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Abstract

The development of bio-inspired robotics has led to an increasing need to un-
derstand the strongly coupled fluid-structure and control problem presented
by swimming. Usually, the mechanical forcing of muscles is modeled with
an imposed distribution of bending moments along the swimmer’s body. A
simple way to exploit this idea is to define a central pattern forcing for this
active driving, but this approach is not completely satisfactory because lo-
comotion results from the interaction of the organism and its surroundings.
Gazzola et al. [1] have proposed that a curvature-based feedback with a time
delay can trigger self-propulsion for a swimmer without necessitating such a
pre-defined forcing. In the present work, we implement this feedback within
a numerical model. We represent the swimmer as a thin elastic beam using
a finite element representation which is coupled to an unsteady boundary
element method for the resolution of the fluid domain. The model is first
benchmarked on a flexible foil in forced leading edge heave.

To recover previous findings, an imposed traveling bending moment wave
is then used to drive the swimmer which yields peaks in the mean forward
velocity when the driving frequency corresponds to the natural frequencies
of the elastic structure. Delayed, curvature-based feedback is then applied
to the swimmer and produces peaks in the velocity for delays that differ
from the natural periods, associated to its deformations modes. Finally, a
simplified model is shown to qualitatively describe the origin of the peaks
observed in the feedback swimmer.
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1. Introduction

The subject of swimming propulsion by means of body undulations has
been the subject of considerable research. With the advent of bio-inspired
robotics as an alternative to traditionally propelled robots, there is an ever
increasing need to understand both the strongly coupled fluid-structure in-
teraction and control problem associated with swimming.

Theoretical mechanisms of swimming embraces many aspects of propul-
sion. In the asymptotic limit of a very slender swimmer, Lighthill’s elongated-
body theory (EBT) [2] has seen considerable use and extension [3, 4, 5].
Lighthill initially developed EBT based on the slender body theory of Munk
[6]. This approach is based on the independence of the potential flow about a
transverse section of the body from that of it neighboring sections. Lighthill
later used momentum balancing arguments to extended EBT to large ampli-
tudes [7]. A well-known result of EBT is that thrust production is entirely
dependent on the behavior of the tail [7]. Likewise, the case of a 2D swimmer
has seen much development since first investigated by Wu [8, 9]. Numeri-
cal approaches have also been applied to understand particular aspects of
propulsion. For example, the work of Carling et al. represented an early
attempt to perform solved, self-propelled swimming with an imposed body
deformation [10] which inspired numerous other authors [11, 12].

To answer whether fundamental mechanisms can be identified in swim-
ming, we need to understand the selection process of gait kinematics. The
work of Bainbridge [13, 14] was notable in identifying a number of trends
in the gait parameters. Specifically, he noted that the swimming speed was
linearly related to the tail beat amplitude, A, which itself appeared to in-
crease up to a maximum of about 0.2L, where L is the swimmer length [13].
Likewise, he recognized that for a given body length, the swimming speed
was proportional to the tail beat frequency f [13]. Unfortunately, he did not
try to rationalize these results to swimmers in general. For rainbow trouts,
Webb and Kostecki found the that wavelength was independent of swimming
speed, but varied with a power relation to the fish length and was relatively
larger in small fish [15]. As an attempt to capture the characteristics of
fish swimming, Triantafyllou et al. introduced the use of Strouhal number,
St = fA/U [16, 17], based on experiments with flapping foils. Notably, Tri-
antafyllou et al. [18] showed that for flapping foils an optimum in efficiency
is observed around a St of 0.25-0.35. By exploiting an extensive survey of
swimming organisms, Gazzola et al. [19] characterized the gait of swimmers
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based on whether they are in the laminar or turbulent regime. In this work,
the authors balanced the propulsive force against the drag force. In the lam-
inar regime, this was done exploiting the viscous drag of a Blasius flat plate
and in the turbulent regime by balancing the thrust against a pressure drag.
This rather simplistic approach was successful in predicting the swimming
speed over seven orders of magnitude of the Reynolds number [19].

The subject of muscle activation has been the object of considerable re-
search, from a biological perspective. The early work of Hill [20] led to
a simple mechanical model for describing muscles. The muscles receive im-
pulses from a central nervous system, but their response may be regulated by
a proprioceptive feedback signal generated by the stretch of the muscle itself
[21]. The changes in muscle activation for different gaits were investigated by
Wardle et al [22]. They noted that all three of the species they examined ex-
hibited negative work, whereby muscles are contributing to stiffen the body
to better transmit power to the tail. To model the muscle action, Cheng
et al. imposed bending moments on a beam representation of a swimmer
with the hydrodynamics taken into account with 3D waving plate theory
[23]. A complete 2D Navier-Stokes simulation of a lamprey modeled using
springs [24] has been developed to study the effects of variations of elastic
bending stiffness, fluid density and muscle driving force. In this work, the
kinematic behavior was found to have an optimum combination of muscle
force and stiffness for maximizing steady speed or acceleration. For efficient
locomotion, a coupling between the muscle activity and the sensing of the en-
vironment is necessary. Liao et al. showed experimentally that trouts could
perceive the von Kármán steet of an upstream obstacle and altered their gait
to reduce their energy consumption [25]. To reproduce a neuromechanical
system, Ekeberg et al. [26] developed simulations of a simplified lamprey
neural network. In their model, they incorporated a mechanical feedback
which modulated the central pattern and yielded realistic swimming mo-
tions. Gazzola et al. showed that a simple body curvature feedback model
is sufficient to establish a swimming gait without the need for a central pat-
tern generator [1]. This approach could be exploited to alter the shape of
the peaks in the performance. Such a proprioceptive mechanism might have
biological implications. For example, lampreys are known to have specialized
mechanoreceptors called edge cells along their spinal cords that respond to
bending and modify the behavior of the central pattern generator [27].

In this work, a delayed, curvature-based feedback mechanism is numeri-
cally explored as a means to locomotion. We believe that feedback forcing is
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the first direction to take for giving autonomy to fish like vehicles, because
the locomotion velocity will be adapted to the environment of the swimmer.
Our approach follows the philosophy of the work [1]. In this article, the
authors have used a simple model derived in [28] for predicting the pres-
sure imposed on the swimmer. The dynamics of the swimmer is computed
using a modal decomposition, which is useful to study the cruising regime
of locomotion. Such a model is limited to small deformations of the body
and restricted to swim in one dimension. In this manuscript, we relax these
restrictions to permit non-stationary regimes and 2D motions of the fish.
The influence of system damping and the feedback delay on the response is
studied using a 2D swimmer modeled as an Euler-Bernoulli beam subjected
to fluid forces computed from a boundary element approach. Details of the
model are specified in the methodology section. The swimmer model is first
validated by comparing its predictions to the experimental results of Paraz
et al. [29, 30, 31] in which a flexible sheet is given a periodic heaving mo-
tion at the leading edge. The behavior of a swimmer driven by a traveling
bending moment wave, is then illustrated. The results of feedback locomo-
tion are then presented and contrasted to self-propulsion induced by forced
bending moments. Finally, a simple one degree of freedom model is shown
to qualitatively describe the characteristics of the feedback swimmer.

2. Methodology

We wish to numerically solve the fluid-structure interaction problem as-
sociated with the 2D swimmer. The swimmer’s form is defined by a curve
depicting its spine (as shown in Figure 1). The swimmer body is modeled by
an Euler-Bernoulli beam. For the fluid part, we approximate the swimmer’s
boundaries with 20 panels whose end nodes are shared with the beam. A
2D, unsteady panel method with a vortex particle representation of the wake
[32, 33] is implemented to numerically solve the fluid problem.

The panels are discretized using point vortices located at their extremi-
ties. The influence of these vortices is determined from the 2D Biot-Savart
law:

u =
Γ

2πd
(1)

where u is the magnitude of the induced velocity from a point vortex of
strength Γ at a distance d from the location of interest.

4



Figure 1: The swimmer is modeled by an Euler-Bernoulli beam which is discretized into
beam elements and fluid panels while its wake is represented with point vortices.

Each panel’s pair of vortices is equivalent to a constant strength dipole
located at the panel midpoint [34]. The non-penetration condition is enforced
at the panel midpoint with a Neumann approach:

Un = ∇Φ · n = 0 (2)

whereUn is the normal velocity relative to the moving panel, Φ is the velocity
potential and n is the panel’s normal vector.

The general idea of panel methods is to determine the solution of a system
of the form:

[A]γ = b (3)

where [A] is a matrix describing the influence of each panel on the others,
γ is the strength of the singularity elements of the panels which are the
unknowns to be solved, and b are the boundary conditions (2). Solving the
above system requires the inversion of a dense matrix as all panels influence
one another. [A] is dependent on the current geometric form of the swimmer
which changes over time. As the body deforms slowly, the influence matrix
is expected to vary gradually; a Newton iterative method is used to invert
[A] using the prior inverse of [A] as an initial guess [35, 36].

The above inviscid approach is insufficient to generate lift and hence an
additional constraint is required to properly develop the associated circula-
tion. The Kutta condition achieves this by obliging the flow to leave the
trailing edge smoothly. To enforce the unsteady Kutta condition, the vortic-
ity of the trailing edge vertex is removed and transferred to the wake [34]. As
a discrete time stepping solution will be used, the continuous wake sheet is
approximated by point-like vortices. This approach was originally developed
by Rehbach [32, 33] and has seen applications since then for a number of
unsteady aerodynamic problems [37, 38, 39, 40, 41, 42].

The swimmer which is both flexible and slender, is treated as an un-
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constrained, in-extensible Euler-Bernoulli beam of uniform mass m, stiffness
EI, and length L, free to be largely deformed as described in [43]. The
beam is discretized with a small-strain, large displacement, large rotation,
co-rotational finite element formulation [44]. In the present case, we model a
structural damping with a Kelvin-Voigt model [45, 46], which is proportional
to the strain rate. Although we solve the non-linear problem, for clarity, we
present here, in the limit of small rotations and displacements, the swimmer’s
structural equation:

m∂tty + ∂ss(ηEI∂tssy) + EI∂ssssy = F (s, t), (4)

where m is the mass per unit length, y is the transverse deformation of the
beam (i.e. perpendicular to the locomotion velocity), s is the arc-length posi-
tion along the swimmer (see Fig. 1), η is a Kelvin-Voigt damping coefficient
with units of seconds. The beam equation is treated with the non-linearites
arising due to large rotations and displacement, but maintaining constant
the bending stiffness and rotational inertia as the beam section is assumed
to remain unchanged.

F (s, t) is the sum of the input forces which will include the fluid forces
as well as those resulting from imposed bending moments. We have used
the unsteady Bernouilli relation for computing the fluid stresses as depicted
in [34]. The active part is imposed through a propagating wave or a local
feedback. ηE has dimensions of Pa·s, hence the Kelvin-Voigt damping models
the viscosity of the structure. The swimmer is free at both ends; for the sake
of clarity, we write the boundary conditions, in the small deformation limit:

∂sssy(s=0,L) = 0 ∂ssy(s=0,L) = 0, (5)

The structural problem represented by equation (4) is solved with an un-
steady, non-linear finite element formulation. The velocities and accelerations
are related to the positions through the Wood-Bossak-Zienkiewicz α scheme
[47]. The overall motions of the swimmer are unconstrained in translations
and rotation and hence thrust production leads to resolved self-propulsion.
The structure is discretized using Euler-Bernoulli beam elements with a small
deformation, large rotation formulation. The mass matrix is discretized with
a direct, diagonal lumped-matrix approach with the mass split between the
end beam nodes.

While fish are neutrally buoyant, the added mass they are subjected to
may be greater than its mass. The added mass is known to be destabilizing
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to partioned fluid-structure coupling schemes in which the fluid and structure
are solved independently in an iterative manner [48]. The segregated, quasi-
monolithic approach of Durand [49] is used here; this method can be viewed
as a block-LU factorization of the monolithic, coupled system.

Proprioceptive feedback provides a means of correcting for external dis-
turbances and permits modulating the central pattern generator signal. Gaz-
zola et al. proposed a simple feedback signal for applying a bending moment
based on the small deflection approximation of the curvature with a delay
[1]. In the present work, a feedback model based on this idea is developed.
As the elastic beam is completely nonlinear, the true curvature of a cubic
spline representation of the swimmer is implemented, unlike in Gazzola et al.
The cubic spline representation closely mirrors the shape functions used for
the Euler-Bernoulli beam elements. The amplitude of the feedback model
bending moment is given as:

Mf (s, t) = χκ(s, t− τ) (6)

where τ is the delay, and χ is the strength of the response to the curvature
κ. The cubic spline has N-2 equations for N unknowns. To close the system,
two conditions must be imposed. As the swimmer is free, the end feedback
bending moments and curvature are imposed to zero at the ends in agreement
with the boundary conditions (5). To simplify the temporal scheme, we
choose the delay to be a multiple of the time step size ∆t. To allow finer
variations of feedback delay, we use ∆t = 0.00125 s.

A one meter long swimmer with uniform linear mass of m = 100 kg ·m−1

and linear bending stiffness of EI = 30 N ·m2 is used. This linear mass value
has been chosen arbitrarily, although a 2 m long swimmer would weigh more
than 100 kg (for example the average mass of a sea lion is 300 kg, while its av-
erage length is 2.4 m). In addition, the added mass developed for locomotion
is larger that the mass of the swimmers, such that the linear mass value be-
comes less relevant in locomotion behavior (at least for in cruising motions).
The swimmer is discretized with 20 beam elements with 20 co-located fluid
elements as shown in Figure 1. Doubling the panel and element resolution
was found to have minimal impact on the predicted swimmer behavior. The
swimmer is immersed in idealized water of density ρ = 1000 kg · m−3. The
fluid is inviscid and no viscous drag is directly present. The non-dampened,
free natural frequencies of the embedded swimmer are reported in Table 1.
These values were computed using modal analysis. We will study the cases
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Mode F1 F2 F3

Natural frequency (Hz) 1.071 3.126 6.397

Table 1: Non-damped, modal frequencies of feedback swimmer, embedded in fluid EI =
30 N · m2, m = 100 kg · m−1, ρ = 1000 kg · m3

of η = 0.005 s, 0.010 s, 0.020 s. The feedback amplitude χ is constant
along the swimmer’s length, and we varied it from χ = 2.5 N · m · rad−1

to 7.5 N · m · rad−1.The swimmer generates pressure drag only if it is oscil-
lating. To assure that non-propulsive states asymptote to zero velocity, an
additional drag force equivalent to the viscous drag of Prandtl’s turbulent,
1/7 power law boundary layer of a flat plate is added [50].

We are interested to understand the influence of feedback delay and damp-
ing on the swimming kinematics by measuring the mean forward velocity V
and the frequency response of the swimmer. The structure is slightly bent
to initiate the feedback process. If the feedback is effective in exciting the
system, the deformations will grow until an equilibrium is achieved in a self-
propulsive state. If the feedback is not destabilizing the structure, the initial
perturbation will dampen out and no self-propulsion will be generated. The
particle wake method releases a particle at each time step to enforce the un-
steady Kutta condition. At the beginning of the computation, the swimmer
is immobile and particles would be emitted on top of one another which will
lead to the divergence of the fluid solution. To avoid this non-physical effect,
the swimmer is given a small initial forward velocity of Vinitial = 0.0001 m·s−1.
Our numerical code is run until a quasi-steady state is achieved. Frequency
domain results are obtained by discrete FFT over 16384 (214) time steps.
We have defined the instantaneous velocity of the swimmer as the average
velocity of the 21 nodes. Mean velocities are then found by averaging over
the FFT interval.

In Figure 2, we illustrate a typical swimmer deformation during one pe-
riod, by representing its spine with the rigid-body translations and rotations
removed. The curve exhibits a first mode, but it is not symmetric about
the swimmer’s mid-length as evident by the t = 2

8
T and t = 5

8
T instances

compared to the t = 3
8
T and t = 7

8
T instances. This is because the fluid load

is not symmetrical due the enforcement of the unsteady Kutta condition at
the tail on the right end of the swimmer. For self-propulsion to occur, the
symmetry of the fluid forces must be broken so that a net force is generated
in a sense of travel. Once such a symmetry is broken, the feedback naturally
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amplifies the asymmetry and thrust is sustained when the delay is in the
range of τ that are excitatory. The swimmer experiences an initial transient
behavior during which it accelerates before oscillating in its forward velocity
as shown in Figure 2b. These oscillations dampen to a quasi-steady behav-
ior with small oscillations at twice the response frequency. We hypothesize
that the typical time scale to reach the steady regime is proportional to the
inverse of η. Hence the smaller the damping, the longer will be the transient
dynamics.

The hydrodynamic forces acting on the swimmer are generated by the
time varying vorticity distribution, which is shown with the wake particles
in Figure 3. The body exhibits a first mode deformation while experiencing
a small periodic rigid-body pitching rotation. We remark that the vorticity
is distributed into four regions along the body length. Near the head region,
the vorticity reflects the flow as it tries to pass around the leading edge due
to the head’s relative upward transverse motions. A leading edge suction is
developed which generates a significant portion of the thrust force. Down-
stream of the head, the fluid is initially being rotated in a clockwise sense
while further aft it is rotating in a counter-clockwise sense. The combined
action of these two regions causes the fluid near the mid-length to be pushed
downwards, perpendicular to the sense of locomotion; this generates an up-
ward inertial force on the swimmer that slows its downward heave motion.
When the maximum deflection has occurred, the circulation weakens and
changes signs and the process repeats in the opposite sense. The trailing
edge region enforces the Kutta condition and generates the wake. A classic
thrust producing reverse von Kármán street is observed downstream.

The use of a delayed curvature feedback leads to a distinct behavior com-
pared with other driving mechanisms. To highlight these differences, we also
consider the case of a swimmer with an imposed sinusoidal traveling wave of
bending moment:

Mimposed(s, t) = Mamp(s) sin

(
2π

λ
s− 2πft

)
(7)

where Mamp is the lengthwise moment amplitude distribution, λ is the wave-
length of the wave propagating with frequency f . Here the imposed bending
moment amplitude increases linearly from 0.5 N·m at the head to 2.5 N·m at
the tail. The wavelength λ is kept equal to the body length and the frequency
f is varied between 0.5 Hz and 7.0 Hz so as to include the first three natural
frequencies. Such an imposed wave could be thought of as an input from a
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Figure 2: (a) Deformed swimmer over one period with the head on the left and the rigid-
body motions removed. The first free mode is evident, but is not symmetric about its
mid-length due to the hydrodynamic loading. (b) Temporal evolution of the swimmer
velocities of the mass center; V⊥ (green), is the lateral velocity with respect to the average
orientation of the deformed swimmer body while V‖ (orange) is the velocity in the sense

of the average orientation, whose steady state average is V . η = 0.005 s, τ
T1

= 0.63 and

χ = 7.5 N ·m ·rad−1. The inset in (b) shows the asymptotic dynamics of the two velocities.
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Figure 3: Vorticity distribution of the swimmer and its wake over approximately one
period. η = 0.005 s, τ

T1
= 2.17 and χ = 10 N · m · rad−1.

central pattern generator. The same structure and damping characteristics
are used as for the swimmer with feedback.

To demonstrate the capability of our numerical model, we first compare
it against the forced, sinusoidal leading edge heave experiment of Paraz et
al. [29, 30, 31] in which a flexible, rectangular sheet is given imposed heave
at the leading edge. The experiment mimics a two-dimensional geometry by
confining the flow to the width of the sheet by the walls of the tunnel. Three
values for the stiffness, EI= 0.018, 0.028, 0.053 N · m are considered at a
Reynolds number of 6000 and heave amplitude of A = 0.004 m. Further
details of the experiment are given in [29, 30, 31].

3. Results

3.1. Imposed leading edge heave

The behavior of a flexible sheet subjected to imposed leading edge heave
is used first to validate the numerical model of the fluid and beam. In the
work of Paraz et al. [29, 30, 31], the amplitude and relative phase of the
trailing edge were measured over a range of frequencies including the first
two natural modes of the sheet. The measured ratio of the trailing edge
displacement amplitudes to that of the leading edge is given in Figure 4. Like
in the experiments, a sharp peak in the amplitude appears at the first natural
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Figure 4: Tail amplitude response Atail normalized by the imposed head amplitude Ahead

as a function of the ratio of the heave frequency to the first natural frequency for a heave
amplitude of Ahead = 0.004 m and Reynolds number of 6000. EI = 0.018 (orange),
EI = 0.028 (green), EI = 0.053 (blue). Curves: results of present work. Disks: results of
Paraz et al. [29].

frequency, followed by a wider peak at the second natural frequency. The
peak frequencies correspond to the natural frequencies of the sheet, embedded
in the fluid. There is closer agreement for the first peak’s amplitude, whereas
the amplitude of the second peak is overpredicted. In the model [31], the
authors included both a linear viscous damping coefficient and a non-linear
quadratic damping term to account for the pressure drag induced by the
fluid.

In the present case, we did not include a linear viscous damping, while the
pressure drag is implicitly present in our model rather than imposed, hence
it is not surprising to have an over-prediction of the amplitude. Despite
this over-prediction, the good qualitative agreement with the experiments
demonstrates the adequacy of the present model.

3.2. Imposed traveling wave bending moment

To highlight the distinct self-propulsive characteristics of delayed feed-
back, we contrast its properties to that of an imposed traveling bending
moment wave. Consequently, we study the effect of the imposed moment
defined in (7). We first note that the response frequency is always equal to
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Figure 5: Mean forward velocity V of the imposed bending moment wave as a function
of the frequency f normalized by the first natural frequency F1 for various Kelvin-Voigt
damping coefficients. η = 0.005 s (orange), η = 0.010 s (green), η = 0.020 s (red).

the forcing frequency f . As expected from the leading edge forcing results,
the mean velocity V of the imposed moment exhibits peaks with respect to
the driving frequency, as shown in Figure 5. The three observed peaks corre-
spond to the first three deformation modes of the swimmer. Such a property
arises in swimmers with imposed bending moments [1] and flexible foils with
forced leading edge motions [31, 51]. Similarly to low dimensional driven
oscillators, the maximum amplitudes increase as the damping is decreased
while the troughs are reduced in depth as the damping increases. As the
Kelvin-Voigt model tends to over-damp higher frequencies, the third mode
response is absent for η = 0.020 s. The location of the second peak relative to
the first in Figure 5 differs from that of the foil with imposed leading edge in
Figure 4. This is attributable to both the difference in boundary conditions
and the difference in the ratio of bending stiffness to beam mass.

3.3. Feedback delay bending moment

We simulate the dynamics of the swimmer driven by the feedback mo-
ment (6). Naturally, we expect the relevant delay value to be linked to a
temporal time scale. We associate this time scale to the period T1 of the first
deformation mode. Therefore, the mean forward velocity of the feedback
swimmer must depend on η and τ/T1. The feedback propelled swimmer’s
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response is distinct from that of the imposed traveling wave swimmer. For
a given feedback amplitude, our simulated model shows that the normalized
delay τ/T1 needs to be properly selected in order to induce a non-zero for-
ward velocity, see Figure 6. Six local maximum in the mean velocity are
evident over the range of τ/T1; their width and amplitude decrease as the
damping increases. For a delay amplitude of χ = 7.5 N.m N · m · rad−1,
we remark that the third peak location is slightly greater than the natural
period of the first mode, as τ

T1
= 1.15. Three larger peaks are approximately

situated at ±0.5T1 from each of the three smaller peaks, and this may be
explained with the simple model described in the next section. All six peaks
represent amplified responses with a period T close to T1, as seen in Figure
7. More precisely, for these six regions, the T/T1 increases as the ratio τ/T1
augments. Hence, the feedback swimmer undulates at the first deformation
mode. Concerning the influence of the damping coefficient, the variation of
the responses period decreases as η grows, because it attenuates the motion
away from the peaks. Although, η = 0.02 s induces a slightly shorter period,
for the three larger peaks. Between each pair of peaks is a range of feedback
delay ratios for which the swimmer is inefficient in displacing itself, and the
response drops very abruptly (for example near τ

T1
= 0.85, 1.4).

The effect of the damping is summarized as follows. First, large damping
reduces the cruising velocity, which makes sense, since input power is lost
into the internal friction. Second, increasing η make smaller the regions of
parameters for which the foil swims. Taking the limit of very small damping
results in rendering smaller the domains where there is no propulsion. In
addition, the unconstrained amplitude growth leads to complex dynamics
resulting from the competition between higher mode numbers.

Like the damping, the feedback strength has a strong, nonlinear influence
on the swimming speed. Here we vary χ between 2.5 and 7.5 N · m · rad−1

while keeping η fixed as shown in Figure 6b. For χ = 2.5 N · m · rad−1 the
motions are completely damped out and no self-propulsion is achieved. As the
feedback amplitude grows, the velocity increases non-linearly as it provides
a larger bending moment which in turn elicits an increasing curvature.

3.4. Simplified oscillator model

To explain the appearance of three small peaks with the central peak
at a period slightly greater than the natural period and three larger peaks
located approximately ±0.5T1 from the smaller peaks we consider a simpler
representation of the feedback swimmer. As we are concerned with only the
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Figure 6: Mean forward velocity V as feedback delay ratio τ/T1 is varied (a) for different
Kelvin-Voigt damping coefficients. η = 0.005 s (orange), η = 0.010 s (green), η = 0.020 s
(blue), for χ = 7.5 N · m · rad−1. (b)as χ is varied χ = 3.25 N · m · rad−1 (blue), χ = 5.0
N · m · rad−1 (green), χ = 6.25 N · m · rad−1 (beige), χ = 7.5 N · m · rad−1 (orange), for
η = 0.005 s

first bending mode of the beam, we may approximately reduce the swimmer
dynamical equation to that of a damped, delayed, harmonic oscillator, with
an equivalent mass, stiffness, and damping. Let us define δ to be the ratio
of the effective stiffness to the inertia and b to be the amplitude of the
feedback normalized by the inertia. Recalling that the Kelvin-Voigt damping
is directly proportional to the stiffness then the damped oscillator equation
is:

ÿ + ηδẏ + δy = by(t− τ) (8)

The reduction of the swimmer beam equation to this low dimensional ODE
might be justified by investigating the dynamics of an oscillating mode of
the system, in the spirit of [52]. The stability regions of equation (8) may be
readily determined using standard techniques [53, 54].

We numerically computed the instability regions using the semi-discretization
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Figure 7: Oscillation period over first natural period as feedback delay ratio τ/T1 is varied
for different Kelvin-Voigt damping coefficients. η = 0.005 s (orange), η = 0.010 s (green),
η = 0.020 s (blue). χ = 7.5 N · m · rad−1.

method [56, 57]. A stiffness-mass ratio δ = 45.3 s−2 is chosen to match the
first natural frequency of the swimmer. The marginal stability curves of b
as a function of τ are shown in Figure 8, for different values of ηδ. Areas
bounded by the curves are regions where y = 0 is stable while the zones
exterior to these boundaries are unstable. We propose to relate the region
of stability of the simple model (see Fig. 6) to the observed peaks for the
complete swimming model (Fig. 8). The second, fourth and sixth velocity
peaks in Fig. 6 correspond to the unstable regions for positive values of
b. The three smaller velocity peaks in Fig. 6 corresponds to the unstable
zones for the negative values of b : no instability should develop in this re-
gions. This is not what we observe for the complete model for the swimmer.
We interpret it as the resonance with harmonics generated by nonlinearities;
this simple linear model can not predict such a phenomena. Increasing the
damping leads to smaller unstable regions, similarly to what we observed for
the feedback swimmer velocity peaks. The boundaries of the unstable zones
are somewhat wider than the peaks in the velocity, as they extend to larger
values of τ , but are qualitatively in agreement with the feedback swimmer
velocity curves. Each new velocity peak starts at feedback delay ratios that
matches when the stable regions for ηδ = 0.0 changes between positive and
negative b.
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Figure 8: Marginal stability curves of the delayed damped oscillator when the normalized
delay is varied for different amounts of damping. The letter ”U” labels unstable regions,
while the letter ”S” labels stable regions. Blue ηδ = 0.0, orange ηδ = 0.1, green ηδ = 0.2,
red ηδ = 0.3.

4. Conclusions

The fluid-structure model of the swimmer was shown to be qualitatively
matching with the experimental work of Paraz et al. [29, 30, 31] in which
a flexible plate is subjected to forced, leading edge heave. The use of a
curvature proportional, time delayed feedback was found to be sufficient to
induce self-propulsion in the swimmer. This agrees with the observation of
[1] that a central generator is not necessary for a self-propulsive behavior.
Nevertheless, the present study reveals that multiple response peaks can
occur at the first natural period for delay τ both above and below the period
of the first mode; unlike what is reported in [1], where each peak corresponds
to a different modal frequency. This is contrasted to an imposed traveling
wave bending moment distribution which produces high forward velocities
when the activation frequency is equal to one of the natural frequencies; this
could be interesting to reduce the effect of flesh viscosity, since the lowest
frequencies are less damped than the higher ones.

For the range of delay periods and damping coefficients for which the
swimmer maintains a first natural period response, the swimmer’s response
may be qualitatively described by the much simpler single degree of freedom
damped, delayed oscillator. Stability analysis of this oscillator with the nat-
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ural period matched to T1 of the swimmer showed that the first and third
peaks observed correspond to the points of minimal stability for positive val-
ues of feedback coefficient b. The second smaller peak corresponds to the
second point of minimal stability for negative values of feedback coefficient
b.

The use of proprioceptive feedback permits a decentralized approach to
propulsion whereby each propulsive unit acts based only on local informa-
tion without a central pattern generator input. Proprioceptive feedback may
permit to attenuate or augment the response of a central pattern generator
based on the local state along a swimmer’s body. Such an approach may be
useful for flexible robotic swimmers to improve their performance, particu-
larly in unsteady environments where fluid forces may perturb the swimmer.
It is our hope that this contribution will further the goal to better understand
real swimmer behavior and in enhancing robotic swimmer performance.
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61.

[33] C. Rehbach, Numerical calculation of three-dimensional unsteady flows
with vortex sheets, in: 16th Aerospace Sciences Meeting, 1978, p. 111.

[34] J. Katz, A. Plotkin, Low-Speed Aerodynamics, Cambridge Aerospace
Series, Cambridge University Press, 2001.

[35] V. Pan, J. Reif, Efficient parallel solution of linear systems, Tech. rep.,
Harvard University (1985).

[36] V. Pan, R. Schreiber, An improved newton iteration for the generalized
inverse of a matrix with applications, Tech. rep., NASA Ames Research
Center (1990).
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