Individual movements, home ranges and habitat use by native rheophilic cyprinids and non-native catfish in a large regulated river
 Hervé Capra, H. Pella, M. Ovidio

- To cite this version:

Hervé Capra, H. Pella, M. Ovidio. Individual movements, home ranges and habitat use by native rheophilic cyprinids and non-native catfish in a large regulated river. Fisheries Management and Ecology, 2018, 25 (2), pp.136-149. 10.1111/fme.12272 . hal-02024347

HAL Id: hal-02024347

https://hal.science/hal-02024347

Submitted on 19 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Individual movements, home-ranges and habitat use by native rheophilic

 cyprinids and non-native catfish in a large regulated rivershort title: Movement behaviour of fish in a large river

Hervé Capra ${ }^{1 *}$; Hervé Pella ${ }^{1}$, Michaël Ovidio ${ }^{2}$
${ }^{1}$ Irstea, UR RiverLy, 5 rue de la Doua, CS 20244, 69625 Villeurbanne Cedex (France).
${ }^{2}$ University of Liège, UR-FOCUS. Biology of behaviour Unit, Laboratory of Fish Demography and Hydroecology, 22 Quai Van Beneden, 4020 Liège (Belgium).

* corresponding author: herve.capra@irstea.fr; Tel +334 7220 8732; Fax +334 78477875

Acknowledgments

The authors thank the Agence de l'Eau Rhône Méditerranée et Corse, Electricité de France (EDF-DTG), the European Union/FEDER and the Région Aquitaine for their financial support. We gratefully acknowledge the HTI-Sonar engineers (Tracey Steig, Patrick Nealson, David Ouellette \& Samuel Johnston) for their valuable assistance in the processing of acoustic data. Finally, we wish to thank Julien Bergé, Pascal Roger, Raphael Mons, Nicolas Lamouroux, Frédérique Bau and the numerous people who participated in the field work and more specifically Cédric Giroud (professional fisherman) for net fishing. Special thanks to Audrey Anzil for her translation and to Ross Vander Vorste and Franck Cattanéo for their constructive reviews.

Individual movements, home-ranges and habitat use by native rheophilic cyprinids and non-native catfish in a large regulated river

Abstract

The mobility patterns of two native species, the barbel, Barbus barbus (L.) and the chub Squalius cephalus (L.) and of one non-native fish species, the catfish Silurus glanis (L.) were assessed on a $35.5-\mathrm{km}$ reach of the Upper Rhône River, a strong flowing river with notable thermal regime alterations. An active acoustic tracking technique adapted to large rivers allowed (1) the identification of longitudinal home ranges, movements and preferred habitat at large scale; and (2) the analysis of the influence of discharge and water temperature on the movement patterns of the fish. The active fish-tracking system recorded 1572 fish localisations over seven months on a weekly basis for 80% of the tagged fish (37 barbel, 23 chub and 13 catfish). Compared with the catfish, barbel and chub showed wider longitudinal home ranges, more movements $>1 \mathrm{~km}$ and higher inter-individual variability. The catfish preferred artificially heated habitats with less morphological diversity. The three species were more often localised in river sections with high density of woody debris. The results suggest that habitat degradation is more damaging for cyprinids, while the catfish seemed less, if not unimpacted, in large modified rivers.

Keywords: barbel; chub; catfish; Rhône River; seasonal mobility; habitat use.

Introduction

Many rivers of the northern hemisphere are heavily affected by human activity causing major changes to the rivers' continuity, morphology, flow and thermal regimes. Habitat fragmentation and artificial flow variability are known to modify availability and access to functional habitats for fish (Capra et al., 2017; Fullerton et al., 2010; Nilsson, Reidy, Dynesius \& Revenga, 2005). Impassable obstacles limit the possible movements in both upstream and downstream directions (Crook et al., 2015; Jansson, Nilsson \& Renöfält, 2000) and artificial high flow variability (e.g. hydropeaking) forces fish to select not the most suitable but the "least-constraining" habitats (Capra et al., 2017). The mobility, spatial distribution and temporal variations of fish are major elements of fish biology that influence their population dynamics and productivity (Benitez, Nzau Matondo, Dierckx \& Ovidio, 2015; Fredrich, Ohmann, Curio \& Kirschbaum, 2003; Gardner, Deeming \& Eady, 2015; Lucas \& Baras, 2001; Ovidio, 1999; Radinger \& Wolter, 2014). The range, frequency and intensity of movements of most holobiotic species remain poorly known or unidentified in large rivers (Booth, Hairston \& Flecker, 2013), even though a wide variety of movement behaviours exist in fish at different life stages (adults and juveniles) in different seasons (Benitez et al., 2015; Lucas \& Baras, 2001). These studies have shown that flow and temperature variability are significant factors of fish movement behaviour, but this has never been studied in a large hydropeaking river. Although carrying out such behavioural studies in large rivers remains a technical challenge, they are fundamental to understanding the responses of holobiotic fish species to anthropogenic pressures (Benitez et al., 2015; Gardner et al., 2015). In highly regulated and channelized large European rivers, the endemic (i.e. native) rheophilic cyprinid species (e.g. barbel, Barbus barbus (L.) and chub, Squalius cephalus (L.)) are relevant indicators of the ecological status of the rivers (e.g. Maire, Buisson, Biau, Canal \& Laffaille, 2013 (for conservation regulation); Morina et al., 2016 (for sediment contamination); Oberdorff, Pont, Hugueny \& Chessel, 2001 (for fish-based index)). Indeed, their high sensitivity
to fragmentation, flow change and thermal regime variations is due to specific ecological requirements for the reproduction substrate in certain spawning sites or water quality and leads to dramatic declines of their populations (De Leeuw \& Winter, 2008; Ovidio \& Philippart, 2008; Poulet, Beaulaton \& Dembski, 2011). Barbel and chub could also be considered as relevant indicators to study the impact of river fragmentation (Benitez \& Ovidio, 2018). It appears on the other hand, that the non-native species, catfish (Silurus glanis (L.)), successfully adapts and seems to take advantage of the general deterioration of river ecosystems (Britton, Cucherousset, Davies, Godard \& Copp, 2010; Castaldelli et al., 2013; Guillerault et al., 2015; Poulet et al., 2011). Despite these observations, knowledge on native rheophilic species and non-native catfish movement behaviour in large rivers is lacking. The behavioural ecology and particularly seasonal movement patterns of barbel are well documented but exclusively in fourth order rivers or lower (Baras, 1992; Baras, 1995; Le Pichon, Tales, Gorges, Baudry \& Boët, 2016; Ovidio \& Philippart, 2008). Benitez and Ovidio (2018) showed that within the same river basin, barbel demonstrate flexibility in movement periodicity and optimise the start date of migration towards spawning grounds in accordance with their local environment and individual experiences. This suggests that movement behaviour of a single species may differ depending on the size of the river. These studies have widely demonstrated frequent seasonal movements between functional habitats and high habitat stringency (substrate, water quality). The documentation of chub mobility in large rivers (i.e. order ≥ 5) is limited to one study with a short tracking duration (5 to17 days) within a 4-km long study site that showed significant occupation of backwaters and cover such as woody debris and boulder clusters (Allouche, Thévenet \& Gaudin, 1999). Cucherousset et al. (2017) highlighted a knowledge gap on catfish adaptation to river modification and on their mobility and dispersal patterns and Brevé et al. (2014) showed explicit site fidelity and limited movements for adults in a large river (Meuse River, Netherlands). Capra et al. (2017) showed contrasted habitat selection behaviours among barbel, chub and catfish, on a local scale (i.e. microhabitat) and in a hydropeaking flow regime. However, Capra et al. (2017)
assumed that it is more likely that changes in fish habitat selection, considering the available knowledge on specie habitat traits (Lamouroux, Capra, Pouilly \& Souchon, 1999; Slavík, Horký, Bartoš, Kolářová \& Randák, 2007; Copp et al., 2009; Rifflart, Carrel, Le Coarer \& Fontez, 2009), is related to quick reactions and adapted movements supported by the capacity of fish to remember the spatial structure of the reach and its variations (Reebs, 1996). But, to date, seasonal movement behaviour of native rheophilic species and non-native catfish on a broad scale (a dozen kilometres) has not been studied simultaneously in a large river, which is the typical ecosystem in which their home ranges overlap.

Telemetry studies in a broad variety of aquatic environments can now be performed thanks to the technological progress achieved over the last two decades, including the use of radio and acoustic bio-telemetry with manual or automated localisation. Large river ecosystems are somewhat restrictive in terms of the logistical deployment of bio-telemetry techniques mainly because of their size and harsh hydraulic conditions, preventing, for example, the possibility of tracking a large number of individuals in a limited period of time. Therefore, telemetry research in large rivers has been essentially based on passive listening methods to analyse fish trajectories and movement speeds between passive listening stations located several kilometres away from each other (Béguer-Pon et al., 2015; Burke \& Jepson, 2006; De Leeuw \& Winter, 2008; Gardner, Deeming \& Eady, 2013; Verbiest, Breukelaar, Ovidio, Philippart \& Belpaire, 2012; Brevé et al., 2014; Wang, Wei, Kynard \& Zhang, 2012). Notable exceptions are Daugherty and Sutton (2005), Wang et al. (2012) and Alexandre et al. (2016), who tracked fish over long distances (20 to 38 km) during 9 to 14 months on a weekly basis using boats.

This study assessed the movement patterns of two native rheophilic cyprinid species (barbel and chub) and the non-native catfish in the Rhône River (France) over a seven-month period from spring to autumn. The Rhône River in the Bugey area is characterised by huge flow disruptions due to peak flow management measures and water temperature locally warmed by the cooling system of a nuclear power plant. To overcome the limitations of the active tracking
of fish in large rivers (Herrala, Kroboth, Kuntz, \& Schramm, 2014), an acoustic tracking protocol adapted from the homing protocol presented in Eiler (2012) using scanning acoustic equipment from a boat was used, allowing easier and a more efficient localisation of many individuals. The purpose of this study was to test (1) if the non-native catfish develop, as expected, different movement behaviours, home range exploitations and habitat uses than the native rheophilic cyprinids, barbel and the chub, (2) if their movements are influenced differently by discharge and water temperature and (3) if the catfish take advantage of the river degradation unlike the native rheophilic cyprinids.

Methods

Study site

The study reach is a $35.5-\mathrm{km}$ undiverted section of the French Upper Rhône River located northeast of Lyon (Figure 1) between the Sault-Brénaz hydroelectric facility (located upstream; Compagnie Nationale du Rhône - CNR) and the Jons-Cusset hydroelectric facility (located downstream; Électricité De France - EDF). The upstream limit (river kilometer Km 0; $45^{\circ} 51^{\prime} 19.74$ "N; $5^{\circ} 24^{\prime} 23.40^{\prime \prime} \mathrm{E}$) of the study reach is distinguished by an artificial riprap weir (which cannot be crossed by boat). The downstream limit (Km 35.5; 45046'4.23"N; $4^{\circ} 54^{\prime} 49.90^{\prime \prime} \mathrm{E}$) is identified by the dam of Jons. Sault-Brénaz's and Jons-Cusset's hydroelectric facilities cannot be crossed by fish in an upstream direction but downstream passages remains possible through the turbines or spillways. A nuclear power plant located on the right bank of the study reach at Km 17.5 pumps $\approx 100 \mathrm{~m}^{3} / \mathrm{s}$ to cool its four reactors and discharges warmed-up water (between 7 and $10^{\circ} \mathrm{C}$ warmer than the upstream water). The warm water discharge creates a strong transversal temperature difference between the left bank and the right bank (Ginot, Souchon \& Roger, 1996; Capra et al., 2011).

Daily mean discharge at the study site varied between 160 and $742 \mathrm{~m}^{3} / \mathrm{s} 90 \%$ of the time, for a mean annual flow of $473 \mathrm{~m}^{3} / \mathrm{s}$ (http://www.rdbrmc.com; stream gauging station of the CNR at Lagnieu, Km 6). The low-flow period stretched mainly from the end of summer to autumn (5year mean monthly low flow $=200 \mathrm{~m}^{3} / \mathrm{s}$). The high-water periods were linked either to the end of spring snowmelts or autumn rains (2-year flood $=1300 \mathrm{~m}^{3} / \mathrm{s}$). The peak production of hydroelectricity (hydropeaking), operated by upstream dams, created daily flow variations of 150 to $500 \mathrm{~m}^{3} / \mathrm{s}$ over the study reach (real-time information on http://www.inforhone.fr). The daily mean water temperature (data recorded from 1980 to 2010 by EDF at $\mathrm{Km17}$) varied between $1^{\circ} \mathrm{C}$ and $26^{\circ} \mathrm{C}$, and annual mean water temperature was $12.1^{\circ} \mathrm{C}$.

Capture and tagging

The fish capturing and tagging took place between 15 and 19 March 2010. Close to 20% of the study reach was sampled per day during the capture and tagging period in the upstream direction. The fish were captured by boat using electrofishing or net fishing techniques (gillnets were left for a maximum of two hours) and the capture location of each individual was recorded. The fish were placed in containers, which were set-up on the riverside and supplied with water using pumps immersed in the Rhône River, for a minimum duration of one hour before and after being tagged. The fish were then selected for tagging according to their weight (minimum $=600 \mathrm{~g}$). Acoustic transmitters were implanted in the fish's intraperitoneal cavity, in accordance with the technique described by Ovidio and Philippart (2008). The fish were anaesthetised with a 0.08 mL / L AQUIS-S ${ }^{\circledR}$ (Aquis-S, NZ Ltd.) solution before the tagging and an antibacterial medication (Marbocyl 2\%) was injected in the dorsal muscles to prevent post-operative infections. One hour after the surgery, the fish's recovery was verified (correct resting position and respiration, no bleeding) before release at their capture site to avoid post-tagging artificial movements (Gardner, Deeming, Wellby, Soulsbury \& Eady, 2015).

The fish tags (Model 795 Acoustic Tags: frequency of 307 khz ; transmit power level of 155 dB relative to $1 \mu \mathrm{~Pa}$ at a distance of 1 m , Hydroacoustic Technology Inc. (HTI), Seattle, Washington) lasted between 180 days and three years (manufacturer data) and their weight in air was 13 g or 24 g (respectively 795 LX and 795 Z models). The tags weighed less than 2% of the fish's body weight (Brown, Cooke, Anderson \& McKinley, 1999; Winter, 1983).

A total of 83 fish belonging to the three most abundant species during the sampling were tagged: barbel $(\mathrm{n}=37)$, chub $(\mathrm{n}=31)$ and catfish $(\mathrm{n}=15)$. A few other individuals $(\mathrm{n}=1$ to 6) of seven other species were also tagged but not considered herein. Some fish tagged for a previous study, in 2009 (Capra et al., 2017; barbel, $n=3$; catfish, $n=5$), with a potentially still active tag in 2010, were tracked as well as the newly tagged fish in this study. The behaviour, in terms of distances travelled and linear range of newly tagged fish and previously tagged fish, were deemed comparable (Gardner, Deeming, Wellby, et al., 2015).

Fish tracking

Each tagged individual was identified by its tag's HTI configured sound emission period (field programmable; http://www.htisonar.com/acoustic_tags.htm). The emitting period of the tags ranged between 2995 and 3884 ms . A second signal (subcode), replicating the first, was used to improve the detection probability, thus enabling the simultaneous localisation of several hundred fish without risking the collision of tag signals and suppressing any noise interference that could have been on the same frequency.

During tracking campaigns, fish detection was performed from a motorboat equipped with four hydrophones (two hydrophones on either side) attached to a metal crossbar set up on the bow of the boat, perpendicular to the navigation axis (Figure 2). On both sides of the crossbar, a directional hydrophone (Model 592 directional Hydrophone 30°, HTI) and a 180° angle limited omnidirectional hydrophone (Model 590-series Hydrophone 330°, HTI) were set up. This provided large monitoring areas on either side of the boat towards the riverbank and the
riverbed (Figure 2). A 291 HTI Portable Acoustic Receiver was linked to the four hydrophones with 690-100 HTI Hydrophone cables. The portable receiver was connected and synchronised to a laptop computer that recorded, via the Acoustic Tag© software, hourly files including all surrounding noises detected by the four hydrophones. The laptop recorded the GPS localisation (compass Crescent V100 Series - Hemisphere GPS with an accuracy inferior to 60 cm) of the crossbar, and therefore that of the hydrophones, every second. The laptop time drew a link between the recording of the tags' sound emissions and the GPS coordinates of the hydrophones.

Between 1 April 2010 (two weeks after the fish tagging) and 19 October 2010, the tracking campaigns were carried out on a weekly basis over the entire study reach. Each tracking campaign (around 7 hr each) was boat-monitored in the downstream direction by drifting in the middle of the channel (i.e. along the curvilinear axis from Km 0 to Km 35.5) with the water current to minimise the use of the motor; this was also done in the backwaters and secondary channels when enough water flow was available.

Hourly files were recorded using the MarkTags© software, which automatically detected the exact time (to the second) at which the fish tag emission was the nearest to the hydrophones (see NP time on Figure 2), thus allowing precise localization of fish within the study reach after each tracking campaign. Each fish localisation was pinned by the curvilinear coordinates (i.e. ranging from Km 0 to Km 35.5 km ; Figure 1) of the hydrophone at the NP time. Only fish localised at least ten times (the third of the tracking campaign number) were retained for analysis.

Data analysis

The spatio-temporal patterns of fish movements were first determined by the longitudinal home range (HR, m) which is defined as the distance between the most downstream NP curvilinear coordinate minus the most upstream NP curvilinear coordinate (Ovidio, Seredynski, Philippart \& Nzau Matondo, 2013). For each species the link between HR and the fish size and weight (all
variables transformed into $\log (\mathrm{x}+1)$ to approximate normal distribution) allowed detection of all possible individual effects (Aarestrup, Jepsen, Koed \& Pedersen, 2005). Lastly, several basic indicators related to the complexity and variability of individual fish longitudinal movements in the rivers were calculated (Ovidio, Baras, Goffaux, Giroux \& Philippart, 2002; Ovidio et al., 2013). These were:

- total net travelled distance (Dnt, m), from the sum of the net travelled distances between two subsequent localisations within seven days ($\mathrm{Dn}, \mathrm{m} / 7 \mathrm{~d}$). Dn was the absolute value of the raw travelled distances, which was negative when fish travelled in an upstream direction;
- mean net travelled distance within seven days ($\overline{D n}, \mathrm{~m} / 7 \mathrm{~d}$), from Dnt divided by the number of intervals between two subsequent localisations;
- maximum of Dn (Dnx, m/7d);
- number of $\mathrm{Dn}>1 \mathrm{~km}(\mathrm{Dn} 1 \mathrm{k})$. Note that the $1-\mathrm{km}$ threshold has been considered as a significant location change (see Figure 1 in Radinger \& Wolter (2014); see also Peňáz, Barus, Prokes \& Homolka (2002) who defined resident barbel as all marked individuals that did not move more than 780 m). This indicator was used to infer the variability of the large-scale habitat changes of the fish, in contrast with local scale habitat (microhabitat) selection studied in 2009 by Capra et al. (2017) over the same study reach in the Rhône River. Fish that moved, at least once, further than 1 km in seven days (i.e. Dnlk ≥ 1) were called roaming individuals. The proportion of roaming fish, the proportion of Dn1k for each species and the proportion of roaming fish that travelled upstream first were calculated and compared to a random distribution with a Pearson's χ^{2}-test for count data. Finally, the roaming fish showing $\mathrm{Dn}>5000 \mathrm{~m}$ were detected to outline long-distance movements.
- intensity of exploitation (IE) of the HR as the ratio of Dnt divided by HR (see Ovidio et al., 2002 and 2013).

The distributions of HR, $\overline{\mathrm{Dn}}$, Dnt, Dnx, Dn1k and IE are shown as box-plots, using one box-plot per species. The distributions of the three species were compared using Kruskal-Wallis
rank sum tests (Kruskal \& Wallis, 1952). If these tests showed a difference among species, their distributions were then compared between pairs of species with a Wilcoxon signed-rank test (Wilcoxon, 1945) using a Bonferroni adjustment of the α value (here $\alpha / 3$).

The influence of mean daily temperature and discharge between two successive locations on Dn was tested fitting a GLM-Poisson model for each species, grouping all data from the same species (i.e. data of all individuals). To illustrate the interaction between temperature and discharge, for each species, a bubble chart was plotted as $\mathrm{x}=$ mean temperature values, $\mathrm{y}=$ mean discharge values and $\mathrm{z}($ size $)=\mathrm{Dn}$ values.

To complete the analysis of the effect of the water temperature on the spatial distribution of fish over the study reach, a contingency table was created of the recorded locations between the nuclear power plant of Bugey (Km 18) and Loyettes (Km 24; Figure 1). The right riverbank locations (heated areas downstream of the heated effluents from the nuclear power plants) were distinguished from those located on the left riverbank (non-heated zone) on the entire 6 -km-long section. The physical habitat availability on the right and left riverbanks of this section are comparable. The contingency table was tested using a Pearson's χ^{2}-test for count data.

Finally, to identify possible habitat determinism over fish spatial distribution, the study reach was divided into adjacent $500-\mathrm{m}$ long sections (Figure 1) and then the preferences of the fish for general habitat characteristics were tested. The general habitat of each $500-\mathrm{m}$ long section was differentiated using categorical variables: channel type (single or multi-channel), river morphological unit (rapid or homogeneous lotic channel) and the density of woody debris spots inventoried (three classes with comparable density in a $500-\mathrm{m}$ long section). During the tracking campaigns on 9 August 2010 and 27 September 2010 woody debris spots were inventoried and GPS-localised along both riverbanks. The density of woody debris spots was calculated for both riverbanks of each $500-\mathrm{m}$ long sections as the mean number of spots inventoried from both tracking campaigns. Woody debris density per $500-\mathrm{m}$ long sections in different classes of channel types and morphological units were compared to a random
distribution with a Pearson's χ^{2}-test for count data. Calculations for each tracking campaign (shown as a date) and for each class of each variable, were necessary, this included: the total number of fish located in each $500-\mathrm{m}$ long section belonging to this particular class divided by the number of $500-\mathrm{m}$ long sections belonging to this particular class (equivalent to the population density in this class). Then, a Wilcoxon signed-rank test (Wilcoxon, 1945) was used on the variables with two classes and a Friedman rank sum test (Friedman, 1940) for the variables with three classes to determine whether a class (i.e. the type of a section) was more densely populated (preferences for these classes) than another one throughout the tracking period, or whether the location distribution among the various types of sections varied over time (no preference). A post hoc test among the different classes was performed when the Friedman rank sum test was significant. The α value for the post hoc tests was divided by the number of classes (Bonferonni adjustment).

All statistical tests were conducted using the R software (R Core Team, 2014) with a significant threshold set to $\alpha=5 \%$.

Results

Daily mean flow during the tracking campaigns varied from 150 to $900 \mathrm{~m}^{3} / \mathrm{s}$ (mean $=385 \mathrm{~m}^{3} / \mathrm{s}$; $\mathrm{SD}=165 \mathrm{~m}^{3} / \mathrm{s}$; Figure 3 for weekly mean flows). The daily mean temperatures varied from 7.9 to $24.4{ }^{\circ} \mathrm{C}$ (mean $=16.6^{\circ} \mathrm{C} ; \mathrm{SD}=4.0^{\circ} \mathrm{C}$) the highest values being noted in July and August 2010 (Figure 3 for weekly mean temperatures).

Between 1 April and 19 October 2010, 29 tracking campaigns were carried out with an average duration of 7.2 days (quartiles $=6.8,7.0$ and 7.3 days) between each campaign. Among the 91 fish of the three species tagged, 73 individuals (80% of the tagged fish; barbel, $\mathrm{n}=37$; chub, $\mathrm{n}=23$; catfish $=13$; Table 1) were located at least ten times during the study and considered for analysis. The time between two successive localisations ranged from 5 and 70
days (quartiles $=7.0,7.0$ and 9.0 days) for the 1572 recorded fish localisations (all using the 30° directional hydrophones). The number of individuals located during each campaign varied from $43(59 \%$ of the 73 studied fish) to $63(86 \%)$ and on average, 54 fish (74%) were located, although fewer positions were recorded after 27 September. The total number of localisations for barbel was 828,457 for chub and 287 for catfish (Figure 3). Note that seven localisations for four individuals (barbel, $n=1$; chub, $n=3$) were recorded upstream of the weir of $K m$, due to manual studies carried out between 20 May and 28 June 2010 (reproduction period). These four fish returned downstream of the weir one to two weeks after their localisation (Figure 3). Among the 18 individuals with less than ten localisations (20% of the tagged fish; barbel, $n=3$; chub, $\mathrm{n}=8$; catfish, $\mathrm{n}=7$) and removed from the analysis, nine fish (10\%) were poorly detected (1 to 9 localisations), six fish (7\%) disappeared from the study site early on (before the seventh tracking campaign) and three fish (3\%) were never detected.

Barbel and chub showed a high inter-individual variability in movement patterns, from highly resident to very mobile subjects who roamed the upstream and downstream limits of the study area (Figure 3). Catfish showed lower individual-specific movement variability with the majority of individuals showing only very short movements (Figure 3). The proportion of roaming individuals was higher for barbel $(73 \% ; n=27)$ and chub $(70 \% ; n=16)$ than catfish ($46 \% ; \mathrm{n}=6$; Pearson's $\chi^{2}=5.93 ; p=0.05$). The proportion of Dn1k, overall, was low but higher for barbel and chub (10% for both species) than catfish (7\%), with no significant difference from random distribution (Pearson's $\chi^{2}=2.91 ; p>0.05$). The first $\mathrm{Dn}>1 \mathrm{~km}$ was travelled in the upstream direction for most barbel $(63 \% ; n=17)$ and chub $(87 \% ; n=14)$, compared with only half of the catfish $(50 \% ; \mathrm{n}=3)$, but without significant difference with a random distribution (Pearson's $\chi^{2}=4.06 ; p>0.05$). Finally, among roaming fish, 17 individuals (barbel, $\mathrm{n}=8$; chub, $\mathrm{n}=7$; catfish $=2$) showed a $\mathrm{Dn}>5000 \mathrm{~m}$ (Figure 3). Most of these individuals remained for some weeks in the newly occupied habitat before coming back near to the place they left a few
weeks before (Figure 3). Very few fish stayed in their new habitat, without returning during the studied period.

Comparison of the movement indicators showed no significant differences among the three species (Figure 4, Table 2) and there was no correlation (correlation coefficients ranging from -0.17 to 0.14 with all p values >0.05) between HR and fish size or fish weight. The median HR of barbel and chub were close (respectively 3045 m and 2355 m) and two to three times higher than the median HR of catfish (1295 m; Figure 4 and Table 2). Dnt, $\overline{\text { Dn }}$, Dnx and Dn1k were not different among species even though the medians for barbel and chub were close and higher than the medians for catfish (Figure 4 and Table 2). Finally, catfish were the species that most intensively exploited their longitudinal home range (Figure 4 and Table 2).

GLM-Poisson models found no effect of temperature, discharge or their interaction on Dn (Figure 5). The coefficients for all variables and their interaction were all significantly ($p<0.05$) close to $0.0(-3.4 \mathrm{e}-01$ to $5.4 \mathrm{e}-04)$. Mean temperature and mean discharge showed no correlation between fish localisations (Figure 5). Dn was higher for higher mean flows for all three species when the temperature was between $14^{\circ} \mathrm{C}$ and $18^{\circ} \mathrm{C}$. A visible gradient was observed among the three species in relation to the temperature associated with Dn. Longer Dn data were observed for temperatures ranging between $13{ }^{\circ} \mathrm{C}$ and $19^{\circ} \mathrm{C}$ for babel, from $13^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$ for chub and from $15^{\circ} \mathrm{C}$ to $24^{\circ} \mathrm{C}$ for catfish.

Fish localisations between the nuclear power plant and Loyettes, divided between the non-heated left riverbank and the right riverbank, were not significantly different from a random distribution (Pearson's $\chi^{2}=2.85 ; p>0.05$). However, barbel and chub mainly occupied the left riverbank ($34 / 49$ and $45 / 51$ localisations respectively) whereas the catfish were predominantly on the right riverbank (60/53 localisations).

Over the 71 defined $500-\mathrm{m}$ long sections, 20 were multi-channel types and 51 singlechannel types, predominantly lotic channel types (46 areas) as opposed to rapid types (25 areas). The number of woody debris spots per $500-\mathrm{m}$ long section varied from 1 to 31 with a median of

8 and their density per section was no different from random (Pearson's $\chi^{2}=0.42 ; \mathrm{p}>0.05$). During the tracking period, fish were detected in $65,500-\mathrm{m}$ long sections. The remaining six sections were located in the downstream half of the study reach. The total number of fish localised per $500-\mathrm{m}$ long section varied from 0 to 28 (quartiles were 2.0, 3.0 and 4.5). The total number of fish localisations per $500-\mathrm{m}$ long section varied from 0 to 298 (quartiles were 4.0, 11.5 and 23.7). Barbel preferred multi-channel type sections, with rapids and a high number of woody debris (Table 3). Chub preferred main channels without rapids but with a high number of woody debris (Table 3). Catfish showed no particular channel type preferences but appear to prefer sections with a high number of woody debris (Table 3).

Discussion

By tracking 91 adult fish over seven months, the movement metrics and habitat use of two native rheophilic species (barbel and chub) and a non-native species (catfish) were quantified in the Upper Rhône River. The results showed the movements of cyprinids and catfish recorded simultaneously in a large fast-flowing river (the Rhône River). Unlike the catfish, barbel and chub demonstrated (1) wider home ranges (HR), (2) a higher number of net distances travelled > 1 km (Dn1k), (3) a higher inter-individual variability and (4) a higher rate of roaming individuals. Catfish were more often localised in artificially heated habitats (downstream from the nuclear power plant), intensively exploited their habitat and have no preference for available morphological habitat types.

The portable active-scanning acoustic system proved a relevant technique to locate fish in a large-size and fast flowing river. It could be used to investigate the complexity and the variability of fish individual movements more accurately, as well as habitat and home range exploitation at high temporal resolution. Furthermore, it allowed high detection rates of the tagged individuals (on average 74% per tracking campaign) without data collisions of dozens of tagged fish
simultaneously and without increasing the search duration. Such a high-performance of a telemetry system has not been achieved with more traditional active telemetry or fixed detection stations at the scale of a large river and thus could contribute to filling gaps in knowledge on the behavioural ecology of fish in such environments. However, determining why $20 \%(\mathrm{n}=18)$ of the 91 examined tagged fish were never or poorly detected or disappeared early from the study reach remained problematic. Authors often suggested reasons such as mortality, predation or movements outside of the study area, but their results generally showed higher rates (29-43 \%) lost or poorly detected individuals (Béguer-Pon et al., 2015; De Leeuw \& Winter, 2008; Verbiest et al., 2012). The mobile active scanning used in this study allowed a high number of contacts with fish in comparison to fixed listening stations and consequently increased the precision of the movement metrics quantified (i.e. HR, $\overline{\mathrm{Dn}}, \mathrm{Dn} 1 \mathrm{k}, \mathrm{IE}$; Figure 4).

The evaluation of HR depended mainly on the number of individual localisations recorded, the duration of the study and the telemetry equipment (Alexandre et al., 2016). As in most telemetry studies, seasonal HR and the estimated Dn only partially reflected reality, as fish inevitably travelled outside the tracking periods during other moments of the daily cycle (evening and night-time for example; Horký, Slavík, Bartoš, Kolářová, \& Randák, 2007). However, it seemed reasonable to consider in this study that the use of a weekly positioning interval for the three species over seven months was an appropriate way to compare relative mobility patterns among species on a seasonal scale, with acceptable losses of accuracy (Alexandre et al., 2016 [monthly basis; in a stream]; Baras, 1998 [test for successive locations from 1 to 28 days; best cost-effectiveness for barbel = once a week; in a stream]; Hann \& Schramm, 2018 [once a week for five months; in a river]; Herrala et al., 2014 [once a month for more than three years; in a river]; Ovidio et al., 2002 [every day to three times a week; in a stream]). HR for barbel and chub (median > 2300 m ; Table 1 and Figure 4) were larger than catfish (median < 1300 m ; Table 1 and Figure 4), with considerable individual differences. In smaller rivers (median flow $<30 \mathrm{~m}^{3} / \mathrm{s}$), the HR of barbel exceeded 10 km on a regular basis and
could reach 40 km (tracked using manual mobile radio-telemetry; Baras, 1992; Ovidio, Parkinson, Philippart, \& Baras, 2007). Allouche et al. (1999), also using manual mobile radiotelemetry, observed lower HR values for chub, $<600 \mathrm{~m}$ in an upstream part of the Upper Rhône River (bypass section of Chautagne; minimum flow $30-60 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) over a much shorter tracking period ($\mathrm{n}=10$ individuals; 3.6 km per reach, max 17 days), which led to an underestimation of the movements compared to the results presented in this study. By contrast, De Leeuw and Winter (2008) found that most rheophilic cyprinids in the Meuse River, Belgium (mean annual flow $=230 \mathrm{~m}^{3} / \mathrm{s}$; including barbel and chub) moved over rather short longitudinal distances (<10 km) during the year using the fixed station NEDAP telemetry and De Vocht and Baras (2005), using classic manual mobile radio-telemetry, found HR from 1.05 km to 27.3 km in the Meuse (in between dams; hydropeaking flows; $\mathrm{n}=14$ individuals; 40 km -reach; 5 to 17 months of tracking). These examples illustrate that the limit of movement for HR of cyprinids often corresponded to the maximum length of the river stretch (Woolnough, Downing, \& Newton, 2009), which may reflect space-use strategies constrained by habitat fragmentation (Gardner et al., 2015 -bream; Geeraerts et al., 2007 -roach). The HR for barbel and chub recorded here ranged from 150 m to 35 km (i.e. in between the dams of the study reach; Figure 1), which confirmed a possible limitation due to the size of the river stretch. The role of fragmentation on the limitation of the HR size for rheophilic cyprinids was strengthened by their very limited ability to pass over obstacles (Lucas \& Frear, 1997; Ovidio \& Philippart, 2002; Weibel \& Peter, 2013). Further, in fragmented rivers the majority of reproduction movements occurred in the upstream direction (Baras, 1992; Ovidio \& Philippart., 2002; Reichard, Jurajda, \& Ondračková, 2002). This is in line with the roaming cyprinids (more than 70\%), that also first moved upstream during the circum-reproduction period. But the few tagged barbel $(\mathrm{n}=1)$ and chub $(\mathrm{n}=3)$ located upstream of the riprap weir at Km 0 , after a long upstream migration (from 1.4 to 12 km), were likely blocked by the dam at Sault-Brenaz. De Vocht and Baras (2005) observed that the HR of barbel in the Meuse River was significantly broader in the highly structured part of the river with
continuous availability of suitable habitat for spawning, resting and foraging than in areas with less habitat diversity. Peňáz et al. (2002) also suggested that barbel movements may be linked with the quality and diversity of the habitats available between obstacles within streams. In the Rhône River, the variability in availability of functional habitats (under Le Pichon, Gorges, Baudry, Goreaud, \& Boët, 2009; e.g. feeding, shelter, spawning) under the hydropeaking flow regime, needs to be quantified to understand better its role on fish localisation and movements, as it was suggested by Alexandre et al. (2016). However, the HR sizes (0.1 to 35 km) observed in the study reach, although characterized by high artificial flow variability (hydropeaking), were not larger than those recorded by Ovidio et al. (2007) in a less disturbed and smaller river (Ourthe, Belgium). This suggests that HR, especially for barbel and chub, are not river size dependent but more certainly river continuity dependent (i.e. the length of the river without obstacles).

Given the limited knowledge about catfish behavioural ecology (Cucherousset et al., 2017), it is difficult to determine if the low median HR with low inter-individual variability (Figures 3 and 4) observed reflects n adaptation to a fragmented (in between dams) environment (Crook et al., 2015), such as in the Upper Rhône River, or if this is the typical behaviour of the species, potentially found in other types of less impacted environments within its natural distribution range. Seasonal mobility remained almost unknown (including in their native areas) despite, the species expansion beyond its natural distribution range in Western Europe and potential competition with other native species (Copp et al., 2009; Guillerault et al., 2015).

Barbel, chub and catfish demonstrated high inter-season fidelity to certain preferred habitats within the study area, even after long Dn (Figure 3). Site fidelity was also observed for barbel (Britton \& Pegg, 2011; De Vocht \& Baras, 2005; Ovidio et al., 2007), chub (Allouche et al., 1999), dace (Leuciscus leuciscus; Clough \& Ladle, 1997), ide (Leuciscus idus; Kuliskova, Horký, Slavik, \& Jones, 2009; Winter \& Fredrich, 2003) and catfish (Brevé et al., 2014; Carol, Zamora, \& García-Berthou, 2007), and may be regarded as a valuable behavioural strategy that
minimises energy expenditure (Hart, 1986), or to defend territories in the case of the catfish (Slavik, Horký, Maciak, Wackermannová, 2016). In the present study (a study reach three times longer than the study reach of Brevé et al., 2014), site fidelity mostly appeared with the catfish, that tended to change location less often than the other species and that had lower interindividual heterogeneity mobility patterns (Figure 3). Unlike barbel and chub, catfish are top predators (Copp et al., 2009) and food availability may influence the mobility patterns of the three species (as suggested by Hansen \& Closs (2005) for Galaxias argenteus) as other behavioural or genetic features (Woolnough et al., 2009). The superior sedentary behaviour of the catfish, yet with a higher IE, may also reflect a lesser need to move to find food resources within the home range. Even under highly variable habitat availability (hydropeaking), cyprinids and catfish seemed to be able to develop cognitive maps of the surroundings, which can be used to navigate home following a journey (Capra et al, 2017), as suggested by Braithwaite and Burt de Perera (2006) and Odling-Smee and Braithwaite (2003). In the present study, 30% (barbel) to 44% (chub) of roaming individuals were located in October near ($<1 \mathrm{~km}$) their first localisation point (in April) after Dn $>5 \mathrm{~km}$, suggesting that some individuals of each species moved seasonally to reach specific and well known areas of the Rhône River within the scale of the river reach (tens of kilometres; e.g. Peňáz et al, 2002). It seemed less likely that the fish could memorise habitat structure at a larger scale, but travelling dozens of kilometres downstream in seven days before coming back more or less to the same place a few weeks later (Figure 3) requires spatial knowledge of the environment. Catfish appear to be less inclined to long journeys and could take advantage of this situation to exploit its selected habitat more intensively, even in the warmed water plume of the nuclear power plant.

Catfish showed higher mobility when the temperature was $15-24{ }^{\circ} \mathrm{C}$ and flows were high, unlike the rheophilic cyprinids which tended to move more within the $13-22{ }^{\circ} \mathrm{C}$ range, which corresponds to the circum-reproduction temperatures of the three species (Baras, 1995; Copp et al., 2009; Souchon \& Tissot, 2012). Slavik, Horký, Bartoš, Kolářová, and Randák (2007) found
that catfish movements in spring, autumn and winter differed strongly from the summer when fish were highly active both during the day and night. They observed a strong positive correlation between movements and flow in catfish during the summer, suggesting an attempt to optimise the use of space and food resources that become restricted during low-flow conditions. In this study, neither species moved much between the end of summer and the beginning of autumn, when water temperature and discharge decreased, as already found for barbel and chub (Allouche et al., 1999; Baras, 1992).

In terms of habitat use, while barbel preferred multi-channel rapids and chub preferred single lotic channels, catfish did not show specific preferences for morphological units. All three species preferred habitats with large amounts of woody debris, which provide shelters against flow velocity and predators or can be a source of food. Note here that the localisation accuracy did not determine if a fish was hiding in woody debris. Catfish were more often located in the part of the study area that is heated by the nuclear power plant than chub or barbel, which were mainly located upstream of the nuclear power plant. This result supported a previous experiment with fixed acoustic telemetry performed upstream and downstream of the nuclear power plant effluent, and showed that catfish spent more than 50% of their time in the heated zone, whereas chub and barbel used this zone less than 5% of the time (Capra et al., 2017). These results may explain the increase of the catfish populations in the Rhône River, especially considering the loss of lotic habitats in favour of lentic habitats (Olivier et al., 2009), the water heated by the nuclear power plant's effluents and global warming (Daufresne, Roger, Capra, \& Lamouroux, 2004; Daufresne \& Boët, 2007). Throughout Europe, similar depletion of habitat quality and diversity could be responsible for the expansion of catfish in other similarly disrupted large rivers (Copp et al., 2009; Poulet et al., 2011). For example, Britton et al. (2010) argued that the predicted temperature increases due to global change would benefit catfish, one of the six non-native fish species currently persistent but not established in England and Wales. Ecological niches in the Upper Rhône River are assumed to be not completely saturated by the 45 potential inhabiting
fish species (Olivier et al., 2009) because only 37 species were sampled each year on average between 1979 and 1999 (Daufresne et al., 2004) and that this could allow catfish to establish.

In conclusion, while remaining coherent with previous knowledge on the behavioural ecology of the barbel, chub and catfish, the results presented here help to understand better how these three species behave and react to environmental changes and habitat modification when tracked simultaneously in the same river. The new active scanning telemetry system was well suited to track the seasonal movements and habitat use of native rheophilic cyprinids (barbel and chub) and non-native catfish simultaneously in the deep, large and fast flowing Upper Rhône River, with higher detection rates and better ease of fish localisation than with radio telemetry methods. The results presented here indicated that catfish seemed to be less constrained by environmental and habitat changes (high temperature, fragmentation, hydropeaking flow regime) in this modified river, by the adoption of more opportunistic and stable behavioural strategies. This may help explain the expanding range of this non-native species, to the detriment of the more exigent native species, which have to deal with the anthropogenic alterations. Assuming rheophilic cyprinids have some ability to adjust their behavioural strategies to habitat constraints, by limiting their migrations in between dams and by avoiding high temperature areas, it would be interesting to assess what are the reasonable limits of habitat modification to maintain their population size and structure and ensure long term persistence in the 35.5 km of the Rhône River in the Bugey area. A priority would be to reconnect the river stretch and maintain sufficient habitat diversity, adapted to the requirements of the native species.

References

Aarestrup, K., Jepsen, N., Koed, A., \& Pedersen, S. (2005). Movement and mortality of stocked brown trout in a stream. Journal of Fish Biology, 66, 721-728. doi:10.1111/j.00221112.2005.00634.x

Alexandre, C. M., Almeida, P. R., Neves, T., Mateus, C. S., Costa, J. L., \& Quintella, B. R. (2016). Effects of flow regulation on the movement patterns and habitat use of a potamodromous cyprinid species. Ecohydrology, 9, 326-340. doi:10.1002/eco. 1638

Allouche, S., Thévenet, A., \& Gaudin, P. (1999). Habitat use by chub (Leuciscus cephalus L. 1766) in a large river, the French Upper Rhône, as determined by radiotelemetry. Archiv für Hydrobiologie, 145, 219-236. doi: 10.1127/archiv-hydrobiol/145/1999/219

Baras, E. (1992). Etude des stratégies d'occupation du temps et de l'espace chez le barbeau fluviatile, Barbus barbus (L). Cahiers d'Ethologie Appliquée, 12, 125-442.

Baras, E. (1995). An improved electrofishing methodology for the assessment of habitat use by young-of-the-year fishes. Archiv für Hydrobiologie, 134, 403-415.

Baras, E. (1998). Selection of optimal positioning intervals in fish tracking: an experimental study on Barbus barbus. Hydrobiologia, 371/372, 19-28. doi: 10.1023/A:1017026127846

Béguer-Pon, M., Castonguay, M., Benchetrit, J., Hatin, D., Legault, M., Verreault, G., Mailhot, Y., Tremblay, V., \& Dodson, J. J. (2015). Large-scale, seasonal habitat use and movements of yellow American eels in the St. Lawrence River revealed by acoustic telemetry. Ecology of Freshwater Fish, 24, 99-111. doi: 10.1111/eff. 12129

Benitez, J.-P., Nzau Matondo, B., Dierckx, A., \& Ovidio, M. (2015). An overview of potamodromous fish upstream movements in medium-sized rivers, by means of fish passes monitoring. Aquatic Ecology, 1-17.doi: 10.1007/s10452-015-9541-4

Benitez, J.-P., \& Ovidio, M. (2018). The influence of environmental factors on the upstream movements of rheophilic cyprinids according to their position in a river basin. Ecology of Freshwater Fish, n/a-n/a. https://doi.org/10.1111/eff. 12382

Booth, M. T., Hairston, N. G., \& Flecker, A. S. (2013). How mobile are fish populations? Diel movement, population turnover, and site fidelity in suckers. Canadian Journal of Fisheries and Aquatic Sciences, 70, 666-677. doi: 10.1139/cjfas-2012-0334

Braithwaite, V. A., \& Burt de Perera, T. (2006). Short-range orientation in fish: How fish map space. Marine and Freshwater Behaviour and Physiology, 39, 37-47. doi:
10.1080/10236240600562844

Brevé, N. W. P., Verspui, R., de Laak, G. a. J., Bendall, B., Breukelaar, A. W., \& Spierts, I. L. Y. (2014). Explicit site fidelity of European catfish (Silurus glanis, L., 1758) to man-made habitat in the River Meuse, Netherlands. Journal of Applied Ichthyology, 30, 472-478. doi: 10.1111/jai. 12410

Britton, J. R., Cucherousset, J., Davies, G. D., Godard, M. J., \& Copp, G. H. (2010). Non-native fishes and climate change: predicting species responses to warming temperatures in a temperate region. Freshwater Biology, 55, 1130-1141. doi: 10.1111/j.13652427.2010.02396.x

Britton, J. R., \& Pegg, J. (2011). Ecology of European Barbel Barbus Barbus: Implications for River, Fishery, and Conservation Management. Reviews in Fisheries Science, 19, 321-330. doi: 10.1080/10641262.2011.599886

Brown, R. S., Cooke, S. J., Anderson, W. G., \& McKinley, R. S. (1999). Evidence to Challenge the « 2% Rule» for Biotelemetry. North American Journal of Fisheries Management, 19, 867-871. doi: $10.1577 / 1548-8675(1999) 019<0867: E T C T R F>2.0 . C O ; 2$

Burke, B. J., \& Jepson, M. A. (2006). Performance of Passive Integrated Transponder tags and radio tags in determining dam passage behavior of ddult chinook Salmon and steelhead. North American Journal of Fisheries Management, 26, 742-752. doi: 10.1577/M05-138.1

Capra, H., Plichard, L., Bergé, J., Pella, H., Ovidio, M., McNeil, E., \& Lamouroux, N. (2017). Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry. Science of The Total Environment, 578, 109-120. doi: 10.1016/j.scitotenv.2016.10.155

Carol, J., Zamora, L., \& García-Berthou, E. (2007). Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River

Ebro, Spain. Ecology of Freshwater Fish, 16, 450-456. doi: 10.1111/j.16000633.2007.00225.x

Castaldelli, G., Pluchinotta, A., Milardi, M., Lanzoni, M., Giari, L., Rossi, R., \& Fano, E. A. (2013). Introduction of exotic fish species and decline of native species in the lower Po basin, north-eastern Italy. Aquatic Conservation: Marine and Freshwater Ecosystems, 23, 405-417. doi: 10.1002/aqc. 2345

Clough, S., \& Ladle, M. (1997). Diel migration and site fidelity in a stream-dwelling cyprinid, Leuciscus leuciscus. Journal of Fish Biology, 50, 1117-1119. doi: 10.1111/j.10958649.1997.tb01635.x

Copp, G. H., Britton, R. J., Cucherousset, J., García-Berthou, E., Kirk, R., Peeler, E., \& Stakenas, S. (2009). Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish and Fisheries, 10, 252-282. doi: 10.1111/j.1467-2979.2008.00321.x

Crook, D. A., Lowe, W. H., Allendorf, F. W., Eros, T., Finn, D. S., Gillanders, B. M., \& Hughes, J. M. (2015). Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation. Science of the Total Environment, 534, 52-64. doi: 10.1016/j.scitotenv.2015.04.034

Cucherousset, J., Horký, P., Slavík, O., Ovidio, M., Arlinghaus, R., Boulêtreau, S., Britton, R., Garcia-Berthou, E, \& Santoul, F. (2017). Ecology, behaviour and management of the European catfish. Reviews in Fish Biology and Fisheries, n/a-n/a. doi.org/10.1007/s11160-017-9507-9

Daufresne, M., \& Boët, P. (2007). Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biology, 13, 2467-2478. doi: 10.1111/j.00221112.2005.00759.x

Daufresne, M., Roger, M. C., Capra, H., \& Lamouroux, N. (2004). Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. Global Change Biology, 10, 124-140. doi: 10.1046/j.1529-8817.2003.00720.x

Daugherty, D. J., \& Sutton, T. M. (2005). Seasonal Movement Patterns, Habitat Use, and Home Range of Flathead Catfish in the Lower St. Joseph River, Michigan. North American Journal of Fisheries Management, 25, 256-269. doi: 10.1577/M03-252.2

De Leeuw, J. J., \& Winter, H. V. (2008). Migration of rheophilic fish in the large lowland rivers
Meuse and Rhine, the Netherlands. Fisheries Management and Ecology, 15, 409-415. doi: 10.1111/j.1365-2400.2008.00626.x

De Vocht, A., \& Baras, E. (2005). Effect of hydropeaking on migrations and home range of adult barbel (Barbus barbus) in the River Meuse. In M. T. Spedicato, G. Lembo, \& G. Marmulla (Eds.), Aquatic Telemetry: Advances and Applications (pp. 35-44). Proceedings of the Fifth Conference on Fish Telemetry, 9-13 June 2003, Ustica, Italy. Rome: FAO/COISPA. Doi: 10.13140/2.1.4906.6886

Eiler, J. H. (2012). Tracking aquatic animals with radio telemetry (section 5.3). In "Telemetry Techniques: a user guide for fisheries research", Eds. Adams, N. S., Beeman, J. W. \& Eiler, J. H. Bethesda, Maryland. American Fisheries Society. pp. 163-204.

Fredrich, F., Ohmann, S., Curio, B., \& Kirschbaum, F. (2003). Spawning migrations of the chub in the River Spree, Germany. Journal of Fish Biology, 63, 710-723. doi: 10.1046/j.10958649.2003.00184.x

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics, 11, 86-92. doi: 10.1214/aoms/1177731944

Fullerton, A. H., Burnett, K. M., Steel, E. A., Flitcroft, R. L., Pess, G. R., Feist, B. E., ...
Sanderson, B. 1. (2010). Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshwater Biology, 55, 2215-2237. doi:
10.1111/j.1365-2427.2010.02448.x

Gardner, C. J., Deeming, D. C., \& Eady, P. E. (2013). Seasonal movements with shifts in lateral and longitudinal habitat use by common bream, Abramis brama, in a heavily modified lowland river. Fisheries Management and Ecology, 20, 315-325. doi: 10.1111/fme. 12014

Gardner, C. J., Deeming, D. C., \& Eady, P. E. (2015). Seasonal Water Level Manipulation for Flood Risk Management Influences Home-Range Size of Common Bream Abramis brama L. in a Lowland River. River Research and Applications, 31, 165-172. doi: 10.1002/rra. 2727

Gardner, C. J., Deeming, D. C., Wellby, I., Soulsbury, C. D., \& Eady, P. E. (2015). Effects of surgically implanted tags and translocation on the movements of common bream Abramis brama (L.). Fisheries Research, 167, 252-259. doi: 10.1016/j.fishres.2015.03.003

Geeraerts, C., Ovidio, M., Verbiest, H., Buysse, D., Coeck, J., Belpaire, C., \& Philippart, J.-C. (2007). Mobility of individual roach Rutilus rutilus (L.) in three weir-fragmented Belgian rivers. Hydrobiologia, 582, 143-153. doi: 10.1007/s10750-006-0561-x

Ginot, V., Souchon, Y., \& Roger, P. (1996). Impact de l'élévation artificielle de température induite par le fonctionnement du Centre Nucléaire de Production Electrique du Bugey (fleuve Rhône) sur les communautés de poissons. Hydroécologie Appliquée, 8, 1-33. doi: 10.1051/hydro:1996001

Guillerault, N., Delmotte, S., Boulêtreau, S., Lauzeral, C., Poulet, N., \& Santoul, F. (2015). Does the non-native European catfish Silurus glanis threaten French river fish populations? Freshwater Biology, 60, 922-928. doi: 10.1111/fwb. 12545

Hann, D. A., \& Schramm, H. L. (2018). Seasonal changes in habitat suitability for adult shovelnose sturgeon in the lower Mississippi River. Journal of Applied Ichthyology, n/an/a. doi.org/10.1111/jai. 13581

Hansen, E. A., \& Closs, G. P. (2005). Diel activity and home range size in relation to food supply in a drift-feeding stream fish. Behavioral Ecology, 16, 640-648. doi:
10.1093/beheco/ari036

Hart, P. J. B., (1986). Foraging in teleost fishes. In T. J. Pitcher (Ed.), The Behaviour of Teleost Fishes (pp. 211-235). Croom Helm, London. ISBN: 978-1-4684-8263-8

Herrala, J. R., Kroboth, P. T., Kuntz, N. M., \& Schramm, H. L. (2014). Habitat Use and Selection by Adult Pallid Sturgeon in the Lower Mississippi River. Transactions of the American Fisheries Society, 143, 153-163. doi.org/10.1080/00028487.2013.830987

Horký, P., Slavík, O., Bartoš, L., Kolářová, J., \& Randák, T. (2007). Behavioural pattern in cyprinid fish below a weir as detected by radio telemetry. Journal of Applied Ichthyology, 23, 679-683. doi: 10.1111/j.1439-0426.2007.00848.x

Jansson, R., Nilsson, C., \& Renöfält, B. (2000). Fragmentation of riparian floras in rivers with multiple dams. Ecology, 81, 899-903. doi: 10.1890/00129658(2000)081[0899:FORFIR]2.0.CO;2

Kruskal, W. H., \& Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47, 583-621.

Kulíšková, P., Horký, P., Slavík, O., \& Jones, J. I. (2009). Factors influencing movement behaviour and home range size in ide Leuciscus idus. Journal of Fish Biology, 74, 1269-1279. doi: 10.1111/j.1095-8649.2009.02198.x

Lamouroux, N., Capra, H., Pouilly, M., \& Souchon, Y. (1999). Fish habitat preferences in large streams of southern France. Freshwater Biology, 42(4), 673-687. doi.org/10.1046/j.13652427.1999.00521.x

Le Pichon, C., Gorges, G., Baudry, J., Goreaud, F., \& Boët, P. (2009). Spatial metrics and methods for riverscapes: quantifying variability in riverine fish habitat patterns. Environmetrics, 20, 512-526. doi: 10.1002/env. 948

Le Pichon, C., Tales, É., Gorges, G., Baudry, J., \& Boët, P. (2016). Using a continuous riverscape survey to examine the effects of the spatial structure of functional habitats on fish distribution. Journal of Freshwater Ecology, 31, 1-19. doi:
10.1080/02705060.2015.1035345

Lucas, M. C., \& Frear, P. A. (1997). Effects of a flow-gauging weir on the migratory behaviour of adult barbel, a riverine cyprinid. Journal of Fish Biology, 50, 382-396. doi: 10.1111/j.1095-8649.1997.tb01366.x

Lucas, M. C., \& Baras, E. (2001). Migration of Freshwater Fishes. Blackwell Science, Oxford. ISBN: 978-0-470-99965-3

Maire, A., Buisson, L., Biau, S., Canal, J., \& Laffaille, P. (2013). A multi-faceted framework of diversity for prioritizing the conservation of fish assemblages. Ecological Indicators, 34(Supplement C), 450-459. doi.org/10.1016/j.ecolind.2013.06.009

Morina, A., Morina, F., Djikanović, V., Spasić, S., Krpo-Ćetković, J., Kostić, B., \& Lenhardt, M. (2016). Common barbel (Barbus barbus) as a bioindicator of surface river sediment pollution with Cu and Zn in three rivers of the Danube River Basin in Serbia. Environmental Science and Pollution Research, 23(7), 6723-6734. doi.org/10.1007/s11356-015-5901-9

Nilsson, C., Reidy, C. A., Dynesius, M., \& Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308, 405-408. doi:
10.1126/science. 1107887

Oberdorff, T., Pont, D., Hugueny, B., \& Chessel, D. (2001). A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. Freshwater Biology, 46(3), 399-415. doi.org/10.1046/j.1365-2427.2001.00669.x

Odling-Smee, L., \& Braithwaite, V. A. (2003). The role of learning in fish orientation. Fish and Fisheries, 4, 235-246. doi: 10.1046/j.1467-2979.2003.00127.x

Olivier, J. M., Carrel, G., Lamouroux, N., Dole-Olivier, M. J., Malard, F., Bravard, J. P., \& Amoros, C. (2009). The Rhône River Basin. In K. Tockner, C. T. Robinson, \& U. Uehlinger (Eds.), Rivers of Europe (pp. 247-295). London: Academic Press, Elsevier.

Ovidio, M. (1999). Cycle annuel d'activité de la truite commune (Salmo trutta L.) adulte: étude par radio-pistage dans un cours d'eau de l'ardenne belge. Bulletin Français de la Pêche et de la Pisciculture, 352, 1-18. doi: 10.1051/kmae:1999017

Ovidio, M., Baras, E., Goffaux, D., Giroux, F., \& Philippart, J. C. (2002). Seasonal variations of activity pattern of brown trout (Salmo trutta) in a small stream, as determined by radiotelemetry. Hydrobiologia, 470, 195-202. doi: 10.1023/A:1015625500918

Ovidio, M., Parkinson, D., Philippart, J. C., \& Baras, E. (2007). Multiyear homing and fidelity to residence areas by individual barbel (Barbus barbus). Belgian Journal of Zoology, 137, 183-190. http://hdl.handle.net/2268/5847

Ovidio, M., \& Philippart, J. C. (2002). The impact of small physical obstacles on upstream movements of six species of fish. Hydrobiologia, 483, 55-69. doi: 10.1023/A:1021398605520

Ovidio, M., \& Philippart, J. C. (2008). Movement patterns and spawning activity of individual nase Chondrostoma nasus (L.) in flow-regulated and weir-fragmented rivers. Journal of Applied Ichthyology, 24, 256-262. doi: 10.1111/j.1439-0426.2008.01050.x

Ovidio, M., Seredynski, A. L., Philippart, J.-C., \& Nzau Matondo, B. (2013). A bit of quiet between the migrations: the resting life of the European eel during their freshwater growth phase in a small stream. Aquatic Ecology, 47, 291-301. doi: 10.1007/s10452-013-9444-1

Peňáz, M., Barus, V., Prokes, M., \& Homolka, M. (2002). Movements of barbel, Barbus barbus (Pisces: Cyprinidae). Folia Zoologica, 51, 55-66.

Poulet, N., Beaulaton, L., \& Dembski, S. (2011). Time trends in fish populations in metropolitan France: insights from national monitoring data. Journal of Fish Biology, 79, 1436-1452. doi: 10.1111/j.1095-8649.2011.03084.x

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/

Radinger, J., \& Wolter, C. (2014). Patterns and predictors of fish dispersal in rivers. Fish and Fisheries, 15, 456-473. doi: 10.1111/faf. 12028

Reebs, S. G. (1996). Time-place learning in golden shiners (Pisces: Cyprinidae). Behavioural Processes, 36(3), 253-262. doi.org/10.1016/0376-6357(96)88023-5

Reichard, M., Jurajda, P., \& Ondračková, M. (2002). The effect of light intensity on the drift of young-of-the-year cyprinid fishes. Journal of Fish Biology, 61, 1063-1066. doi: 10.1111/j.1095-8649.2002.tb01866.x

Rifflart, R., Carrel, G., Le Coarer, Y., \& Fontez, B. N. T. (2009). Spatio-temporal patterns of fish assemblages in a large regulated alluvial river. Freshwater Biology, 54(7), 1544-1559. doi.org/10.1111/j.1365-2427.2009.02200.x

Slavík, O., Horký, P., Bartoš, L., Kolářová, J., \& Randák, T. (2007). Diurnal and seasonal behaviour of adult and juvenile European catfish as determined by radio-telemetry in the River Berounka, Czech Republic. Journal of Fish Biology, 71, 101-114. doi: 10.1111/j.1095-8649.2007.01471.x

Slavík, O., Horký, P., Maciak, M., \& Wackermannová, M. (2016). Familiarity, prior residency, resource availability and body mass as predictors of the movement activity of the European catfish. Journal of Ethology, 34, 23-30. doi: 10.1007/s10164-015-0441-9

Souchon, Y., \& Tissot, L. (2012). Synthesis of thermal tolerances of the common freshwater fish species in large Western Europe rivers. Knowledge and Management of Aquatic Ecosystems, 405, 03. doi: 10.1051/kmae/2012008

Verbiest, H., Breukelaar, A., Ovidio, M., Philippart, J.-C., \& Belpaire, C. (2012). Escapement success and patterns of downstream migration of female silver eel Anguilla anguilla in the River Meuse. Ecology of Freshwater Fish, 21, 395-403. doi: 10.1111/j.16000633.2012.00559.x

Wang, C. Y., Wei, Q. W., Kynard, B., Du, H., \& Zhang, H. (2012). Migrations and movements of adult Chinese sturgeon Acipenser sinensis in the Yangtze River, China. Journal of Fish Biology, 81, 696-713. doi: 10.1111/j.1095-8649.2012.03365.x

Weibel, D., \& Peter, A. (2013). Effectiveness of different types of block ramps for fish upstream movement. Aquatic Sciences, 75, 251-260. doi: 10.1007/s00027-012-0270-7

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1 , 80-83. doi: 10.2307/3001968

Winter, J. D. (1983). Underwater biotelemetry. In Fisheries Techniques (American Fisheries Society, p. 371-395). Bethesda, Maryland: Nielsen, L. A., and Johnson, D. L.

Winter, H. V., \& Fredrich, F. (2003). Migratory behaviour of ide: a comparison between the lowland rivers Elbe, Germany, and Vecht, The Netherlands. Journal of Fish Biology, 63, 871-880. doi: $10.1046 / \mathrm{j} .1095-8649.2003 .00193 . \mathrm{x}$

Woolnough, D. A., Downing, J. A., \& Newton, T. J. (2009). Fish movement and habitat use depends on water body size and shape. Ecology of Freshwater Fish, 18, 83-91. doi: 10.1111/j.1600-0633.2008.00326.x

778 Table 1: Summary of individual length, weight and number of localisations (minimum, mean and 779 maximum) for the 73 subjects of the three tracked species (barbel, chub and catfish), with at least 780 ten localisations between April $1^{\text {st }} 2010$ and October 19 ${ }^{\text {th }}$ 2010. ($\mathrm{n}=$ number of individuals for 781 each species).

782

	n	Total length (mm)			Weight (g)			Number of localisations			
		min.	mean	max.	min.	mean	max.	min.	mean		total
Barbel	37	462	530	650	700	1312	2000	10	22.4	29	828
Chub	23	382	474	536	600	1360	2000	10	19.9	29	457
Catfish	13	640	829	1265	1600	4280	12501	14	22.1	26	287

783
784

785 Table 2: Medians of the individual movement indicators for each species: longitudinal home 786 range (HR), total travelled net distance (Dnt), mean travelled net distance $(\overline{\mathrm{Dn}})$, maximum 787 travelled net distance (Dnt), number of $\mathrm{Dn}>1 \mathrm{~km}$ (Dn1k) and intensity of exploitation (IE) of the HR (see Figure 4 for the box-plot type representations) and summary of the rank sum tests 789 comparing the indicators among the three species (p values and the Kruskal-Wallis χ^{2} value)

	HR	Dnt	$\overline{\text { Dn }}$	Dnx	Dn1k	IE
	(m)	(m)	$(\mathrm{m} / 7 \mathrm{days})$	$(\mathrm{m} / 7 \mathrm{days})$		
Barbel-Bab	3045	7064	333	2148	2	1.98
Chub-Sac	2355	4625	274	1814	2	2.02
Catfish-Sig	1295	3291	133	868	1	3.26
	p value $\left(\mathrm{KW} \chi^{2}\right)$					
0.064	0.245	0.142	0.123	0.350	0.074	

Table 3: P values and sum of ranks of Wilcoxon signed-rank test (for two classes) and p value and Friedman χ^{2} of Friedman rank sum test (for three classes) of the spatial distribution of the localisations of all the individuals of each species for the 29 tracking campaigns within the 500m long sections for the three habitat variables (n tot $=$ total number of detection for a species). If $p<0.05$ ($p<0.017$ for three classes after Bonferroni adjustment), there was at least one class of the habitat variable that was more or less used than the other ones which was indicated with the $>$ and < symbols. In italics, the localisation numbers for each class of each habitat variable are noted: type of channel (single ($\mathrm{n}=20$ 500-m long sections) or multi-channel ($\mathrm{n}=51$) , morphological unit (Channel ($\mathrm{n}=46$) / Rapid $(\mathrm{n}=25)$), and woody debris density (three classes with $6(\mathrm{n}=25), 9(\mathrm{n}=20)$, and $>9(\mathrm{n}=26)$ woody debris spots within a $500-\mathrm{m}$ long section $)$.

804

Variable (classes)	Barbel	Chub	Catfish
	n tot $=826$	n tot $=452$	n tot $=287$
Multi (1) / Single (2)	<0.001	<0.001	0.133
	(435)	(435)	(251)
	$1>2$	$1<2$	--
	$559 / 267$	$206 / 246$	$91 / 196$
Channel (1) / Rapid (2)	<0.001	<0.001	0.460
	(0)	(424)	(251)
	$1<2$	$1>2$	--
	$284 / 542$	$348 / 104$	$190 / 97$
Woody debris $(1 / 2 / 3)$			
	<0.001	<0.001	<0.001
	(44)	(35)	(18)
	$1-2<3$	$1<2-3$	$1<2-3$

Figure Captions

Figure 1: The study reach was located in the Rhône River, upstream of Lyon, between the dams of Sault-Brénaz (Km 0 along the curvilinear axis) and Jons (Km 35.5). The main riverbed is shown within a digital elevation model (elevations in m; grey levels) in order to illustrate the reach's 15 m level difference. The limits of the $500-\mathrm{m}$ long sections used for describing the habitat conditions are marked by lines across the main riverbed.

Figure 2: The two pictures on the left illustrate the boat's equipment (A) and the position of the two hydrophones on either side of the boat (one example of the 30°-hydrophones on B). On D , a copy of the echogram screen is displayed using MarkTags© (hourly files recorded by the starboard hydrophone during a trip). The two parallel lines (white square) show the recording of a tag's sound emission (top and bottom dash). An explanatory diagram (echogram window in C) illustrates the automated selection process for the nearest tag's sound emission (black pointer, NP) located between the first recording (dark grey pointer) and the last recording (light grey pointer). The time and the GPS coordinates of the boat at NP were used to define the fish localisation.

Figure 3: Representation of the journeys of the 73 tracked fish selected for analysis between April $1^{\text {st }} 2010$ and October $19^{\text {th }} 2010$. Results are presented for each species (barbel, $B a b, \mathrm{n}=37$; chub, $S q c, \mathrm{n}=23$; catfish, Sig, n=13). The horizontal axis shows the time between March and November 2010. The graphs' vertical axis is the curvilinear coordinate (in km; the origin (Km0) is the upstream part of the study reach; Figure 1) when the fish was located (NP). The first dot corresponds to the fish's capture and tagging location. When there is no capture location noted, it is because the fish had previously been tagged in 2009 (curvilinear coordinate of 2009 tagging location, Km17.5). Below in the fourth graph are shown the timelines of the water temperature

834 (in ${ }^{\circ} \mathrm{C}$, left outside scale, dash-dotted) and those of the flow (in $\mathrm{m}^{3} \mathrm{~s}^{-1}$, right outside scale, solid line) with weekly averages, and the tracking duration (grey rectangle).

Figure 4: Box-plot of the six mobility indicators (HR, $\overline{\text { Dn }}$, Dnt, Dnx, Dn1t and IE of the 73 tracked fish identified between April $1^{\text {st }} 2010$ and October $19^{\text {th }} 2010$ (see Table 2 for comparisons among species and Table 3 for the total number of localisation for each species). The whiskers were extended to the data extremes.

Figure 5: Bubble charts plotting $\mathrm{x}=$ mean temperature values, $\mathrm{y}=$ mean discharge values and z values $=$ Dn (size of the circle) between two locations for each species. The shortest Dn, the longest Dn and the number of Dn are given in brackets for each species.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

