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Abstract

In this work, we consider an additive white Gaussian noise (AWGN)
model on the image patches in the context of patch-based image denoising.
From this, we propose a derivation of the induced models on the centered
patch of noise and on the DC component of the noise. These models
allow us to treat separately the two component. We provides experiments
with the HDMI method [1] that lead to denoising quality improvements,
particularly for residual low frequency noise.

1 Introduction

Context In this paper, we consider the problem of image denoising which
aims to estimate a clear image pu from its noisy observation

v “ u` e P Rn, (1)

where e „ N p0, σ2Inq is an additive white Gaussian noise (AWGN) and u the
underlying clean image. Some of the recent denoising methods are based on a
statistical modeling of the image patches [2, 3, 4, 5, 1]. That is to consider the
AWGN model for each patch i P t1, . . . , nu of size p “ sˆ s,

Yi “ xi `Ni, (2)

where Yi P Rp is the observed random vector modeling the i-th patch, xi P Rp

the underlying clean patch and Ni „ N p0, σ2Ipq a Gaussian white noise. The
idea is then to set a prior model Xi on the clean patch xi. The model therefore
rewrites

Yi “ Xi `Ni, (3)

and Bayes’ theorem yields the posterior Xi|Yi. Finally, each clean patch can be
estimated with the conditional expectation

pxi “ ErXi|Yi “ yis. (4)
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Convenient priors for computing this estimator (4) are Gaussian prior [2] or
Gaussian mixture model (GMM) [3, 5, 1]. The use of these priors has been
studied and it appears that the covariance matrix of these models can encode
local structures up to some contrast change [6]. This phenomenon permits
to regroup more patches under the same Gaussian model and then allows for
a better estimate of its parameters. However, there is a drawback, grouping
the patches in this way makes the mean of the model less informative. This
yields an estimate for each patch that has some bias. This produces the low
frequency residual noise that appears in the result of model-based patch-based
denoising methods. Figure 1 (b) illustrates this phenomenon in the case of the
HDMI method [1] with strong noise and small patches. A large part of this
low frequency noise seems to come from a poor estimation of the mean of each
patch. Indeed, the image (d) from figure 1 made up of the mean of each patch
of the noisy image (a) has the same patterns than the image (c) which is made
up of the mean of each patch of the denoised image (b). Moreover, replacing
the mean of each denoised patches from (b) with the true mean of the oracle (f),
yields a denoised image (c) that is way better, both in terms of Peak Signal to
Noise Ratio (PSNR) and visual quality, than the image (b). In addition, some
methods from the literature [5, 4] also seem to suggest that removing the mean
– also called the DC component – of the patches may improve the denoising
quality.

Proposed work In this work, we propose to study the decomposition of the
patches into the DC component and the centered component for denoising pur-
poses. To do so, we define the centered observed random variable Y ci “ Yi´sYi1p,
where

sYi “
1

p

p
ÿ

j“1

Yipjq, (5)

is the mean of Yi and 1p “ p1, . . . , 1q P R
p. The model (3) then implies the two

following problems
sYi “ sXi ` sNi P R, (6)

and
Y ci “ Xc

i `N
c
i P R

p. (7)

We propose to model the noise component N c
i (section 2) and sNi (section 3)

of these two problems. Then we suggest in section 4 various solutions that can
enhance the denoising results of the patch-based denoising method HDMI [1]
and we provide numerical experiments of these solutions.

2 Modeling the centered noise

The centered noise is defined by N c
i “ Ni´ĎNi1p and then the j-th entry of N c

i

is

N c
i pjq “ Nipjq ´

1

p

p
ÿ

k“1

Njpkq, (8)
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(a) (b) (c)

(d) (e) (f)

Figure 1: (a) noisy image (standard deviation 30{255). (b) denoised with
HDMI [1] (patches 7 ˆ 7), PSNR = 31.92 dB. (c) image from the denoised
patches of (b) with DC component corrected with oracle value (f), PSNR =
33.78 dB. (d) DC component of the patches of (a). (e) DC component of the
patches of (b). (f) DC component of the oracle image (ground truth).

since Ni is a Gaussian random vector, N c
i is also Gaussian. Then, we can

compute its mean and its covariance matrix coordinate by coordinate. That
gives for the mean

E rN c
i pjqs “ E rNipjqs ´

1

p

p
ÿ

k“1

E rNjpkqs “ 0. (9)

And for the covariance matrix, we have @k, l P t1, . . . , pu
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E rN c
i pkqN

c
i plqs “ E rNipkqNiplqs

´
1

p

p
ÿ

m“1

E rNjpmq pN c
i plq `N

c
i pkqqs

`
1

p2

p
ÿ

m“1

p
ÿ

n“1

E rNjpmqN c
i pnqs

“ σ2

ˆ

δkl ´
2

p
`

p

p2

˙

“ σ2

ˆ

δkl ´
1

p

˙

.

Finally, we have N c
i „ N p0,ΣNc

i
q with

ΣNc
i
“
σ2

p

¨

˚

˚

˚

˚

˝

p´ 1 ´1 ¨ ¨ ¨ ´1

´1 p´ 1
...

...
. . . ´1

´1 ¨ ¨ ¨ ´1 p´ 1

˛

‹

‹

‹

‹

‚

. (10)

Since ΣNc
i

is a real symmetric matrix, there exists an orthonormal basis that
diagonalizes it. Given that its eigenvalues are p (of multiplicity p´1) and 0, we
can build an orthogonal matrix Q such that

ΣNc
i
“ Q

ˆ

σ2Ip´1 0
0 0

˙

QT . (11)

It is worth noticing that the unit eigenvector corresponding to the eigenvalue 0
is 1?

p p1, . . . , 1q. The change of basis QT applied to the centered noise then yields

QTN c
i „ N p0,diagpσ2Ip´1, 0qq. Finally, centering the noise implies a dimension

reduction. The total variance of the centered noise defined as

TVarpN c
i q “ Er}N c

i }
2
2s (12)

“ TrpΣNc
i
q “ pp´ 1qσ2 (13)

“
p´ 1

p
TVarpNiq (14)

is also reduced by a factor pp´ 1q{p.

3 Modeling of the DC component

Since the initial noise model on a patch Ni is a Gaussian vector, its mean is a

Gaussian random variable sNi „ N p0, σ
2

p q. Then, the reshape of the problem
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(6) as an image yields the new image denoising problem with additive Gaussian
noise

sY “ sX ` sN, (15)

where sY , sX and sN are the images whose pixels are sYi, sXi and sNi. The major
difference is that the noise is now colored. Indeed, if we consider two random
variables sNi and sNj within a same area of sˆ s pixels, they are issued from two
overlapping patches and thus are not independent.

However, we still can perform patch-based image denoising on this problem
: let us consider patches of the same size p “ s ˆ s from this new image. We
define the patches Zi “ πipsY q, Wi “ πip sXq and Mi “ πip sNq, where πi is the
i-th patch extraction operator. We consider the patch noise model

Zi “Wi `Mi, (16)

with Mi modeling the noise. Since Mi “ p sNi1 , . . .
sNipq, all its entries are linear

combinations of the noise components of the problem (1) that are i.i.d following
N p0, σ2q. Therefore, all linear combinations of entries of Mi are also Gaussian.
This shows that Mi is a Gaussian vector. We can now compute its mean and
covariance matrix.

The mean of Mi is obviously 0p and the challenging part is to compute the
covariance matrix. The coefficients of this matrix ΣMi

are given by

pΣMi
qkl “ E

“

sNik ,
sNil

‰

“
σ2

p2
Ckl, (17)

where Ckl is the number of common pixels between the two patches of the
original image from which sNik and sNil are derived. This yields after counting

ΣMi
“
σ2

p2
B bB (18)

where

B “

¨

˚

˚

˚

˚

˝

s ps´ 1q ¨ ¨ ¨ 1

ps´ 1q s
. . .

...
...

. . .
. . . ps´ 1q

1 ¨ ¨ ¨ ps´ 1q s

˛

‹

‹

‹

‹

‚

, (19)

and b is the Kronecker product. In order to use a denoising method that has
been designed for AWGN, we want to perform a basis change for the data. To do
so, we study the structure of ΣMi

. First, we show that B is symmetric positive-
definite. Using the Sylvester’s criterion, it is sufficient to show that all of the
leading principal minors of B are positive. These minors of size d P t1, . . . , su
are given by

md “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s ps´ 1q ¨ ¨ ¨ ps´ d` 1q

ps´ 1q s
. . .

...
...

. . .
. . . ps´ 1q

ps´ d` 1q ¨ ¨ ¨ ps´ 1q s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (20)
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Adding the first column in the last one yields

md “ p2s´ d` 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s ps´ 1q ¨ ¨ ¨ 1

ps´ 1q s
. . .

...
...

. . .
. . . 1

ps´ d` 1q ¨ ¨ ¨ ps´ 1q 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (21)

then subtracting the second and the last column to the first one gives

md “ p2s´ d` 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 ps´ 1q ¨ ¨ ¨ 1

0 s
. . .

...
...

. . .
. . . 1

0 ¨ ¨ ¨ ps´ 1q 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (22)

Finally, developing the determinant with respect to the first column and repeat-
ing the two last steps yields

md “ p2s´ d` 1q2d´2 ą 0. (23)

This shows that B is a positive-definite matrix. Then B bB is also symmetric
positive-definite as the Kronecker product of two positive-definite matrices and
the Cholesky decomposition gives us an invertible matrix L such that B bB “
LLT . Therefore, the problem

L´1Zi “ L´1Wi ` L
´1Mi, (24)

is an AWGN problem with noise variance σ2{p2Ip and a denoising method such

HDMI can be used to find an estimate {L´1Wi that gives an estimate of Wi by
xWi “ L {L´1Wi.

4 Experiments

In this section, we take into advantage the previous modeling in order to propose
various strategies for improving the denoising result of model-based patch-based
denoising methods. For this testing part, we propose to use the HDMI method
[1] which has the advantage of using only statistical tools. The principle of this
method is rather simple:

1. Gaussian mixture model with intrinsic lower dimensions is designed for
the clean patches;

2. This model is inferred on the noisy patches with an expectation–maximization
(EM) algorithm;

3. The clear patches are estimated with the conditional expectation (4) which
has a closed-form and is numerically stable.
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4.1 Denoising the DC component

At section 3, we proposed to reshape the DC component of all patches into
an image and to extract patches of this image in order to perform patch-base
denoising on it. We showed that the noise model on these patches is AWGN
in a given basis L. We can therefore apply the HDMI method directly on (24).
Figure 2 shows the result of the denoising of the DC images from the images
simpson and lena with a noise of standard deviation σ “ 30{255. Note that
the results are quite good since the problem (24) is an easier problem than the
original one (3). Indeed, the dynamic of the DC image is quite the same of
the one of the original image whereas the dynamic of the noise is reduced by
a factor p. Therefore, the signal-to-noise ratio of the problem (16) is about p
times larger than the one of the original problem (3). Finally, with this step,

we obtain for each patch i an estimate x

ĎXi of its DC component, which is very
good.

Figure 2: Left: noisy DC image. Middle: denoised DC image (’simpson’
PSNR = 40.64 dB , ’lena’ PSNR = 40.89 dB). Right: oracle DC image. Top
line is the from the simpson image and bottom line from the lena image both
with noise of standard deviation σ “ 30{255.

4.2 Denoising the patches

In order to perform the final denoising of the patches, we studied two strategies
that we expose hereafter. For each of these strategies, we propose numerical
examples and we discuss the improvements they bring for the denoising task.
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Figure 3: From left to right. Noisy images (standard deviation 30{255). HDMI
resulting groups. HDMI denoised (lena 31.09dB, simpson 32.46dB). Denoising
with method 4.2.1 (lena 31.19dB, simpson 32.58dB).

4.2.1 Correction of the DC component afterwards

The first idea is to run the HDMI method on the actual patches, that yields for
each patch i an estimate xXi. Then correct this estimate with the estimated DC

component x

ĎXi. That is to consider the final estimate

Est1 pXiq “ xXi ´
Ď

xXi1p `
x

ĎXi1p. (25)

This strategy improves the denoising quality compared to the original denoising,
as illustrated in Figure 3. The low frequency noise is visually reduced and in
term of PSNR, the results show an improvement of « 0.1dB for both images.
However, this does not use the modeling of the centered noise from section 2,
and the grouping of the patches from the HDMI model remains the same.

4.2.2 Learn a model on the centered patches

The second strategy is to learn the model on the centered patches Xc in order
to group together patches with various contrasts. To do so, we can apply the
change of basis QT from section 2 on the problem (7). This yields

QTY ci “ QTXc
i `Q

TN c
i , (26)

with the last line of this equality being ĎY ci “
ĎXc
i which is always true since

ĎY ci “
ĎXc
i “ 0 by definition. Removing this last dimension then yields an AWGN

problem in dimension p´1 that can be denoised with the HDMI algorithm. This
gives us an estimate of the centered patch xXc

i and therefore the final estimate

Est2 pXiq “ xXc
i `

x

ĎXi1p. (27)
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Figure 4: From left to right. Noisy images (standard deviation 30{255). Re-
sulting groups of method 4.2.2. Denoising with method 4.2.2 (lena 31.14dB,
simpson 32.58dB).

Figure 4 shows the result of this strategy. The advantage of learning the model
on the centered patches is that the patches with same structure but different
contrasts are grouped together (figure 4), that can make the estimate of the
covariance matrix easier. However, this centered problem has a lower signal-
to-noise ratio than the original problem since the centering of the patches has
reduced the dynamic. Therefore, the algorithm is more likely to missclassify
some fine textures. This strategy still leads to a visual and PSNR improvement
but seems not to be better than the previous solution.

4.3 Discussion

Finally, we propose in table 1 the results of presented strategies for the three
images simpson, lena and barbara with different level of noise. This shows that
the first strategy always improve the denoising quality, with a larger improve-
ment for images that have less textures like simpson. The second strategy seems
also to work well in this precise case but fail to improve the result in the case
of barbara which has a lot of fine texture. The other trend that appears is the
better improvement for high variance noise than for low variance noise. This is
due to the use of the same patch size for all experiments. Indeed, for a given
patch size, the residual low frequency noise increases with the variance of the
initial noise.
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Table 1: Results in PSNR (dB) of the enhancement methods from sec-
tion 4.2.1 and 4.2.2 for the images simpson, lena and barbara with different
noise levels.

Image σ HDMI [1] sec. 4.2.1 diff. sec. 4.2.2 diff.

Simpson
10 38.89 38.93 +0.04 38.93 +0.04
20 34.88 34.97 +0.09 34.96 +0.08
30 32.46 32.58 +0.12 32.58 +0.12

Lena
10 35.81 35.82 +0.01 35.81 +0.00
20 32.86 32.91 +0.05 32.89 +0.03
30 31.09 31.19 +0.10 31.14 +0.05

Barbara
10 34.81 34.82 +0.01 34.79 -0.02
20 31.42 31.45 +0.03 31.42 +0.00
30 29.38 29.42 +0.04 29.36 -0.02

5 Conclusion

In this work, we studied the effect of patch centering for model-based patch-
based denoising methods. For this purpose, we proposed a modeling of the cen-
tered noisy patches and a modeling of the DC component of the noise. These
modeling led us to strategies for improving the result of existing denoising meth-
ods, especially to reduce low-frequency residual noise. The results obtained with
the HDMI method on grayscale images show improvement of the denoising, both
visually and in term of PSNR.

In future work, we would like to propose a discussion on the strategy to be
adopted for color images. Then, in a second step, we would like to study the
links between this approach and multiscale frameworks.
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