Julien Worms 
email: julien.worms@uvsq.fr
  
Rym Worms 
email: rym.worms@u-pec.fr
  
Estimation of extremes for Weibull-tail distributions in the presence of random censoring

Keywords: AMS Classification, Primary 62G32 ; Secondary 62N02 Keywords and phrases, Weibull-tail, Tail inference, Random censoring, Asymptotic representation

The Weibull-tail class of distributions is a sub-class of the Gumbel extreme domain of attraction, and it has caught the attention of a number of researchers in the last decade, particularly concerning the estimation of the so-called Weibull-tail coefficient. In this paper, we propose an estimator of this Weibull-tail coefficient when the Weibull-tail distribution of interest is censored from the right by another Weibull-tail distribution: to the best of our knowledge, this is the first one proposed in this context. A corresponding estimator of extreme quantiles is also proposed. In both mild censoring and heavy censoring (in the tail) settings, asymptotic normality of these estimators is proved, and their finite sample behavior is presented via some simulations.

Introduction

In recent years, the problem of studying extreme events and estimating extreme quantiles for randomly censored data has caught the attention of a growing number of researchers, due to the numerous applications which call for concrete solutions. Examples of such domains of application are non-life insurance, survival analysis, system or "material" reliability... [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF] and [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] presented a general method for adapting estimators of the extreme value index in this censorship framework. [START_REF] Worms | New estimators of the extreme value index under random right censoring, for heavy-tailed distributions[END_REF], [START_REF] Beirlant | Asymptotic distribution for an extreme value index estimator in a censorship framework[END_REF] and [START_REF] Worms | Moment estimators of the extreme value index for randomly censored data in the Weibull domain of attraction[END_REF] proposed a more survival analysisoriented approach, the two first being restricted to the heavy tail case. [START_REF] Ndao | Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring[END_REF], [START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF] and [START_REF] Stupfler | Estimating the conditional extreme-value index in presence of random right-censoring[END_REF] extended the framework to data with covariate information. [START_REF] Beirlant | Bias reduced tail estimation for censored Pareto type distributions[END_REF] and [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF] proposed bias-reduced versions of two existing estimators. See also [START_REF] Brahimi | Necir Approximations to the tail index estimator of a heavy-tailed distribution under random censoring and application[END_REF], [START_REF] Brahimi | Nelson-Aalen tail product-limit process and extreme value index estimation under random censorship[END_REF] and [START_REF] Brahimi | Tail empirical process and a weighted extreme value index estimator for randomly right-censored data[END_REF] for other papers on the subject.

However, a number of these works assume that the observed data come from heavy-tailed distributions (for both the sample of interest and the censoring sample), while many applications for which extreme events need to be studied do not exhibit a heavy-tail behavior, particularly in the survival analysis domain, where the censored data are lifetimes of patients or of animals, or time-to-failure of systems or items. For example, in [START_REF] Gomes | Estimation of the extreme value index for randomly censored data[END_REF], the authors show that some larynx cancer or leucomia datasets do not exhibit a heavy right-tail.

We consider in this paper the Weibull-tail framework, where both the censored and censoring distributions have exponentially decreasing survival functions, driven by a coefficient defined a few lines below and called the Weibull-tail coefficient. This sub-class of the Gumbel max-domain of attraction has been the topic of a fair amount of papers in the extreme value analysis literature [START_REF] Beirlant | The mean residual life function at great age : Applications to tail estimation[END_REF], Girard (2004,a), [START_REF] Gardes | Estimating extreme quantiles of Weibull-Tail distributions[END_REF], [START_REF] Diebolt | Bias-reduced estimators of the Weibull tail-coefficient[END_REF], [START_REF] Goegebeur | Wet Generalized Kernel Estimators for the Weibull-Tail Coefficient[END_REF], to name just a few). But, to the best of our knowledge, all of them took place in the complete data setup. The present paper seems to be the first to propose an estimator of the Weibull-tail coefficient adapted to random censoring. As a corollary, a new estimator of extreme quantiles for light-tailed data will be studied.

Let us now detail the exact framework of this paper. We consider the observation of a sample of n independent couples pZ i , δ i q 1ďiďn where Z i " minpX i , C i q and δ i " I XiďCi .

(1)

In this definition, the i.i.d. samples pX i q iďn and pC i q iďn , of respective continuous distribution functions F and G, are samples from the variable of interest X and of the censoring variable C, measured on n individual items (insurance claims, hospitalized patients, ...), but for each item or individual, only one of the two measurements (the lowest one) is observed. The variables X and C are supposed to be independent and we will suppose in this work that they are non-negative. We will denote by Z 1,n ď . . . ď Z i,n ď . . . ď Z n,n the order statistics associated to the observed sample, and by pδ 1,n , . . . , δ n,n q the corresponding indicators of non-censorship.

The goal is to investigate the right-tail of F , and the main assumption of this paper is that, in the relations F pxq " 1 ´F pxq " expp´Λ F pxqq and Ḡpyq " 1 ´Gpyq " expp´Λ G pyqq,

the cumulative hazard functions Λ F and Λ G are semi-parametrically modeled by the relations Λ F pxq " x 1{θ X l F pxq and Λ G pyq "

y 1{θ C l G pyq, (3) 
for some positive parameters θ X and θ C and slowly varying functions (at `8) l F and l G . This setup is the one where F and G are said to be Weibull-tailed, and θ X and θ C are the so-called Weibull-tail coefficients of F and G.

Our aim is to estimate the coefficient θ X using the observed sample pZ i q iďn and the observed noncensoring indicators pδ i q iďn . Noting H the cumulative distribution function of the observable Z, and s

Hpxq " 1 ´Hpxq " PpZ ą xq, by independence of the samples X and C we have s

Hpxq " s F pxq s Gpxq " expp´Λ H pxqq, where Λ H pxq " Λ F pxq `ΛG pxq " x 1{θ X l F pxq `x1{θ C l G pxq " x 1{θ Z l H pxq, where θ Z " mintθ X , θ C u and l H is a slowly varying function at infinity. More details on this function (and on other slowly varying functions) will be provided later in this paper.

The case where θ X ď θ C can be viewed as the case where the censoring tail is similar to, or heavier than, the tail of the variable X of interest, i.e. the censoring is expected to be moderate in the tail (more details about this in a few lines). In this case, the Weibull-tail coefficient θ Z of the data Z is equal to the Weibull-tail coefficient θ X we wish to estimate, and so this would suggest that trying to define an estimator of θ X adapted to censoring is a waste of time : however, as simulations show (see Section 5), not taking into account the censoring mechanism, by estimating θ X by any non-adapted-to-censoring estimator of θ Z based on the observed data Z i , can often lead to an unreliable estimate of θ X . So if theory suggests that the topic of adapting Weibull-tail estimation to random censoring sounds like a non-problem (in the mild censoring case), it turns out to be in practice an important issue which needs to be addressed.

The case where θ C ă θ X is the case where the tail of the censored variable X is heavier than the tail of the censored variable C, i.e. the censoring is expected to be strong in the tail. In this case, the Weibull-tail coefficient θ Z of the observed data is no longer equal to the one of the original sample X, it is equal to θ C : in this situation, an appropriate strategy needs to be developed, which is detailed below.

Moreover, in practice, it is difficult to know a priori the position of the Weibull-tail coefficient of X with respect to the one of C : the definition of our estimator of θ X (see below) does not presume anything about this position (however, the rate of convergence and asymptotic variance will differ whether θ X is lower than θ C or not).

It is important to note that the position of θ X with respect to θ C has an important impact on the amount of censoring in the tail. As a matter of fact, Lemma 3 (in the Appendix) states that the ultimate probability of non-censoring in the tail (limit of Ppδ " 1|Z " zq for z Ñ 8, denoted by p later on) turns out to be equal to 1 when θ X ă θ C , to 0 when θ X ą θ C , and to a constant between 0 and 1 when θ X " θ C . It is however important to remember that this is an asymptotic value, and in practice, for finite sample sizes, things are less clear-cut (the simulation Section 5 illustrates this). Moreover, other characteristics of the underlying distributions (for instance, position or scale parameters) may have a non-negligeable impact on the proportion of censoring, even in the tail : this delicate topic should deserve more attention in subsequent works. In the sequel, the situation θ X ď θ C will nonetheless be referred to as the "mild censoring" setting, opposed to the "strong censoring" setting when θ C ă θ X .

Let us now explain how our estimator is defined. In the non-censored case (i.e. if we could observe the original data values X 1 , . . . , X n ), the usual starting point for designing estimators of the Weibull-tail coefficient is to note that, by slow variation of the function l F defined in p3q, we have, for t large and any x ą 1, the approximation θ X logpΛ F ptxq{Λptqq » logpxq. Therefore, for some value k " k n (the number of top order statistics used in the estimation) to be chosen, considering t " X n´k,n and x " X n´j`1,n {X n´k,n for every 1 ď j ď k in the above formula leads, after summation, to

θ X » ř k j"1 plogpX n´j`1,n q ´logpX n´k,n qq ř k j"1 plogpΛ F pX n´j`1,n qq ´logpΛ F pX n´k,n qqq , (4) 
where X 1,n , . . . , X n,n are the order statistics. As was initiated in [START_REF] Beirlant | The mean residual life function at great age : Applications to tail estimation[END_REF] and developed in Girard (2004,a), this suggests define an estimator of θ X in the complete data case by θpcompleteq

X " ř k j"1 plogpX n´j`1,n q ´logpX n´k,n qq ř k j"1 plogplogpn{jqq ´logplogpn{kqqq , (5) 
because log Λ F pxq " logp´log s F pxqq and s F evaluated at some order statistic X n´j`1,n can be naturally estimated by j{n. However, in the censored setup, the observed variables are the Z i , which are associated with Λ H , and not with Λ F : therefore the previous trick that led to the deterministic denominator ř k j"1 plogplogpn{jqq ´logplogpn{kqqq cannot be used. Our proposition in the censored context is simply to replace, in formula (4), the X's with the observed Z's, and to estimate the function Λ F by its Nelson-Aalen estimator ΛnF pxq " ÿ

Zi,nďx

δ i,n n ´i `1 . ( 6 
)
This leads to our proposition for estimating θ X in the censored setup : θX,k "

ř k j"1 plog Z n´j`1,n ´log Z n´k,n q ř k j"1 ´log ΛnF pZ n´j`1,n q ´log ΛnF pZ n´k,n q ¯. (7) 
In contrast with the estimator of θ X in the complete data framework (and with a number of its variants), our estimator has a random denominator, which behavior will turn out to be closely related to that of the numerator. 3

Note that our estimator can be written as the ratio θX,k " θZ,k

RL n , where θZ,k " ř k j"1 plog Z n´j`1,n ´log Z n´k,n q ř k j"1 plogplogpn{jqq ´logplogpn{kqqq and RL n " ř k j"1 ´log ΛnF pZ n´j`1,n q ´log ΛnF pZ n´k,n q řk j"1 plogplogpn{jqq ´logplogpn{kqqq .

(8) The numerator θZ,k estimates the Weibull-tail coefficient θ Z of the observed Z i (see Theorem 1 in Girard (2004,a)). As far as only consistency is studied, it is possible to prove consistency of θX,k by proving that the denominator RL n converges to some crucial value a " θ Z {θ X , which is equal to 1 in the mild censoring cases (θ X ă θ X or θ X " θ C ), and is lower than 1 in the strong censoring cases (θ C ă θ X ). This is in fact deduced from the proof of Theorem 1 and is stated later in this paper (Corollary 1). However, to establish the asymptotic normality of our estimator, things are more complicated and we invite the interested reader to have a look at the start of the proof of Theorem 1 in Section 3.

Anyway, it is interesting to note that, in a Weibull-tail situation, a possible correction for censoring could be to divide an existing estimator of θ Z in the complete data setup, by this statistic RL n that somehow incorporates the censoring information of the data. This is similar to what is proposed in [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF] and [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] for adapting estimators of the extreme value index to the censoring situation, namely the now well-known "division by the proportion of non-censoring in the tail" strategy. However, note that we do not know whether this strategy still leads to valuable estimators when applied to other estimators of θ Z than the basic estimator θZ,k defined in (8).

Concerning now the estimation of extreme quantiles for Weibull-tail censored data, we propose to consider, for any given small probability p n ă 1{n, the natural estimator of x pn " s F ´pp n q defined by xpn :"

Z n´k,n ˆ´log p n Λ n,F pZ n´k,n q ˙θ X,k . (9) 
This definition comes from the application, to the values x " x pn {Z n´k,n and t " Z n´k,n , of the approximation x » pΛ F ptxq{Λ F ptqq θ X " p´log s F ptxq{Λ F ptqq θ X , valid for t large and any x ą 1.

Before going into the details of our results, we indicate here that in this work it is assumed that the slowly varying functions l F and l G , defined in p3q, both satisfy the classical second order condition SR2 :

@x ą 0, l F ptxq l F ptq ´1 b F ptq Ñ K ρ F pxq, and 
l G ptxq l G ptq ´1 b G ptq Ñ K ρ G pxq, as t Ñ `8
, where K ρ pxq :"

x ρ ´1 ρ , (10) 
for some negative constants ρ F and ρ G , with rate functions b F and b G having constant sign at `8 and satisfying |b F | P RV ρ F and |b G | P RV ρ G (RV ρ stands for regular variation, at `8, with index ρ).

Our paper is organized as follows: in Section 2, we state the asymptotic normality result for θn and xpn . Section 3 and 4 is devoted to the proofs. Important lemmas and technical aspects of the proofs are postponed to the Appendix. In Section 5, we discuss the finite sample behavior of our new estimators.

Results

Let us first introduce the following important quantities

a " θ Z θ X " " 1 if θ X ď θ C , θ C {θ X Ps0, 1r if θ X ą θ C , , b " 1 ´a 2 and d " θ X θ C .
Such definitions will be useful to state results in a general way, without having to discuss whether we are in a mild or in a strong (ultimate) censoring setting.

We have seen in the introduction that the cumulative hazard function Λ H of Z is regularly varying of order 1{θ Z . Setting Λ H for the generalized inverse of Λ H , we then have Λ H pxq " x θ Z lpxq and Λ F ˝ΛH pxq " x a lpxq, where l and l are slowly varying at infinity. The second formula is important in our setting since, by definition of our estimator θX,k , we will have to deal with the quantities Λ F pZ n´j`1,n q.

By Lemma 2 stated in the Appendix, and in its subsequent remark, we know that under assumption p10q, there exist positive constants c F , c G , c and c such that, for x ą 0, In order to obtain the asymptotic normality of our estimator, we need the sequence pk n q (number of top order statistics to use) to satisfy the following conditions (we will note k " k n from now on):

l F pxq " c F p1 ´xρ F v F pxqq and l G pxq " c G p1 ´xρ G v G pxqq
H 1 : k Ñ `8, k{n Ñ 0, log k
log n Ñ 0, as n Ñ `8, and, depending on the censoring strength in the tail, introducing the important notation L nk " logpn{kq,

H 2 : θ X ă θ C and $ & % piq ? k BpL nk q Ñ α piiq ? k BpL nk q Ñ α piiiq ? k L d´1 nk Ñ α 1 H 3 : θ X " θ C and " piq Dδ ą 0, ? k L ρ`δ nk Ñ 0, where ρ " maxpθ Z ρ F , θ Z ρ G q piiq ? k L ´1 nk Ñ 0 H 4 : θ X ą θ C and $ ' ' & ' ' % piq ? kL ´b nk Ñ `8 piiq Dδ ą 0, ? k L ´b`ρ`δ nk Ñ 0, where ρ " maxpθ Z ρ F , θ Z ρ G , a ´1q piiiq Dδ ą 0, ? k L ´p1`bq{2`δ nk Ñ 0 pivq ? k L ´b´a nk Ñ 0
See Remark 2 below for a discussion on those conditions. Our main result is the following theorem.

Theorem 1. Let conditions p2q, p3q and p10q hold, as well as R l pB, ρq and R lp B, ρq. We assume further that pk n q satisfies conditions H 1 and either H 2 , H 3 or H 4 . We then have, as n Ñ 8,

? kL ´b nk p θX,k ´θX q d ÝÑ N ˆm, θ 2 X ac ˙, where c " $ & % 1 if θ X ă θ C c F {pc F `cG q if θ X " θ C c ´a G c F if θ X ą θ C and m " $ & % α `αθ X ρ `θ2 X θ C c G c d F α 1 if θ X ă θ C , 0 if θ X ě θ C . Remark 1. When θ X ď θ C , b
is equal to 0 and thus, the rate of convergence ? kL ´b nk is the same as in the non-censored case. It is slower when θ X ą θ C . The asymptotic variance θ 2 X {pacq equals θ 2 X when θ X ă θ C (i.e. the same asymptotic variance as in the non-censored situation), and is larger than θ 2 X when θ X " θ C ; nothing can be said in general about its position with respect to θ 2 X when θ X ą θ C .

Remark 2. When θ X ă θ C , rate functions |B| and | B| appearing in assumptions R l pB, ρq and R lp B, ρq are regularly varying of same order ρ " ρ " maxpθ X ρ F , d ´1q (see Lemma 2 in the Appendix), therefore, either ρ " d ´1 and thus conditions H 2 piq, piiq, piiiq essentially involve the same rate condition on k n , or ρ ą d ´1 and thus condition H 2 piq or piiq implies condition H 2 piiiq, with α 1 " 0. When θ X " θ C , if ρ ě ´1, then condition H 3 piq implies condition H 3 piiq, and if ρ ă ´1, the implication is reversed. When θ X ě θ C , only one of the conditions H 4 piiq, piiiq, pivq remains, depending on the position of a and ρ. Moreover, conditions H 2 piq and H 2 piiq, involving the regularly varying functions B and B, do not appear in the cases θ X ě θ C , because they are consequences of H 3 piq or H 4 piiq, with α " α 1 " 0, necessarily.

Before stating the asymptotic normality of our extreme quantile estimator xpn defined in p9q, we need to introduce the following additional conditions (as n Ñ 8) :

H 1 1 : log L nk log logp1{pnq Ñ 0, H 2 pivq : ? k L θ X ρ F nk Ñ α 2 .
Theorem 2. Let conditions p2q, p3q and p10q hold, as well as R l pB, ρq and R lp B, ρq. We assume further that pk n q satisfies conditions H 1 , H 1 1 and either H 2 , H 3 or H 4 . We then have, as n Ñ 8, ?

kL ´b nk log logp1{p n q plog xpn ´log

x pn q d ÝÑ N ˆm, θ 2 X ac ˙.

Proof of Theorem 1

Remind that θX,k "

1 k ř k j"1 plog Z n´j`1,n ´log Z n´k,n q 1 k ř k j"1 ´log ΛnF pZ n´j`1,n q ´log ΛnF pZ n´k,n q ¯.
Introducing E 1 , . . . , E n n independent standard exponential random variables, such that Z i " Λ H pE i q, we have, since Λ H pxq " x θ Z lpxq and Λ F ˝ΛH pxq " x al pxq with l and l slowly varying at infinity,

log Z n´j`1,n ´log Z n´k,n " θ Z log ˆEn´j`1,n E n´k,n ˙`log ˆlpE n´j`1,n q lpE n´k,n q ˙(11) log Λ F pZ n´j`1,n q ´log Λ F pZ n´k,n q " a log ˆEn´j`1,n E n´k,n ˙`log ˜lpE n´j`1,n q lpE n´k,n q ¸, (12) 
Now, let

M n " 1 k k ÿ j"1 log ˆEn´j`1,n E n´k,n ˙,
and

∆ n " 1 k k ÿ j"1 log ˜Λ nF pZ n´j`1,n q Λ F pZ n´j`1,n q Λ F pZ n´k,n q ΛnF pZ n´k,n q ¸. ( 13 
)
Since the denominator in the expression for θX,k above equals

1 k k ÿ j"1 ´log ΛnF pZ n´j`1,n q ´log ΛnF pZ n´k,n q ¯" 1 k k ÿ j"1 log Λ F pZ n´j`1,n q ´log Λ F pZ n´k,n q `∆n ,
we obtain, using p11q, p12q and relation θ

X " θ Z {a, θX,k ´θX " θ Z M n `Rn,l aM n `Rn, l `∆n ´θX " θ X θ ´1 X R n,l ´Rn, l ´∆n aM n `Rn, l `∆n " ´θX a ∆ n ´Mn `a´1 R n, l `a´1 ∆ n ¯´1 `Rn,l ´θX R n, l aM n `Rn, l `∆n , where R n,l " 1 k k ÿ j"1 log ˆlpE n´j`1,n q lpE n´k,n q ˙and R n, l " 1 k k ÿ j"1 log ˜lpE n´j`1,n q lpE n´k,n q ¸. ( 14 
)
We thus have the following representation, which shows that the behavior of the estimation error is essentially based on the behavior of the statistic ∆ n : ?

kL ´b nk ´θ X,k ´θX ¯" ˆ´θ X a ˙?kL 1´b nk ∆ n D ´1 n `´? kL 1´b nk R n,l ´θX ? kL 1´b nk R n, l¯p aD n q ´1
where the denominator D n " L nk M n `a´1 L nk R n, l `a´1 L nk ∆ n will turn out to converge to 1. It is now clear that the proof of Theorem 1 then follows from the combination of the following three propositions, the first one being the most important and the longest to establish. These propositions are proved in the next three subsections.

Proposition 1. Under the conditions of Theorem 1 we have, as n tends to infinity,

∆ n d " 1 `oP p1q L nk ˆˆL 1´a nk pk c ´a˙´a `Ē n ´1˘˙`o P pk ´1{2 L b´1 nk q (15) and ? kL 1´b nk ∆ n d ÝÑ N ´m∆ , a c ¯, where Ēn " 1 k ř k
i"1 E i (sample mean of standard exponential variables), and

pk :" 1 k k ÿ j"1 δ n´j`1,n and m ∆ " $ & % ´α ˆ1 `1 ρ ˙´θ X θ C c G c d F α 1 if θ X ă θ C , 0 if θ X ě θ C .
Please note that the exponential variables E i appearing in the statement of Proposition 1 are not the same as those introduced at the beginning of this Section.

Proposition 2. Under the conditions of Theorem 1 we have, as n tends to infinity,

? kL 1´b nk R n,l P ÝÑ " α if θ X ă θ C , 0 if θ X ě θ C , and ? kL 1´b nk R n, l P ÝÑ " α if θ X ă θ C , 0 if θ X ě θ C .
Proposition 3. Under condition H 1 , we have L nk M n P ÝÑ 1, as n tends to infinity.

Remark 3. First, remind that a " 1 and c " 1 when θ X ă θ C . Let us highlight that the convergence in distribution of ? kL 1´b nk ∆ n stated in Proposition 1 comes from the confrontation between the two terms appearing in the representation p15q of ∆ n : the term in pk and the term involving the exponential sample mean. The convergence in distribution of the term involving pk is detailed in Lemma 1 in Subsection 3.1; this will be the leading term only when θ X ą θ C (in this setting, the constant b is positive and thus the exponential term vanishes). When θ X ă θ C , it will only generate a possible bias, and when θ X " θ C it participates to the asymptotic normality along with the exponential term.

The following corollary is then stated, concerning the statistic RL n defined in equation ( 8) and discussed thereafter. Note that this corollary certainly holds with weaker conditions. Corollary 1. Under the conditions of Theorem 1, as n Ñ 8, we have RL n P ÝÑ a.

Its proof is short, so we will provide it here. With the same notations as in the previous page, we have readily

RL n " ˜1 k k ÿ j"1 log logpn{jq ´log logpn{kq ¸´1 1 L nk paL nk M n `Lnk R n,l `Lnk ∆ n q,
where the mean inside the large brackets is equivalent to 1{L nk (see Girard (2004,b) formula p15q, for a proof). The proof of Corollary 1 thus follows from Propositions 1, 2 and 3.

Proof of Proposition 1

Starting from the definition of ∆ n in p13q, we introduce the first remainder term R p∆q 1,k by writing

∆ n " 1 k k ÿ j"1 log ˜Λ nF pZ n´j`1,n q Λ F pZ n´j`1,n q Λ F pZ n´k,n q ΛnF pZ n´k,n q " 1 k k ÿ j"1 ˜Λ nF pZ n´j`1,n q Λ F pZ n´j`1,n q Λ F pZ n´k,n q ΛnF pZ n´k,n q ´1¸`R p∆q 1,k .
Now, using the definition of ΛnF in p6q, we obtain

1 k k ÿ j"1 ´Λ nF pZ n´j`1,n q ´Λ nF pZ n´k,n q ¯" 1 k k ÿ j"1 k ÿ i"j δ n´j`1,n j " 1 k k ÿ j"1 δ n´j`1,n " pk .
Hence, it can easily be checked that ΛnF pZ n´k,n q

Λ F pZ n´k,n q ´∆n ´Rp∆q 1,k ¯" pk Λ F pZ n´k,n q ´1 k k ÿ j"1 ˆΛF pZ n´j`1,n q Λ F pZ n´k,n q ´1˙`R p∆q 2,k , where R p∆q 2,k " 1 Λ F pZ n´k,n q 1 k k ÿ j"1 ´Λ nF pZ n´j`1,n q ´ΛF pZ n´j`1,n q ¯ˆΛ F pZ n´k,n q Λ F pZ n´j`1,n q ´1˙.
Since, @ 1 ď j ď k `1, Λ F pZ n´j`1,n q " pΛ F ˝ΛH qpE n´j`1,n q " E a n´j`1,n lpE n´j`1,n q, where l is slowly varying and tends to c at infinity (cf Lemma 2, in the Appendix), then

Λ F pZ n´j`1,n q Λ F pZ n´k,n q ´1 " ˆEn´j`1,n E n´k,n ˙a lpE n´j`1,n q lpE n´k,n q ´1 " ˆˆE n´j`1,n E n´k,n ˙a ´1˙`ˆE n´j`1,n E n´k,n ˙a ˜lpE n´j`1,n q lpE n´k,n q ´1¸,
and, introducing p Ẽ1 , . . . , Ẽk q k independent standard exponential random variable such that, according to Lemma 4, pE n´j`1,n ´En´k,n q 1ďjďk d " p Ẽk,k , . . . , Ẽ1,k q, we can write ΛnF pZ n´k,n q

Λ F pZ n´k,n q ´∆n ´Rp∆q 1,k ¯d " pk cE a n´k,n `Rp∆q 3,k ´1 k k ÿ j"1 ˜a Ẽk´j`1,k E n´k,n ¸`R p∆q 4,k `Rp∆q 5,k `Rp∆q 2,k , where R p∆q 3,k " pk E a n´k,n ˜1 lpE n´k,n q ´1 c Ŗp∆q 4,k " ´1 k k ÿ j"1 ˆEn´j`1,n E n´k,n ˙a ˜lpE n´j`1,n q lpE n´k,n q ´1Ŗ p∆q 5,k " ´1 k k ÿ j"1 #˜˜1 `Ẽ k´j`1,k E n´k,n ¸a ´1¸´a Ẽk´j`1,k E n´k,n + .
Let us summarize :

∆ n d " Λ F pZ n´k,n q ΛnF pZ n´k,n q ˜˜p k cE a n´k,n ´a E n´k,n 1 k k ÿ j"1 Ẽj ¸`5 ÿ i"2 R p∆q i,k ¸`R p∆q 1,k . But pk cE a n´k,n ´a E n´k,n 1 k k ÿ j"1 Ẽj " 1 E n´k,n ˆˆL 1´a nk pk c ´a˙´a `Ē n ´1˘˙`R p∆q 6,k ,
where Ēn " 

1 k ř k j"1 Ẽj and R p∆q 6,k " pk cE n´k,n ´E1´a n´k,n ´L1´a nk ¯. Finally, ∆ n d " Λ F pZ n´k,n q ΛnF pZ n´k,n q ˜1 E n´k,n ˆˆL 1´a nk pk c ´a˙´a `Ē n ´1˘˙`6 ÿ i"2 R p∆q i,k ¸`R p∆q 1,k . (16 
ÿ i"1 R p∆q i,k , (17) 
where

D n " ? kL ´b nk ˆL1´a nk pk c ´a˙, with b " p1 ´aq{2.
It remains to study the behavior D n , which is done in the following Lemma.

Lemma 1. Under the assumptions of Theorem 1, we have, as n Ñ `8 :

1. If θ X ă θ C , then D n " ? kpp k ´1q P ÝÑ ´θX θ C c G c d F α 1 . 2. If θ X " θ C , then D n " ? k ˆp k p ´1˙d ÝÑ N ˆ0, 1 ´p p ˙, where p " c " c F c F `cG . 3. If θ X ą θ C phence a ă 1 and b Ps0, 1{2rq, then D n d ÝÑ N p0, a{cq.
Remark 4. Lemma 1 shows, in particular, that the proportion of non-censored data in the tail pk tends to

1, if θ X ă θ C , to p " c " c F c F `cG , if θ X " θ C and to 0 (with rate L a´1 nk ) if θ X ą θ C
. This has to be linked to the result of Lemma 3 (see the Appendix) concerning the limit of the function pp¨q defined below.

When θ X ă θ C , Lemma 1 states that D n converges to a constant : hence, via Lemma 7, the leading term in ÝÑ N p0, a c q.

p17q is ? kL ´b nk `Ē n ´1˘" ? k `Ē n ´1˘d ÝÑ N p0,
The rest of the subsection is now devoted to the proof of Lemma 1 .

Let us introduce the function p defined by ppxq " Ppδ " 1|Z " xq.

Proceeding as in [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF], we carry on the proof by considering now that δ i is related to Z i by δ i " I UiďppZiq ,

where pU i q iďn denotes an independent sequence of standard uniform variables, independent of the sequence pZ i q iďn . We denote by U r1,ns , . . . , U rn,ns the (unordered) values of the uniform sample pertaining to the order statistics Z 1,n ď . . . ď Z n,n of the observed sample Z 1 , . . . , Z n .

Remind that Z i " Λ H pE i q, where E 1 , . . . , E n are independent standard exponential random variables. We introduce, for every 1 ď i ď n, the standard uniform random variables V i " 1 ´expp´E i q such that Z i " Λ H p´logp1 ´Vi qq, and define the function rptq :" pp ˝ΛH qp´log tq.

Lemma 3 provides valuable information about the behavior of rp¨q at infinity. We now write,

D n " ? kL ´b nk ´L1´a nk pk c ´a¯" L ´b nk ? k k ÿ j"1 ˆL1´a nk c I U rn´j`1,ns ďrp1´Vn´j`1,nq ´a" L b nk c? k k ÿ j"1 ´IU rn´j`1,ns ďrp1´Vn´j`1,nq ´IU rn´j`1,ns ďrpj{nq L´b nk ? k k ÿ j"1 ˆL1´a nk c I U rn´j`1,ns ďrpj{nq ´a" : T 1,k `T2,k
Whatever the position of θ X versus θ C , we will prove below that the term T 1,k above converges to 0 in probability. It turns out that this amounts to proving that, for some positive sequence v n " op1{nq (to be chosen later) and some constant c ą 0, 

?
I Uj ď|rp1´Vn´j`1,nq´rpj{nq| ą cδ{p ? kL b nk q ḑ P ´?kL b nk S n,k ą η ¯`P ˜1 k k ÿ i"1 I Uj ďη{p ? kL b nk q ą cδ{p ? kL b nk q ¸`PpB c n q `PpA c n,c q
for any given δ ą 0 and η ą 0. The second term in the right-hand side is (by Markov's inequality) lower than cδ{η (which is arbitrarily small), the third term is equal to nv n p1 `op1qq " op1q, and the fourth term is arbitrarily small (for c large enough) by the weak convergence of the uniform tail quantile process. Therefore, we are left to prove that ? kL b nk S n,k " op1q (i.e. relation ( 18)), so that T 1,k " o P p1q will be proved. This is done in the different cases distinguished below, along with the treatment of the main term T 2,k . The whole proof heavily relies on the first and second order developments stated in Lemma 3 of the Appendix, concerning the function p ˝ΛH .

Case θ X ă θ C

In this situation, we have a " 1, b " 0, c " 1 and p " lim zÑ`8 ppzq " lim tOE0 rptq " 1 (see Lemma 3 ). Hence T 2,k "

1 ? k ř k j"1 `IUn´j`1,nďrpj{nq ´1d " ´1 ? k ř k j"1 `IUjąrpj{nq ´p1 ´rpj{nqq ˘´1 ? k ř k j"1 p1 ´rpj{nqq ": ´T 1 2,k
´T 2 2,k , where T 1 2,k turns out to be a sum of centered independent random variables. Let us now prove that T 1 2,k " o P p1q, T 2 2,k tends to Aα 1 (here

A " θ X θ C c G c d F
where α 1 is defined in condition H 2 piiiq) and that ? kS n,k Ñ 0 (hence, as explained above, T 1,k " o P p1q).

Concerning T 1 2,k , by definition of rp¨q and thanks to Lemma 3 stated in the Appendix, we have 1 ´rpxq " Ap´log xq d´1 p1 `opxqq where d " θ X {θ C Ps0, 1r.

Therefore, since logpn{jq{L nk tends to 1 uniformly in j under condition H 1 (Lemma 5), we obtain

VpT 1 2,k q " 1 k k ÿ j"1 rpj{nqp1 ´rpj{nqq ď 1 k k ÿ j"1 p1 ´rpj{nqq ď L d´1 nk Ap1 `op1qq,
which implies that VpT 1 2,k q tends to 0, since d ă 1. Concerning T 2 2,k , we have similarly, using now assumption H 2 piiiq and Lemma 5 (log n{j " L nk ),

T 2 2,k " Ap1 `op1qq ? kpL nk q d´1 nÑ8 ÝÑ Aα 1 .
Let us now deal with ? kS n,k . From now on, let cst denote some generic positive constant. Since rptq converges to 1 as t OE 0, and thanks to Lemma 3, we have, for s and t small, |rpsq ´rptq| " ˇˇˇ1 rpsq ´1 rptq ˇˇˇr psqrptq ď cst |p´log tq d´1 ´p´log sq d´1 | `|p´log tq d´1´β vp´log tq ´p´log sq d´1´β vp´log sq| ( Introducing the set Z n " t ps, tq ; 1{n ď t ď k{n , |t ´s| ď c ? k{n , s ě v n u and reminding that v n " op1{nq (an appropriate sequence will be chosen in few lines), it can be checked that applying the mean value theorem to the function hptq " p´log tq d´1 of positive derivative h 1 ptq " p1 ´dqt ´1p´log tq d´2 , yields for large n (below, u " ups, tq denotes some appropriate value between s and t) ? k sup ps,tqPZn |hptq ´hpsq| ď sup ps,tqPZn |h 1 puq|.|t ´s| ď cst ?

k 1 vn L d´2 nk c ? k{n " cst k nvn L d´2 nk .
This is the first step towards the proof of ? kS n,k " op1q. The second step requires to do the same job with the function hptq " p´log tq d´1´β vp´log tq, where vp¨q is slowly varying at infinity. It is known (cf Bingham et. al. (1987) page 15) that we have xv 1 pxq{vpxq Ñ 0 and x ´β vpxq Ñ 0 as x Ñ 8, so that

| h1 ptq| " |1 ´d `β| 1 t p´log tq d´2 ˇˇˇ1 ´cst xv 1 pxq vpxq ˇˇˇx ´β |vpxq| ď cst|h 1 ptq|
where x denoted p´log tq, which is large when t is close to 0. Therefore, taking into account all the previous findings, and considering the choice v n " k ´ {n " op1{nq, we have proved that for n large

? kS n,k ď cst k nvn L d´2 nk " cst.k 1` L d´2 nk " cst ´?kL pd´2q{2`δ nk ¯2p1` q
which turns out to be op1q as soon as 0 ă δ ă d{2 thanks to assumption H 2 piiiq. This ends the proof of Lemma 1 in the mild censoring case θ X ă θ C .

Case θ X " θ C

Here, we also have a " 1, b " 0 but now c " c F c F `cG " p " lim zÑ8 ppzq " lim tOE0 rptq. It is clear that

T 2,k d " 1 p 1 ? k k ÿ j"1 `IUjďrpj{nq ´rpj{nq ˘`1 p 1 ? k k ÿ j"1 prpj{nq ´pq ": T 1 2,k `T 2 2,k
Let us prove that T 1 2,k d ÝÑ N p0, 1´p p q, while T 2 2,k and ? kS n,k are both op1q.

Concerning T 1 2,k : we have

VpT 1 2,k q " 1 p 2 1 k k ÿ j"1
rpj{nqp1 ´rpj{nqq, which tends to 1´p p , since rpj{nq tends to p, uniformly in j (see Lemma 3). We conclude, for this term, using Lyapunov's theorem (details are omitted, here rpj{nq ď 1).

Concerning T 2 2,k , since Lemma 3 of the Appendix yields rptq " p p1 ´p´log tq ρ vp´log tqq, we have (for some δ ą 0)

T 2 2,k " ´1 ? k k ÿ j"1 plogpn{jqq ρ vplogpn{jqq " ´?kpL nk q ρ`δ L ´δ nk vpL nk q 1 k k ÿ j"1 u ρ n,j
where we noted u n,j " logpn{jq{L nk , which tends to 1 uniformly in j thanks to condition H 1 , and used the fact that vplogpn{jqq " vpL nk q because v P RV 0 . The Riemann sum on the right-hand side converges to 1, so for a choice of δ satisfying assumption H 3 piq, we have proved that T 2 2,k " op1q.

Concerning now ? kS n,k , we proceed similarly as in the first case. Introducing hptq " p´log tq ρ vp´log tq where vp¨q is slowly varying at infinity, we have as previously | h1 ptq| " 1 t p´log tq ρ´1` op1q for t OE 0 and any some small ą 0. Therefore, Lemma 3, definitions of S n,k and of the set Z n , along with the mean value theorem, yield

? kS n,k " c sup ps,tqPZn | hptq ´hpsq| ď cst ? k sup ps,tqPZn t| h1 puq|.|t ´s|u ď cst ? k 1 v n L ρ´1` nk c ? k n .
Choosing, in the definition of S n,k , the sequence v n " k ´ {n " op1{nq for some small ą 0, we have

? kS n,k " cst ´?kL pρ´1` q{p2p1` qq nk ¯2p1` q " cst ´?kL pρ´1q{2`δ nk ¯2p1` q
which turns out to be op1q according to assumption H 3 piq (if ρ ě 1) or H 3 piiq (if ρ ă 0), as soon as δ is sufficiently small. This ends the proof of Lemma 1 in the semi-strong censoring case θ X " θ C .

3. Case θ X ą θ C Now we are in the situation where a ă 1, b " p1´aq{2 Ps0, 1{2r, c " c F c a G and p " lim zÑ8 ppzq " lim tOE0 rptq " 0. Since 1 ´a ´b " b, we have readily

T 2,k d " L b nk c 1 ? k k ÿ j"1 `IUjďrpj{nq ´rpj{nq ˘`aL ´b nk ? k k ÿ j"1 ˆL1´a nk ac rpj{nq ´1" : T 1 2,k `T 2 2,k
Let us prove that T 1 2,k d ÝÑ N p0, a c q, while T 2 2,k and ? kL b nk S n,k are both op1q (the latter will guarantee that T 1,k " o P p1q).

Concerning T 1

2,k : we have

VpT 1 2,k q " L 2b nk c2 1 k k ÿ j"1 rpj{nqp1 ´rpj{nqq
Lemma 3 in the Appendix yields the following first order development, as t OE 0, rptq " acp´log tq a´1 p1 `optqq " acp´log tq ´2b p1 `optqq.

(

) 19 
Since u n,j " logpn{jq{L nk tends to 1 uniformly in j, under condition H 1 (see Lemma 5), it is then easy to see that VpT 1 2,k q tends to a c . We conclude concerning T 1 2,k using Lyapunov's theorem (again, details are easy and omitted).

Concerning where we define hptq " p´log tq 1´a and hptq " p´log tq 1´a`ρ vp´log tq. Contrary to the functions arisen in case 1, the functions h and h tend to infinity instead of vanishing to 0, when t OE 0 : this will be counterbalanced by the second supremum. Studying derivatives of the functions h and h, and again using a first order Taylor expansion, we obtain via similar computations as in the previous cases, for n large and any ą 0 (with the choice v n " k ´ {n),

sup ps,tqPZn ˇˇˇ1 rptq ´1 rpsq ˇˇˇď cst.k 1{2` L ´a nk .
Therefore, gathering the two suprema, we have (for some small value of δ ą 0 depending on )

? kL b nk S n,k ď cst.k 1` L b´a nk L 2pa´1q nk " cst.k 1` L ´1´b nk " cst ´?kL ´p1`bq{2`δ nk ¯2p1` q
which, by assumption H 4 piiiq, converges to 0 as n Ñ 8.

Proof of Proposition 2

Remind from p14q that

R n,l " 1 k k ÿ j"1 log ˆlpE n´j`1,n q lpE n´k,n q ˙and R n, l " 1 k k ÿ j"1 log ˜lpE n´j`1,n q lpE n´k,n q ¸.
Let A ą 1. Under condition R l pB, ρq, we have for all ą 0 and t sufficiently large p1 ´ qBptqK ρ pxq ď lptxq lptq ´1 ď p1 ` qBptqK ρ pxq p@1 ď x ď Aq.

We only prove the result for R n,l , the proof for R n, l being very similar, using R lp B, ρq instead of R l pB, ρq. Note that

R n,l " 1 k k ÿ j"1
log p1 `ξj,n q , where ξ j,n " lpEn´j`1,nq lpE n´k,n q ´1 tends to 1 uniformly in j, because l is slowly varying and En´j`1,n E n´k,n tends to 1 uniformly in j, according to Lemma 5. Hence, using the following inequality,

x ´x2 {2 ď logp1 `xq ď x p@x ě ´1{2q and the fact that x j,n :" En´j`1,n E n´k,n ě 1 tends to 1 uniformly in j, we obtain that for all ą 0 and n sufficiently large,

R n,l ď 1 k k ÿ j"1 ˆlpE n´j`1,n q lpE n´k,n q ´1˙ď p1 ` qBpE n´k,n q 1 k k ÿ j"1 K ρ px j,n q,
omitting the lower bound, which is treated similarly. Since K ρ p1`xq " x when x tends to 0, then K ρ px j,n q "

En´j`1,n´E n´k,n E n´k,n
, uniformly in j. By Lemma 4,

En´j`1,n´E n´k,n E n´k,n d " Ẽk´j`1,k E n´k,n .
Hence, it is easy to prove that

E n´k,n 1 k k ÿ j"1 K ρ px j,n q P ÝÑ 1.
Since B is regularly varying and

E n´k,n L nk Ñ 1, then BpE n´k,n q E n´k,n " BpL nk q L nk
and consequently ? kL ´b nk BpL nk qp1 `oP p1qq ď lim inf ? kL 1´b nk R n,l ď lim sup ? kL 1´b nk R n,l ď ? kL ´b nk BpL nk qp1 `oP p1qq.

We conclude using assumption R l pB, ρq and conditions H 2 piq, H 3 piq or H 4 piiq, because |B| is regularly varying of order ρ, and we have ρ " ρ when θ X ď θ C , and ρ ď ρ when θ X ą θ C (see Lemma 2).

Proof of Proposition 3

Recall that

M n " 1 k k ÿ j"1 log ˆEn´j`1,n E n´k,n
˙.

Since

En´j`1,n logpn{jq P ÝÑ 1 and L nk logpn{jq P ÝÑ 1, uniformly in j " 1, . . . , k (see Lemma 5), then

En´j`1,n E n´k,n P ÝÑ 1, uniformly in j " 1, . . . , k. By Lemma 4, pE n´j`1,n ´En´k,n q 1ďjďk d " p Ẽk,k , . . . , Ẽ1,k q. Therefore M n d " 1 k k ÿ j"1 log ˜1 `Ẽ k´j`1,k E n´k,n ¸" p1 `oP p1qq 1 E n´k,n 1 k k ÿ j"1 Ẽj , with 1 k ř k j"1 Ẽj Ñ 1, a.s.
Hence, L nk M n also tends to 1, in probability.

Proof of Theorem 2

Starting from x pn " s F ´1pp n q and the definition of xpn in p9q, we obtain logpx pn q " θ X log logp1{p n q `logp lF p´logpp n qqq, logpx pn q " θX,k log logp1{p n q ´θ X,k logp ΛnF pZ n´k,n qq `logpZ n´k,n q.

Hence logpx pn {x pn q " p θX,k ´θX q log logp1{p n q ´θ X,k log ´Λ nF Λ F pZ n´k,n q ¯´p θX,k ´θX q logpΛ F pZ n´k,n qq ` ´logp lF plogp1{p n qqq ´θX logpl F pZ n´k,n qq ( ,

": Q 1,n `Q2,n `Q3,n `Q4,n .
First of all, the result of Theorem 1 implies that ?

kL ´b nk log logp1{p n q Q 1,n " ? kL ´b nk p θX,k ´θX q d ÝÑ N ˆm, θ 2 X ac ˙.
Then, Lemma 6 (stated in the Appendix) implies that p ΛnF {Λ F qpZ n´k,n q ´1 " O P ´1{p ? kΛ F pZ n´k,n qq ¯.

Hence ? kL ´b nk log logp1{p n q Q 2,n " O P p1q 1 L b nk log logp1{p n qΛ F pZ n´k,n q P ÝÑ 0.
Now, remind that Λ F pZ n´k,n q " Λ F ˝ΛH pE n´k,n q " E a n´k,n lpE n´k,n q. Hence, the asymptotic normality of p θX,k ´θX q yields ? kL ´b nk log logp1{p n q Q 3,n " O P p1q logpL nk q log logp1{p n q ˜a logpE n´k,n q logpL nk q `logp lpE n´k,n qq logpL nk q ¸.

The additional condition H 1 1 of Theorem 2, along with Lemma 5, imply that this term tends to 0 in probability.

Finally, Lemma 2 implies that

Q 4,n " ´log `1 ´logp1{p n q θ X ρ F vplogp1{p n q ˘´θ X log ´1 ´Zρ F n´k,n vpZ n´k,n q ¯,
where v and v are slowly varying. Hence, ? kL ´b nk log logp1{pnq Q 4,n tends to 0 as soon as there exist some 0 ă δ ă 1 such that ? kL ´b nk log logp1{pnq plog 1{p n q θ X ρ F `δ " Op1q and

? kL ´b nk log logp1{pnq Z ρ F `δ n´k,n " O P p1q. Remind that Z n´k,n " E θ Z
n´k,n lpE n´k,n q. Hence, condition H 1 1 guarantees that we only need to show that

? kL ´b`θ X ρ F nk " Op1q and ? kL ´b`θ Z ρ F nk " Op1q. When θ X " θ Z ă θ C , this is due to the additional condition H 2 pivq. When θ X " θ Z " θ C , it is due to condition H 3 piq. Finally, when θ X ą θ Z " θ C , it is due to H 4 piiq.

Finite sample comparisons

In this section, we illustrate, using a few simulations, the finite sample performances of our estimators of θ X and x pn (for small p n ), in terms of observed bias and mean squared error (MSE). The sample size n " 500 has been considered.

We consider two classes of distributions of Weibull-tail type, for the target X and the censoring variable C :

• Weibullp1{θq with c.d.f. 1 ´expp´x 1{θ q (x ą 0), which Weibull-tail coefficient is θ.

• Gammapa, bq with c.d.f. ş x 0 Γpaq ´1b a u a´1 e ´bu du (x ą 0), which Weibull-tail coefficient is 1. We consider two cases : a Weibull distribution censored by another Weibull distribution and a Gamma distribution censored by a Weibull distribution. In each case, we consider three situations with θ X ă θ C , θ X " θ C or θ X ą θ C , corresponding to different intensities of the censoring in the tail.

In Figures 1 and2, we compare our estimator θX,k defined in p7q with the estimator θpcompleteq X defined in p5q, which is applied to the X sample as if it was observed (of course, in practice, it is not, so the comparison is of theoretical interest only). We also compare it with θZ,k defined in p8q, which is the same expression as θpcompleteq X but applied to the observed sample Z. For each considered distribution, 2000 random samples of length n " 500 are generated ; median bias and MSE of the above-mentioned estimators are plotted against different values of k n , the number of excesses used.

This small simulation study shows that for finite sample sizes, as expected, using an estimator (here θZ,k ) not adapted to censoring yields inaccurate results, even in the case θ X ă θ C , where θZ,k is consistent for estimating θ X . The case θ X " θ C is particular : since the censored and the censoring distributions have the same Weibull-tail coefficient, it seems that θZ,k succeeds in reaching its target. We also see that our proposed estimator θX,k has good performances, comparable to those of θpcompleteq X in the non-censored case. Note that the bias of θX,k does not vary much, whereas the MSE deteriorates when the censoring becomes stronger.

In Figure 3, we illustrate the result of Remark 4 concerning the convergence of pk , the proportion of noncensored data in the tail, when the sample size n tends to `8. For three different situations corresponding to θ X ă θ C (p k Ñ p " 1), θ X " θ C (p k Ñ p " 1{2 for the distributions considered) or θ X ą θ C (p k Ñ p " 0), we present plots of pk against k n for three sample sizes n " 500, 5000, 50000.

We can see that the convergence of pk is very slow : In particular, in practice, when θ X ă θ C , the proportion of non-censored data in the tail is quite far from 1. This explains why one needs to take the censoring mechanism into account for the estimation of θ X and why the existing estimators, defined in the non-censored setting, should not be used. 4 and5, for the value p n " 0.01, we compare our estimator xpn defined in p9q with the following estimator xZ,pn " Z n´k,n ˆ´log p n logpn{k n q ˙θ Z,k , which is the estimator defined in the non-censored setting, in [START_REF] Gardes | Estimating extreme quantiles of Weibull-Tail distributions[END_REF], but applied to the observed sample Z. We also compare it with the existing estimator defined, in a more general censored setting, by equation p8q in [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] :

Now in Figures

xEF G pn " Z n´k,n `â k pp1 ´F n pZ n´k qq{p n q γc,Mom ´1 γc,Mom ,
where γc,Mom is the moment estimator of the extreme value index γ X of F adapted to censoring (note that γ X is equal to 0 in the Weibull-tail situation), and Fn stands for the Kaplan-Meier estimator of the c.d.f. F . We refer to [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] for the expression of âk . We clearly see that the estimator xZ,pn (not adapted to censoring) is inaccurate for the estimation of x pn . Indeed, xZ,pn actually estimates the quantile of H " F Ḡ ď F and therefore underestimates x pn , as showed in our plots. We also show that our proposed estimator is competitive, especially in term of bias, although the MSE is often higher than that of the existing estimator xEF G pn . Weibullp2{3q (θ C " 3{2 ą θ X , p " 1), Weibullp2q (θ C " 1{2 " θ X , p " 1{2) and Weibullp5q (θ C " 1{5 ă θ X , p " 0) for n " 500 (solid black), n " 5000 (dotted blue) and n " 50000 (dashed red). Moreover, we have

if θ X ă θ C , 1{pp ˝ΛH qpxq " 1 `d c G c d F x d´1 p1 ´x´β vpxqq , if θ X " θ C , pp ˝ΛH qpxq " cp1 ´xρ vpxqq, if θ X ą θ C , 1{pp ˝ΛH qpxq " 1 `1 ac x 1´a p1 ´xρ vpxqq,
where d " θ X {θ C , v is a generic notation for a slowly varying function and

´β " maxpθ X ρ F , θ X ρ G , d ´1q.

Technical Lemmas

Let ÝÑ N p0, 1q.

We refer to Girard (2004,b) for the proof of this Lemma.

Lemma 6. If we consider the classical random censoring model p1q with continuous distribution functions F and G of the variables X and C, then the following in-probability results hold :

ˇˇΛnF pZ n´j`1,n q ´ΛF pZ n´j`1,n q ˇˇ" O P p1{ ? j ´1q, for j " 2, . . . , k `1, ˇˇΛnF pZ n,n q ´ΛF pZ n,n q ˇˇ" O P p1q.

The first statement is a part of Theorem 1 in [START_REF] Csorgo | Probability theory. Independence, interchangeability, martingales[END_REF]. For the second statement, one has to make a careful examination of Theorem 2.1 in [START_REF] Zhou | Some Properties of the Kaplan-Meier Estimator for Independent Non identically Distributed Random Variables[END_REF], in a narrower context, since the samples pX i q and pC i q we consider are i.i.d. , whereas Zhou considers possibly non-identically distributed censoring variables C i .

In pages 2269-2270 of the mentioned paper, one can find out that the maximum observed value (named T n ) does not have to be excluded from the probability bound (2.3) : it can indeed be proved, by following the steps of the proof of (2.3), that for every n, @ ą 0, P " sup tďZn,n ˇˇΛnF ptq ´ΛF ptq ˇˇą ı ď 6 2{3 .

So the second statement of Lemma 6 follows.

6.3. Treatment of the remainder or bias terms R p∆q i,k , related to the main statistic ∆ n These terms appear in the representation p16q of ∆ n . We have the following results : Lemma 7. Under the assumptions of Theorem 1, as n tends to infinity, ? kL 1´b nk R p∆q i,k P ÝÑ 0, for j P t1, 2, 5, 6u

? kL 1´b nk R p∆q 3,k P ÝÑ ´α ρ if θ X ă θ C and 0 if θ X ě θ C . ? kL 1´b nk R p∆q 4,k P ÝÑ ´α if θ X ă θ C and 0 if θ X ě θ C . Proof of Lemma 7 ' Remind that R p∆q 1,k " ∆ n ´1 k k ÿ j"1 ˜Λ nF pZ n´j`1,n q Λ F pZ n´j`1,n q Λ F pZ n´k,n q ΛnF pZ n´k,n q ´1" 1 k k ÿ j"1
plogp1 `ξj,n q ´ξj,n q , where ξ j,n " ΛnF pZ n´j`1,n q Λ F pZ n´j`1,n q Λ F pZ n´k,n q ΛnF pZ n´k,n q ´1

Introducing ∆ j " ΛnF pZ n´j`1,n q ´ΛF pZ n´j`1,n q, for j " 1, . . . , k `1, we have readily

ξ j,n " Λ F pZ n´k,n q ΛnF pZ n´k,n q ˆ∆j Λ F pZ n´k,n q Λ F pZ n´j`1,n q ´∆k`1 ˙1 Λ F pZ n´k,n q .
But Lemma 6 implies that |∆ j | " O P p1{ ? j ´1q for all j " 2, . . . , k `1, |∆ 1 | " O P p1q and Λ F pZ n´k,n q ΛnF pZ n´k,n q tends to 1, in probability. Let E 1 , . . . , E n be n independent standard exponential random variable such that 1 Λ F pZ n´k,n q " E ´a n´k,n lpE n´k,n q , where l tends to c at infinity. Moreover, Consequently, since a ą 0, sup 1ďjďk |ξ j,n | tends to 0, in probability, and thus, using the inequality 0 ď x ´logp1 `xq ď x 2 (@x ě ´1{2), we obtain, Let ą 0. We have 1 ´b ´2a " 3b ´1, and so we want ? kplog kq ´1L 1´3b nk " pk { log kq ´?kL p1´3bq{p1´2 q nk ¯1´2 to go to `8. This is automatic when 0 ď b ď 1{3. If b ą 1{3 (i.e. when θ X ą 3θ C ), we can write p1 3bq{p1´2 q " 1´3b´δ for some positive δ and small enough , and we have ? kL 1´3b`δ nk " ? kL ´b nk ˆL´2b`1´δ nk : the first factor goes to infinity (it is the CLT rate, assumption H 4 piq), and the second factor as well for δ (i.e. ) small enough because b is always smaller than 1{2.

Λ F pZ n´k,n q Λ F pZn´j`1,
' Remind that R p∆q 2,k " 1 Λ F pZ n´k,n q 1 k k ÿ j"1
´Λ nF pZ n´j`1,n q ´ΛF pZ n´j`1,n q ¯ˆΛ F pZ n´k,n q Λ F pZ n´j`1,n q ´1ȧ nd that Λ F pZ n´k,n q Λ F pZn´j`1,nq " x ´a j,n lpE n´k,n q lpEn´j`1,nq , where x j,n "

E n´k,n
En´j`1,n Ñ 1, uniformly on j (see Lemma 5). Hence, using the fact that sup 1ďjďk | ΛnF pZ n´j`1,n q ´ΛF pZ n´j`1,n q| " O P p1q (see Lemma 6), we obtain x ´a j,n ˇˇˇˇl pE n´k,n q lpE n´j`1,n q ´1ˇˇˇˇˇ¸.

|R

Introducing, once again, Ẽ1 , . . . , Ẽk , k independent standard exponential random variables, such that, + .

This term is 0 in the case θ X ď θ C (a " 1). So, we only consider the case θ X ą θ C (where 0 ă a ă 1). It This term is 0 in the case θ X ď θ C (a " 1). So, we only consider the case θ X ą θ C , where 0 ă a ă 1 and pk tends to 0 (see Lemma 1 in Subsection 3.1). By the mean value theorem, 
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  Weibullp2q censored by Weibullp2{3q, where θ X " 1{2 and θ C " 3{2. censored by Weibullp2q, where θ X " 1{2 " θ C . censored by Weibullp5q, where θ X " 1{2 and θ C " 1{5.

Figure 1 :

 1 Figure 1: Comparison of bias and MSE of the estimators θX,k (solid black), θpcompleteq X (dotted blue) and θZ,k (dashed red) for a Weibull distribution censored by another Weibull distribution.

Figure 2 :

 2 Figure 2: Comparison of bias and MSE of the estimators θX,k (solid black), θpcompleteq X (dotted blue) and θZ,k (dashed red) for a Gamma distribution censored by a Weibull distribution.

Figure 3 :

 3 Figure3: Comparison of the proportion of non-censoring in the tail pk for Weibullp2q (θ X " 1{2) censored, respectively, by Weibullp2{3q (θ C " 3{2 ą θ X , p " 1), Weibullp2q (θ C " 1{2 " θ X , p " 1{2) and Weibullp5q (θ C " 1{5 ă θ X , p " 0) for n " 500 (solid black), n " 5000 (dotted blue) and n " 50000 (dashed red).

  censored by Weibullp2{3q, where θ X " 1{2 and θ C " 3{2. censored by Weibullp2q, where θ X " 1{2 " θ C . censored by Weibullp5q, where θ X " 1{2 and θ C " 1{5.

Figure 4 :

 4 Figure 4: Comparison of bias and MSE of the estimators xpn (solid black), xZ pn (dashed red) and xEF G pn (dotted blue) of the quantile xp n (pn " 0.01), for a Weibull distribution censored by another Weibull distribution.

  Gammap0.8, 1q censored by Weibullp2{3q, where θ X " 1 and θ C " 3{2. .8, 1q censored by Weibullp1q, where θ X " 1 " θ C . Gammap0.8, 1q censored by Weibullp2q, where θ X " 1 and θ C " 1{2.

Figure 5 :

 5 Figure 5: Comparison of bias and MSE of the estimators xpn (solid black), xZ pn (dashed red) and xEF G pn (dotted blue) of the quantile xp n (pn " 0.01), for a Gamma distribution censored by a Weibull distribution.
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  is clear (see Lemmas 4 and 5) that ξ j,n " Ẽk´j`1n´k,n ´1 tends to 0, uniformly in j. Hence, by a Taylor expansion, we obtain

  1q, and we thus obtain as desired ÝÑ N pm ∆ , 1q via Lemma 7, where m ∆ is defined in the statement of Proposition 1. When θ X " θ C , the constant b is still equal to 0 and both D n and ? k `Ē n ´1˘( which are independent) take part into the asymptotic normality of ∆ n , with D n

	?	kL 1´b nk ∆ n	d
	´a? k `Ē n ÝÑ N p0, 1 d c q. Finally, when θ X ą θ C , ´1˘d ÝÑ N p0, σ 2 ∆ q in relation p17q, where σ 2 ∆ " 1´p p ? kL ´b nk `Ē n ´1˘t ends to 0 and D n is thus the leading `a2 " 1 c . Thus, we obtain term : we obtain ? kL 1´b nk ∆ n ? kL 1´b nk ∆ n d

  U ď|a´b| for any standard uniform U and constants a, b in r0, 1s, it comes

	kL b nk S n,k	nÑ8 ÝÑ 0 where S n,k :" sup	"	|rpsq ´rptq| ;	1 n	ď t ď	k n	, |s ´t| ď c	?	k{n , s ě v n	*	.	(18)
	As a matter of fact, if we introduce the events						
	A n,c "	! sup 1ďjďk |p1 ´Vn´j`1,n q ´j{n| ď c ?	k{n	)	and B n " t1 ´Vn,n ě v n u ,
	then, since |I U ďa ´IUďb |									
	Pp|T 1,k | ą δq ď P	˜1 k	k ÿ i"1								

d

" I

  1 and the slow variation of v, which guarantees that vplogpn{jqq " vpL nk q and x ´δ vpxq Ñ 0 as x Ñ 8. Now, since ρ " maxpθ Z ρ F , θ Z ρ G , a ´1q ě a ´1, it comes

	which yields								
			sup ps,tqPZn	ˇˇˇ1 rptq ´1 rpsq	ˇˇˇ" cst	#	ps,tqPZn sup	ps,tqPZn |hptq ´hpsq| `sup	| hptq ´hpsq|	+
		T 2 2,k : we write			
		L 1´a nk ac	rpj{nq ´1 "	˜L1´a nk ac	rpj{nq	´ˆL nk logpn{jq	˙1´a	¸`˜ˆL nk logpn{jq	˙1´a	´1a
	nd treat these two terms separately. Using the second order formula stated in Lemma 3, we have
						1 rptq	" 1	`p´log tq 1´a ac	`1 ´p´log tq ρvp´log tq ˘.	(20)
	and consequently, for some small δ ą 0,
		ac L 1´a nk rpj{nq	"	ˆlogpn{jq L nk	˙1´a	`1 ´plogpn{jqq ρvplogpn{jqq `acplogpn{jqq a´1 "
							ˆlogpn{jq	˙1´a
									L nk	´1 ´Lρ`δ nk op1q `acL a´1 nk p1 `op1qq	where
	we used condition H L 1´a nk ac	rpj{nq	´ˆL nk logpn{jq	˙1´a	" p1 `op1qqL ρ`δ nk op1q
	and therefore the first term of T 2 2,k is equal to a ? The second term of T 2 2,k is	kL ´b`ρ`δ nk	op1q, which tends to 0 under condition H 4 piiq.
									a ?	kL ´b nk	1 k	k ÿ j"1	˜ˆL nk logpn{jq	˙1´a	´1¸.
	But ´Lnk logpn{jq	¯1´a	´1 " pa ´1q logpk{jq L nk p1 `op1qq with 1 k	ř k j"1 logpk{jq tending to 1. So the second term of
	T 2 2,k is equal to								apa ´1q	?	kL ´1´b nk	p1 `op1qq,
	and this quantity tends to 0 under condition H 4 pivq.
	Concerning now	?	kL b nk S n,k , we have
				S n,k " sup ps,tqPZn	|rptq ´rpsq| ď sup ps,tqPZn	ˇˇˇ1 rptq ´1 rpsq	ps,tqPZn ˇˇˇs up	trptqrpsqu.

Thanks to the first order relation (

19

), the second supremum of the right-hand side is lower than a constant times L 2pa´1q nk . The first supremum will be handled with the more precise second order development (20),

  E 1 , . . . , E n be n iid standard exponential random variables. Ẽk are k independent standard exponential random variables.

	Lemma 4. According to Lemma 1.4.3. in Reiss (1989), we have
			pE n´j`1,n ´En´k,n q 1ďjďk	d " p Ẽk´j`1,k q 1ďjďk ,
	where Ẽ1 , . . . , Lemma 5. Under condition H 1 , we have, as n Ñ `8,
	E n´k,n L nk	P ÝÑ 1,	E n´j`1,n logpn{iq

P

ÝÑ 1, uniformly on j " 1, . . . k and ? kpE n´k,n ´Lnk q d

  nq ď 1 and

	Lemma 5). Thus, we obtain |ξ 1,n | ď p1 `oP p1qq ´OP p1q `OP p1{ ?	E n´k,n L nk nk p1{c `oP p1qq and kq ¯L´a	tends to 1 (see
	|ξ j,n | ď p1 `oP p1qq ´OP p1{ a	j ´1q `OP p1{ ?	kq ¯L´a
	Therefore ξ 2 1,n ď O P p1qL ´2a nk and		
	ξ 2 j,n ď O P p1q	L ´2a

nk p1{c `oP p1qq, for j " 2, . . . , k. nk j ´1 for j " 2 . . . , k.

  En´j`1,n´E n´k,n E n´k,n Ẽk´j,k E n´k,n (see Lemma 4), and using a Taylor expansion, we have |R p∆q 2,k | ď O P p1qE ´a n´k,n ˜1 k under condition H 2 piiiq, H 3 piiq or H 4 pivq. For the second term of the right hand side, we proceed as for R n, l (see the proof of Proposition 2), by using the fact that condition R lp B, ρq implies R 1{ lp´B, ρq and again that ˜1 lpE n´k,n q ´1 c ¸, where, according to Lemma 2, we have 1 ´lpxq c " x ρvpxq, with v slowly varying. Hence, We prove, in Lemma 1, that L 1´a nk pk c tends to a. Moreover, since v is slowly varying and This term tends to 0 in the case θ X ě θ C , under condition H 3 piq or H 4 piiq. In the case θ X ă θ C , we use the fact that x ρ vpxq Bpxq Ñ ´1 ρ (see Remark 5 in the Appendix). Thus, The treatment of this term is very similar to that of R n, l (see the proof of Proposition 2). It relies on condition R lp B, ρq, as well as H 2 piiq, H 3 piq or H 4 piiq. It is thus omitted.

									k ÿ j"1	Ẽk´j,k E n´k,n `1 k	k ÿ j"1	ˇˇˇˇl pE n´k,n q lpE n´j`1,n q	´1ˇˇˇˇˇ¸.
	Since Ēn " 1 k by ? kL 1´b nk tends to 0, by the fact that ř k j"1 Ẽj and E n´k,n L nk tend to 1, in probability, the first term of the right hand side multiplied ? kL ´a´b nk tends to 0 ? kL ´a´b nk tends to 0.
	' Remind that							
			R n´k,n R p∆q pk 3,k " E a p∆q 3,k " p1 `oP p1qqE ´a n´k,n	pk c E ρ n´k,n vpE n´k,n q.
									E n´k,n L nk	tends to 1
	(see Lemma 5), we obtain	?	kL 1´b nk R	p∆q 3,k " ap1 `oP p1qq ?	kL ´b`ρ nk	vpL nk q.
			?	kL 1´b nk R 3,k " p∆q	´1 ρ p1 `oP p1qq
	' Remind that		R 4,k " p∆q	´1 k	k ÿ j"1	ˆEn´j`1,n E n´k,n	˙a ˜lpE n´j`1,n q lpE n´k,n q	´1¸.
	' Remind that	R 5,k " p∆q	´1 k	k ÿ j"1	#˜˜1	`Ẽ k´j`1,k E n´k,n	¸a	´1¸´a Ẽk´j`1,k E n´k,n

d " ?

kL ´b nk BpL nk q, which tends to ´α ρ under condition H 2 piiq, since ρ " ρ, in this case.

Appendix

Details on the second order conditions

Remind that the starting assumption of this paper is relation p3q, Λ F pxq " x 1{θ X l F pxq and Λ G pxq " x 1{θ C l G pxq, where l F and l G are slowly varying. It is then easy to prove that Λ F pxq " x θ X lF pxq, Λ Ǵpxq " x θ C lG pxq, Λ H pxq " x 1{θ Z l H pxq, Λ H pxq " x θ Z lpxq and Λ F ˝ΛH pxq " x a lpxq, where θ Z " minpθ X , θ C q, a " θ Z {θ X , and lF , lG , l and l are slowly varying. More precisely, we have the following Lemma, under the second order condition p10q.

Lemma 2. Under p2q, p3q and p10q, we have,

for different slowly varying functions generically noted v, with

The proof of this Lemma is based on Theorem B.2.2 in de [START_REF] De Haan | Extreme Value Theory : an Introduction[END_REF] as well as the concept of de Bruyn conjugate (see Proposition 2.5 in [START_REF] Beirlant | Bias reduced tail estimation for censored Pareto type distributions[END_REF]). Details are ommited for brevity.

Remark 5. It is clear that all the aforementioned slowly varying functions satisfy the second order condition SR2 with the corresponding second order parameters defined in the previous Lemma. In particular, rate functions B and B associated, respectively, to l and l satisfy x ρ vpxq Bpxq Ñ ´1{ρ and x ρ vpxq Bpxq Ñ ´1{ρ, as x Ñ `8, with v, the appropriate slowly varying function (see again Theorem B.2.2 in de [START_REF] De Haan | Extreme Value Theory : an Introduction[END_REF]) .

Remind that the function p has been defined by ppxq " Ppδ " 1|Z " xq at the start of the proof of Lemma 1.

The following Lemma provides useful developments of p and p ˝ΛH . In particular, it provides details about the rate of convergence of ppxq, as x Ñ `8. Its proof is based on the fact that ppxq "

Ḡpxqf pxq Ḡpxqf pxq `F pxqGpxq , where f and g are respectively the derivatives of F and G, as well as on the results of Lemma 2. It is omitted for brevity.

Lemma 3. Under p2q, p3q and p10q, we have

In particular, as x Ñ `8,

where r L nk is between L nk and E n´k,n . Hence