity, we have as previously |’ (t)| = 1(—logt)P=*<o(1) for t \, 0 and any
some small € > 0. Therefore, Lemma 3, definitions of S, ; and of the set Z,,, along with the mean value
theorem, yield

\/Esmk =¢C sup \B(t) —B(s)\ <estvk sup {|I~z'( )t —s|} < cst\f Lp 1+6~f

(s,t)€Zn (s,t)€Zn

Choosing, in the definition of S, k, the sequence v,, = k~¢/n = o(1/n) for some small € > 0, we have

_ 2(1+e€)
\/>Sn . = cst (\/>L p—1+e€)/(2( 1+e))) — cst (\/ELglpk 1)/2+5)

which turns out to be o(1) according to assumption Hs(i) (if p = 1) or Hs(ii) (if p < 0), as soon as ¢ is
sufficiently small. This ends the proof of Lemma 1 in the semi-strong censoring case 0x = 0¢.

2(1+e€)

3. Case 0x > 0¢
Now we are in the situation where a < 1,b = (1—a)/2 €]0,1/2[, ¢ = £ and p = lim, . p(2) = limy\ o 7(t) =
G
11



0. Since 1 —a — b = b, we have readily

k

¢ Lb 1 aL—
o, = b Z U;<r(j/n) — r(j/n)) (
]:1

r(i/m 1)

=: Tz’,k + T2”k
Let us prove that T , -4, N(0, %), while T3, and VKLY, S,k are both o(1) (the latter will guarantee that
Tik = op(1)).

Concernin T’ .. we have
2,k
)

L2b
V(T3e) = 2 L/ = (/o)

Lemma 3 in the Appendix yields the following first order development, as t \, 0,
r(t) = aé(—1logt)* 1 (1 + o(t)) = aé(—logt) (1 + o(t)). (19)

Since uy, ; = log(n/j)/Lyk tends to 1 uniformly in j, under condition H; (see Lemma 5), it is then easy to
see that V(T3 ;) tends to 2. We conclude concerning 75 ;, using Lyapunov’s theorem (again, details are easy
and omitted).

Concerning Ty ;,: we write

Lok ) —1 - (Lf;’gar(j/n) - (%)) - ((1;7{}3)) - 1)

and treat these two terms separately. Using the second order formula stated in Lemma 3, we have

1 (—logt)t—@

D =1+ — (1- (—logt)ﬁv(—logt)) . (20)

and consequently, for some small § > 0,
ac B (log(n/ 7)
L er(j/n) Lk

) (1= (log(n/4))Pu(log(n/)) + ac(log(n/))*)
>1a (1 — L7H00(1) + acLo7 (1 + 0(1)))

where we used condition H; and the slow variation of v, which guarantees that v(log(n/j)) ~ v(Lnx) and
r7%(x) — 0 as 2 — 0. Now, since p = max(0zpr,0zpg,a —1) = a — 1, it comes

Er i) () = (o))

and therefore the first term of 73, is equal to aVEL 2 P00(1), which tends to 0 under condition Hy(ii).

The second term of T2” St
1—a
kL —-1].
vk ”’“kz ((log (n/7) ) )

l1—a .
But (W) —1=(a— 1)%(1 + o(1)) with %Z?:l log(k/j) tending to 1. So the second term of

T3 is equal to
ala = 1)VEL,;"*(1+ o(1)),
and this quantity tends to 0 under condition Hy(iv).
Concerning now \/ELZkSn,k, we have
1 1
r(t)  r(s)

Thanks to the first order relation (19), the second supremum of the right-hand side is lower than a constant
2(a 1)

sup {r(t)r(s)}.

(s,t)eZy

Snk = sup |[r(t) —r(s)| < sup
(s,t)eZy (s,t)eZ,,

. The first supremum will be handled with the more precise second order development (20),
12
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which yields

sup
(s,t)eZ,

r(t)  r(s)

where we define h(t) = (—logt)'~* and h(t) = (—logt)'~**Py(—logt). Contrary to the functions arisen
in case 1, the functions h and h tend to infinity instead of vanishing to 0, when ¢ N\, 0 : this will be
counterbalanced by the second supremum. Studying derivatives of the functions h and h, and again using
a first order Taylor expansion, we obtain via similar computations as in the previous cases, for n large and
any € > 0 (with the choice v, = k~¢/n),

(s,t)€Zn (s,t)eZy,

—cst{ sup |h(t) — h(s)] + sup |ﬁ(t)—ﬁ(s)|}

B
L) r(s)

Therefore, gathering the two suprema, we have (for some small value of § > 0 depending on ¢)

_ 2(1+€)
ankSn k < cst. kHELZkaLQ(a b _ cst.kHeL;,i_b = cst <\/ELn,£1+b)/2+‘s)

< cst.kl/2+6L;,g

sup
(s,t)eZ.

which, by assumption Hy (i), converges to 0 as n — .

3.2. Proof of Proposition 2
Remind from (14) that

Zlog( "”1”)) and R, ; = kz (”J“)>

E, kn) ( n k,n)

Let A > 1. Under condition R;(B, p), we have for all ¢ > 0 and ¢ sufficiently large

I(t
(1— e BK,(x) < z((f)) 1< (1+0BMK,(z) (Y1<z<A).
We only prove the result for Ry, the proof for R, ; being very similar, using R[(B, p) instead of R;(B, p).
Note that

k
n 1= Z 1 + €] n)j)s
where &, = % 1 tends to 1 uniformly in j, because [ is slowly varying and LZ“ tends to 1

uniformly in j, according to Lemma 5. Hence, using the following inequality,

r—2?/2<log(l+z) <z (Vor=-1/2)

and the fact that z,,, := % > 1 tends to 1 uniformly in j, we obtain that for all € > 0 and n sufficiently

n—k,n
large,

1 k " ) 1 k
n—j n
nl kz< _1)<(1+6 nkn %g mJn

n kn)

omitting the lower bound, which is treated similarly. Since K,(1+x) ~ x when x tends to 0, then K,(z;.,) ~

En—jt1in—En_k.n
En_kn

Enjt1mn—En_kn & Ex_jiin
En—k.n En*k,n

k
Z x]n — 1.

o ken B(En_k.n B(Ln,
Since B is regularly varying and 7’€ — 1, then Bnkm)  Bllnk)
n Enfk,n Lnk

, uniformly in j. By Lemma 4, . Hence, it is easy to prove that

?T‘\H

nkn

and consequently

VEL,PB(Lui)(1 + op(1)) < liminf VAL "Ry < limsup VALY PRy < VEL, P B(Loi)(1 + 0p(1)).

We conclude using assumption R;(B,p) and conditions Hs(i), Hs(i) or Hy(ii), because |B| is regularly
varying of order p, and we have p = p when 0x < ¢, and p < p when 0x > 0c (see Lemma 2).
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3.3. Proof of Proposition 3
Recall that

Bujurn By apd —Lex P, 1, uniformly in 5 = 1,...,k (see Lemma 5), then %:1" 21

log(n/j) log(n/j7)
uniformly in j = 1,...,k. By Lemma 4, (E,,—j41,n — En—kn)i<j<k 4 (Ekk,-- -, E1). Therefore

k

E 1 ~

225 o (14 B8 ) et S
n—k,n j=1

with %Z?=1Ej — 1, a.s. Hence, L, M, also tends to 1, in probability.

Since

)

4. Proof of Theorem 2

Starting from x,, = F~!(p,) and the definition of Z,, in (9), we obtain
")
)

log(zp,) = Oxloglog(l/py) +log(lr(—log(pa))),
1Og(i' = 9X,k IOg IOg(l/pn) - eX,k IOg(AnF(Zn—k,n)) + IOg(Zn—k,n)'
Hence
log(ip, /1p,) = (Oxx—0x)loglog(1/pn) — fx xlog (%(Zn—k,n)) — (Ox,k — 0x) log(Ap(Zn—k,n))
+{~log(lr(log(1/pn))) — Ox log(lr(Zn-r.n))} ,
=: Ql,n + QQ,n + QS,n + Q4,n~
First of all, the result of Theorem 1 implies that
VEL,? 0%
—"% 1 KL Y(Ox, —0x) -5 N .
loglog(l/pn)Ql’ = VRL(Ox — 0x) < ac)
Then, Lemma 6 (stated in the Appendix) implies that (A, r/Ap)(Zy ) —1 = Op (1/(\/EAF(Z,L,;HL)))
Hence JEL-b
kL~ 1
S0, = Op(1) —0.
log IOg(l/pn) Lnk log IOg(l/pn)AF(Zn—k,n)

Now, remind that Ap(Z,—kn) = Ap o Ay (En—kn) = E2 [(En_kn) Hence, the asymptotic normality of

n—k,n
(éX,k: — 9)() yields

VEL? B log(Lut) _( ,10g(En—t.n) 10g(I(Ep—p.n))
loglog(l/pn)QB’"_Op(l)loglog(l/pn)( log(Lux) | 108(Luk) )

The additional condition H{ of Theorem 2, along with Lemma 5, imply that this term tends to 0 in proba-
bility.

Finally, Lemma 2 implies that
Qun = —log (1 — log(l/pn)eprz‘;(log(l/pn)) —Ox log (1 — ZZFk WU (Zn_km)) ,

b
where v and v are slowly varying. Hence, &%Qzl,n tends to 0 as soon as there exist some 0 < § < 1
VEL,

VEL,; 5 .
such that W(Og 1/pn)9XPF+5 = O( ) and mzsiz’n = O]P?(l) Remind that Zn—k,n =
Ezzk A(Ey_gn). Hence, condition H guarantees that we only need to show that VAL JH%7 = O(1)

and fL;,?wzpF = O(1). When 0x = 0z < ¢, this is due to the additional condition Hs(iv). When
Ox =0z = 0c, it is due to condition Hs(i). Finally, when 0x > 0z = 0, it is due to Hy(ii).
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5. Finite sample comparisons

In this section, we illustrate, using a few simulations, the finite sample performances of our estimators
of 0x and z,, (for small p,), in terms of observed bias and mean squared error (MSE). The sample size
n = 500 has been considered.

We consider two classes of distributions of Weibull-tail type, for the target X and the censoring variable

C:
o Weibull(1/6) with c.d.f. 1 —exp(—z/?) (z > 0), which Weibull-tail coefficient is 6.
e Gammal(a,b) with c.d.f. {7 T'(a)~'b"u*" e "du (z > 0), which Weibull-tail coefficient is 1.

We consider two cases : a Weibull distribution censored by another Weibull distribution and a Gamma
distribution censored by a Weibull distribution. In each case, we consider three situations with 0x < 6¢,
O0x = 0¢c or Ox > ¢, corresponding to different intensities of the censoring in the tail.

In Figures 1 and 2, we compare our estimator f , defined in (7) with the estimator 6¢°""'**) defined in
(5), which is applied to the X sample as if it was observed (of course, in practice, it is not, so the comparison
is of theoretical interest only). We also compare it with 6z, defined in (8), which is the same expression as

ég?omp 1ete) g applied to the observed sample Z.

For each considered distribution, 2000 random samples of length n = 500 are generated ; median bias and
MSE of the above-mentioned estimators are plotted against different values of k,,, the number of excesses
used.

This small simulation study shows that for finite sample sizes, as expected, using an estimator (here 6 Z.k)
not adapted to censoring yields inaccurate results, even in the case x < 6o, where ézyk is consistent for
estimating f0x. The case Ox = O¢ is particular : since the censored and the censoring distributions have
the same Weibull-tail coefficient, it seems that @ZJC succeeds in reaching its target. We also see that our

proposed estimator fx ; has good performances, comparable to those of ég?omp %) i1, the non-censored case.

Note that the bias of fx ; does not vary much, whereas the MSE deteriorates when the censoring becomes
stronger.

In Figure 3, we illustrate the result of Remark 4 concerning the convergence of py, the proportion of non-
censored data in the tail, when the sample size n tends to +0o0. For three different situations corresponding
tobx <0c (P > p=1),0x =0c (pr — p = 1/2 for the distributions considered) or 0x > 0¢ (pr — p = 0),
we present plots of Py against k,, for three sample sizes n = 500, 5000, 50000.

We can see that the convergence of py is very slow : In particular, in practice, when 0x < ¢, the
proportion of non-censored data in the tail is quite far from 1. This explains why one needs to take the
censoring mechanism into account for the estimation of 6x and why the existing estimators, defined in the
non-censored setting, should not be used.

Now in Figures 4 and 5, for the value p,, = 0.01, we compare our estimator Z,, defined in (9) with the
following estimator

- IOg Pn éz’k
T = Zn— n\ 3. 7 _ /7 \ 3
o " <log<n/kn>)

which is the estimator defined in the non-censored setting, in Gardes and Girard (2005), but applied to the
observed sample Z. We also compare it with the existing estimator defined, in a more general censored
setting, by equation (8) in Einmahl et al. (2008) :

JEFG _ (A= Fo(Zn—k))/pn

);yc,lﬂom
xpn n—k,n + ak ﬁyc,Mom

-1

9

where 4%M°™ ig the moment estimator of the extreme value index vx of F' adapted to censoring (note that
~vx is equal to 0 in the Weibull-tail situation), and F;, stands for the Kaplan-Meier estimator of the c.d.f.
F. We refer to Einmahl et al. (2008) for the expression of ay.

We clearly see that the estimator Zz,, (not adapted to censoring) is inaccurate for the estimation of
Zp,. Indeed, 2z, actually estimates the quantile of H = FG < F and therefore underestimates x,,,, as

showed in our plots. We also show that our proposed estimator is competitive, especially in term of bias,
although the MSE is often higher than that of the existing estimator i‘fﬂF G,
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(a) Weibull(2) censored by Weibull(2/3), where 6x = 1/2 and ¢ = 3/2.
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(b) Weibull(2) censored by Weibull(2), where x = 1/2 = 0¢.
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(c) Weibull(2) censored by Weibull(5), where 6x = 1/2 and 6 = 1/5.

Figure 1: Comparison of bias and MSE of the estimators OAXJC (solid black), ég?omplem) (dotted blue) and éz,k (dashed red)
for a Weibull distribution censored by another Weibull distribution.
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(c¢) Gamma(0.8,1) censored by Weibull(2), where 6x =1 and 0 = 1/2.

Figure 2: Comparison of bias and MSE of the estimators OAXJC (solid black), ég?omplem) (dotted blue) and éz,k (dashed red)
for a Gamma distribution censored by a Weibull distribution.
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(c) Weibull(2) censored by Weibull(5), where x = 1/2 and 0 = 1/5.

Figure 4: Comparison of bias and MSE of the estimators &, (solid black), ifn (dashed red) and i"ffc (dotted blue) of the

quantile zp, (pn = 0.01), for a Weibull distribution censored by another Weibull distribution.
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6. Appendix

6.1. Details on the second order conditions

Remind that the starting assumption of this paper is relation (3),
Ap(x) = V%% p(z) and Ag(z) = zV/%lg(x),
where [r and g are slowly varying. It is then easy to prove that
Ap(z) = 2%%1p(2), Ag(z) = 2%lg(x), Au(x) = 2Vl (x), Ay (z) = 2%%1(z) and Ap o Ay (x) = 2%l(z),

where 07 = min(fx,0c), a = 0z/0x, and I, lg, | and [ are slowly varying. More precisely, we have the
following Lemma, under the second order condition (10).

Lemma 2. Under (2), (3) and (10), we have,

lp(x) = cp(l — xPro(x)) and lg(x) = cg(l —xPeu(x)),
Ip(x) = X (1 — af>Pro(x)) and lg(z) = 5’1 —afercu(a)),
la(z) = ca(1 — aPru(z)), I(z) = ci??(1 —zPo(z))  and  I(z) = &1 —azPu(x)),
for different slowly varying functions generically noted v, with
Cp Zf@x<90 1 if9X<9(;
cH =1 cr+cg if0x=0c , é=cylcr =+ cp/(cr+ca) if0x =0c ,
ca if 0x > 0¢c C&aCF if 0x > 0¢c
maX(pF,l/ch]./ex) Zf&x <90 max(@xpp,dfl) Zf@X <90
pu = max(pr,pa) if0x =0c , p="0zpy =1 max(Oxpr,0xpc) ifbx ="0c ,
max(pg, 1/(9X — 1/90) if 0x > 0¢c max(&cpg,a — 1) if 0x > 0¢c
and
- _Jp if 0x < 0c
p= maX(ecpg,ach,a— 1) if@X > 00

The proof of this Lemma is based on Theorem B.2.2 in de Haan and Ferreira (2006) as well as the concept
of de Bruyn conjugate (see Proposition 2.5 in Beirlant et al. (2004)). Details are ommited for brevity.

Remark 5. It is clear that all the aforementioned slowly varying functions satisfy the second order condition

SR2 with the corresponding second order parameters defined in the previous Lemma. In particular, rate
zPv(x)

— —1/p and Bey —1/p, as x — 40,

zPu(x)
with v, the appropriate slowly varying function (see again Theorem B.2.2 in de Haan and Ferreira (2006)) .

functions B and B associated, respectively, to l and [ satisfy

Remind that the function p has been defined by p(z) = P(6 = 1|Z = x) at the start of the proof of Lemma 1.
The following Lemma provides useful developments of p and po Aj;. In particular, it provides details about
the rate of convergence of p(x), as & — +00. Its proof is based on the fact that

_ G(z)f(x)
p(l‘) A I ’
G(a)f(z) + F(x)G(x)
where f and g are respectively the derivatives of F' and G, as well as on the results of Lemma 2. It is omitted
for brevity.

Lemma 3. Under (2), (3) and (10), we have

— = —uxf X 1+ o0(1)).
v e n(@) T o)
In particular, as x — +00,
1 if 0x <0c,
p(l’)—> EZCF/(CF+CG) Zf@X 200,
0 ngx > 00.
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Moreover, we have

ifox <fo, 1/poAp)) = 1+dge" (1 -2 ()
F

Zf Ox = 9Ca (p © A;I)(x) 6(1 - :EPU(:L')),

ifox > 00, 1/(poAp)(®) = 1+ éxl_“(l — oPu(@)),

where d = 0x /0c, v is a generic notation for a slowly varying function and
—,B = max(@XpF, Ong,d — 1)
6.2. Technical Lemmas
Let F4,..., E, be n iid standard exponential random variables.
Lemma 4. According to Lemma 1.4.3. in Reiss (1989), we have
d -
(En—jt1n — En—kn)icj<k = (Br—j+1,k)1<j<ks

where By, ..., Ey are k independent standard exponential random variables.

Lemma 5. Under condition Hyi, we have, as n — +00,

Enfk,n i} EnfjJrl,n
Lk, " log(n/i)

We refer to Girard (2004,b) for the proof of this Lemma.

£, 1, uniformly on j=1,...k and \/%(En,k,n — Lng) 4, N(0,1).

Lemma 6. If we consider the classical random censoring model (1) with continuous distribution functions
F and G of the variables X and C, then the following in-probability results hold :

Ar(Zn—ji1n) — AF(Zn—j+1,n)‘ =O0p(1/y/j—1), forj=2,....k+1,
AnF(Zn,n) - AF(Zn,n) = OP(]')

The first statement is a part of Theorem 1 in Csorgo (1996). For the second statement, one has to make a
careful examination of Theorem 2.1 in Zhou (1991), in a narrower context, since the samples (X;) and (C})
we consider are i.i.d. , whereas Zhou considers possibly non-identically distributed censoring variables C;.
In pages 2269-2270 of the mentioned paper, one can find out that the maximum observed value (named T,)
does not have to be excluded from the probability bound (2.3) : it can indeed be proved, by following the
steps of the proof of (2.3), that for every n,

Ye>0, P [suptéznm Anp(t) — AF(t)‘ > e] < 6e2/3,

So the second statement of Lemma 6 follows.

6.3. Treatment of the remainder or bias terms REA,C), related to the main statistic A,

These terms appear in the representation (16) of A,,. We have the following results :
Lemma 7. Under the assumptions of Theorem 1, as n tends to infinity,

VELi;bRgﬁ) P, 0, for je{1,2,5,6}
\/EL:L;bR:(ﬁc) L —% if 0x <0c and 0 if Ox = 0c.
\/%LwlL;sz(lﬁ:) s —a ifbx < 6c and 0 if Ox > 6.

Proof of Lemma 7
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e Remind that

k ~
A 1 nk n i+1, n) AF(Zn—k,n)
Rg,k) = %Z ( J = ) —1

Zn— Jj+1, 77«) AnF(Zn—k,n
k
Z 10g 1 + fg n Ej,n) )

where

é‘, _ A"F(Zn—j-Fl,n) AF(Zn—k,n) 1
M AR (Zn—jiin) Ap(Zo_in)

Introducing A; = /A\nF(Zn_me,) —Ap(Zp—jy1n), for j =1,... k+ 1, we have readily

AF (ank n) AF( n—k n) 1
£-7n = — d A - Ak 1 .
! AnF(ank,n) AF( n—j+1, n) * AF( n—k n)
But Lemma 6 implies that |A;| = Op(1/4/j —1) for all j = 2,...,k + 1, |A;| = Op(1) and AFF((Zzi”‘k"))
tends to 1, in probability. Let E1,..., E, be n independent standard exponential random variable such that
L = Pntkn_ Ghere [ tends to  at infinity. Moreover, -fZn=kn) < 1 and Zo=kn tends to 1 (see

Ar(Zn—k,n) UEn—k,n)’ P AF(Zn—jy1n)
Lemma 5). Thus, we obtain |£1 | < (1 + op(1)) (O]p(l) + O]p(l/\/%)) /e + O]p(l)) and

&nl < (1+0p(1)) (Op(l/\/j -1)+ Oﬂ»(l/x/E)) L 2(1/é+ op(1)), for j =2,... k.
Therefore £7,, < Op(1)L,2* and

—2a

2 < op(l)fi’“

forj=2...,k.

Jm S

Consequently, smce a > 0, sup;¢jcs |€;n| tends to 0, in probability, and thus, using the inequality 0 <
z —log(l + z) < 2? (Vz = —1/2), we obtain,

But 123 1/~ logk Hence

Let € > 0. We have 1 — b — 2a = 3b — 1, and so we want
1—-2¢
Vi(log ) L = (K log k) (VELL )

to go to +co. This is automatic when 0 < b < 1/3. If b > 1/3 (i.e. when 0x > 30¢), we can write (1 —
3b)/(1—2¢) = 1—3b—4 for some positive § and small enough ¢, and we have /AL 30+ = \/EL b x [-20+179
: the first factor goes to infinity (it is the CLT rate, assumption Hy(7)), and the second factor as well for §
(i.e. €) small enough because b is always smaller than 1/2.

e Remind that

k
(A) 1 1 A ( AF(ank,n) )
RY = — =N (Rp(Zojorm) — Ap(Znjirn)) [ —mnhn)
2.k AF(Zn—k,n) k]; ( F( AR ) F( A )> AF(Zn—j+1,7L)

AF(ank',n) — x—a i(Enfk,n)
Ar(Zn—j+1,n) Jsn l'(AEn,J-Jrl,n)’
using the fact that sup; ;<) [Anr(Zn—j11,n) — AF(Zn—j11.0)] = Op(1) (see Lemma 6), we obtain

(A) B (1< 1 (En—t,n)
IRy )| < Op(1 )75(]5”7“) <kz %g 7~(En T 1')

Enfk,n
En_jt1,n

and that where x;, = — 1, uniformly on j (see Lemma 5). Hence,
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Introducing, once again, F4,...,Ex, k independent standard exponential random variables, such that,
Enjt1in—En_gn 4 Ey_jx

Fom Fo (see Lemma 4), and using a Taylor expansion, we have
k
_ 1 Ek k 1
R(A) E “k—jk 2
R < 0sE S | R DR ké]
Since E,, = %Z?:lEj and EL%’; tend to 1, in probability, the first term of the right hand side multiplied
by VELL? tends to 0, by the fact that VAL 2" tends to 0 under condition Hy(iii), Hz (i) or Hy(iv). For

the second term of the right hand side, we proceed as for R, ; (see the proof of Proposition 2), by using the
fact that condition Rl(B, p) implies Rl/l(—B, p) and again that VEL 27" tends to 0.

RA _ P 1 1
B \U(Bakg)  €)

where, according to Lemma 2, we have 1 — @ = 2zPv(z), with v slowly varying. Hence,

l nkn ~1

n J+1, n)

e Remind that

R$Y = (1+0p(1 »E;kwf?ﬁm e V(B in)-

We prove, in Lemma 1, that L1 ‘”’ E tends to a. Moreover, since v is slowly varying and Eukn tonds to 1
(see Lemma 5), we obtain

VELEPRS) = a(1 + op(V))WVELyy Po(Lok).
This term tends to 0 in the case 0x > 6¢, under condition H3(i) or Hy(ii). In the case 0x < 0¢, we use the
fact that %(:5) — —; (see Remark 5 in the Appendix). Thus,

. )
VELLPRS) = = =5+ or (VLB (La),

which tends to —% under condition Hj(i7), since p = p, in this case.

k a 7
RA) — 1 (Enjﬂ,n) {(En—jr1in) 1\
’ kj=1 Enfk;n Z(En—k,n)

The treatment of this term is very similar to that of R, ; (see the proof of Proposition 2). It relies on
condition R;(B, p), as well as Ho(ii), H3(i) or Hy(ii). It is thus omitted.

e Remind that i 5 " 5
(A) 1 Er—ji1k Er—ji1k
R = —— 1+ —"=| —-1| —-—a—2""3}.
5.k k Z { << * Enfkr,n ) > “ Enfkr,n

This term is 0 in the case fx < ¢ (a = 1). So, we only consider the case fx > fc (where 0 < a <1). It

e Remind that

is clear (see Lemmas 4 and 5) that &;,, = Eb’i*:““ 4 Egi:” — 1 tends to 0, uniformly in j. Hence, by a
Taylor expansion, we obtain '
A k  a(a—1
RY) = —(1+op(1)ix)h ez
4 (1+0]p>(1))a(12 a) ﬁik kzj 1E a(l= a)Ln,?, (in probability),

and we conclude using Hy(iv).

e Finally, remind that

(A) Pk 1 -
RG,k = ¢En—_kn (En Zn _Lnka)'

This term is 0 in the case x < ¢ (a = 1). So, we only consider the case 8x > 6¢, where 0 < a < 1 and pi
tends to 0 (see Lemma 1 in Subsection 3.1). By the mean value theorem,

—a —a —a Enk -
Eitfkr,n - L:Lk = (1 - a)Lnk <Lk> (En—k:,n - Lnk))7
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where L,, is between L, and E,_kn. Hence E—:)’: tends to 1 and, since \/E(En,kn — Lyng) 4, N(0,1) (see
Lemma 5), we have
VELL PR | < 0p(1)L 2 = 0p(1).

25



