
HAL Id: hal-02024202
https://hal.science/hal-02024202v2

Preprint submitted on 25 Mar 2019 (v2), last revised 20 Mar 2024 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the consistency of supervised learning with missing
values

Julie Josse, Nicolas Prost, Erwan Scornet, Gaël Varoquaux

To cite this version:
Julie Josse, Nicolas Prost, Erwan Scornet, Gaël Varoquaux. On the consistency of supervised learning
with missing values. 2019. �hal-02024202v2�

https://hal.science/hal-02024202v2
https://hal.archives-ouvertes.fr


On the consistency of supervised learning with

missing values

Julie Josse julie.josse@polytechnique.edu
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Abstract

In many application settings, the data have missing features which
make data analysis challenging. An abundant literature addresses
missing data in an inferential framework: estimating parameters and
their variance from incomplete tables. Here, we consider supervised-
learning settings: predicting a target when missing values appear in
both training and testing data.

We show the consistency of two approaches in prediction. A striking
result is that the widely-used method of imputing with the mean prior
to learning is consistent when missing values are not informative. This
contrasts with inferential settings where mean imputation is pointed
at for distorting the distribution of the data. That such a simple
approach can be consistent is important in practice. We also show that
a predictor suited for complete observations can predict optimally on
incomplete data, through multiple imputation.

We analyze further decision trees. These can naturally tackle em-
pirical risk minimization with missing values, due to their ability to
handle the half-discrete nature of incomplete variables. After com-
paring theoretically and empirically different missing values strategies
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in trees, we recommend using the “missing incorporated in attribute”
method as it can handle both non-informative and informative missing
values.

keywords Bayes consistency, empirical risk minimization, decision trees,
imputation, missing incorporated in attribute

1 Introduction

As volumes of data increase, they are harder to curate and clean. They
may come from the aggregation of various sources (e.g. merging multiple
databases) and contain variables of different natures (e.g. different sensors).
Such heterogeneous data collection can lead to many missing values: samples
only come with a fraction of the features observed. Though there is a vast
literature on treating missing values, it focuses on estimating parameters
and their variance in the presence of missing values in a single data set. In
contrast, there are few studies of supervised-learning settings where the aim
is to predict a target variable given input variables. Rather than generative
models, these settings only require discriminative (or conditional) models.
Also, they separate training and testing.

Aside from the aggregation of multiple sources, missing values can also ap-
pear for a variety of reasons. For sensor data, missing data can arise from
device failure. On the contrary, informative missing values can be found in
poll data for instance where participants may not answer sensitive questions
related to unpopular opinions. In medical studies, some measurements may
be impractical on patients in a critical state, in which case the presence of
missing values can be related to the variable of interest, target of the pre-
diction (patient status). These various scenarios lead to different missing
value mechanisms.

The classical literature on missing data, led by Rubin (1976), defines miss-
ing data mechanisms based on the relationship between missingness and
observed values: if they are independent, the mechanism is said to be Miss-
ing Completely At Random (MCAR); if the missingness only depends on
the observed values, then it is Missing At Random (MAR); otherwise it is
Missing Not At Random (MNAR). However, adapting this nomenclature to
supervised learning, to take into account the target variable of the predic-
tion, has seldom been discussed.

Many methods are available to deal with missing values (Josse and Reiter,
2018). Listwise deletion, i.e. the removal of incomplete observations, may
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allow to train the model on complete data. Yet it may not suffice for su-
pervised learning, as the test set may also contain incomplete data. Hence
the prediction procedure should handle missing data. A popular solution
suitable with any existing learning algorithm is to impute missing values,
that is to replace them with plausible values to produce a completed data
set. The widespread practice of imputing with the mean of the variable on
the observed entries is known to have serious drawbacks as it distorts the
joint and marginal distributions of the data which induces bias in estimators
(Little and Rubin, 2002). Interestingly, the performance of mean imputa-
tion has never been really assessed when aiming at predicting an output. In
practice, users resort to different strategies such as imputing separately the
training and test sets or imputing them jointly. More elaborate strategies
rely on using expectation maximization (EM) to fit a model on incomplete
data (Dempster et al., 1977; Little and Rubin, 2002; Little, 1992). How-
ever, such a model cannot readily be applied to new incomplete data. In
addition, the EM relies on strong parametric assumptions. Alternatively,
some learning algorithms, such as decision trees, can be adapted to handle
missing values.
In this paper, we study the classic tools of missing data in the context of su-
pervised learning. We start in Section 2 by setting the notations and briefly
summarizing the missing data literature. Our first contribution, detailed
in Section 3, is to suggest a formalism for missing data adapted to super-
vised learning; we write existing methods with this formalism and show how
to make predictions on a test set with missing values. Section 4 presents
our main contribution which consists in studying the consistency of two ap-
proaches to estimate the prediction function with missing values. The first
theorem states that, given an optimal predictor for the completely-observed
data, a consistent procedure can be built by predicting on a test set where
missing entries are replaced by multiple imputation. The second approach,
which is the most striking and has important consequences in practice, shows
that mean imputation prior to learning is consistent for supervised learn-
ing. This is as far as we know the first result justifying this very convenient
practice of handling missing values. In Section 5, we then analyze decision
trees, as their greedy and discrete natures allow to adapt them to handle
missing values directly. We compare various missing data methods for trees:
surrogate splits, the default in Classification and Regression Trees (CART,
Breiman et al. 1984), probabilistic splits, the default in C4.5 (Quinlan, 2014),
block propagation, the method used in XGBoost (Chen and Guestrin, 2016)
and LightGBM (Ke et al., 2017), a method called “missing incorporated
in attribute” (MIA, Twala et al. 2008) and also conditional inference trees
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(Hothorn et al., 2006). Theoretical analysis of toy examples justifies some
empirical results observed in Kapelner and Bleich (2015), one of the few
papers that studied trees with missing values for supervised learning. We
recommend MIA as a way to exploit the missing pattern in the estima-
tion. Finally, Section 6 compares the different tree methods on simulated
data with missing values. We also show the benefits for prediction of an
approach often used in practice, which consists in “adding the mask”, i.e.
adding binary variables that code for the missingness of each variables as
new covariates, even though this method has been recommended against for
estimation (Jones, 1996).

2 Definitions, problem setting, prior art

Notation Throughout the paper, bold letters refer to vectors; CAPITAL
letters refer to real-valued or vector-valued random variables, while lower-
case letters are realisations. In addition, as usual, for any two variables A
and B of joint density f ,

f(b) := fB(b) :=

∫
f(α, b) dµ(α), f(a|b) := fA|B=b(a) :=

f(a, b)

f(b)
.

2.1 Supervised learning

Supervised learning is typically focused on learning to predict a target Y ∈
Y from inputs X ∈ X =

⊗d
j=1Xj , where the pair (X, Y ) is considered

as random, drawn from a distribution P . Formally, the goal is to find a
function f : X → Y, that minimizes E[`(f(X), Y )] given a cost function
` : Y ×Y → R, called the loss (Vapnik, 1999). The best possible prediction
function is known as the Bayes rule, given by

f? ∈ argmin
f :X→Y

E [`(f(X), Y )] , (1)

and its error rate is the Bayes rate (Devroye et al., 2013). A learning
procedure is used to create the function f from a set of training pairs
Dn,train = {(Xi, Yi), i = 1, . . . , n}. f is therefore itself a function of Dn,train,

and can be write f̂Dn,train or simply f̂n. There are many different learn-
ing procedures, including random forests (Breiman, 2001) or support vector
machines (Cortes and Vapnik, 1995). A learning procedures that, given an
infinite amount of data, yields a function that achieves the Bayes rate is said
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to be Bayes consistent. In other words, f̂n is Bayes consistent if

E[`(f̂n(X), Y )] −−−→
n→∞

E[`(f?(X), Y )].

In a classification setting, Y is drawn from a finite set of discrete values, and
the cost ` is typically the zero-one loss: `(Y1, Y2) = 1Y1 6=Y2 . In a regression
setting, Y is drawn from continuous values in R and is assumed to satisfy
E[Y 2] < ∞. A common cost is then the square loss, `(Y1, Y2) = (Y1 −
Y2)2. Considering the zero-one loss (Rosasco et al., 2004) or the square loss
(see e.g. sec 1.5.5 of Bishop (2006)), the Bayes-optimal function f?, that
minimizes the expected loss, satisfies f?(X) = E[Y |X].

Note that the learning procedure has access to a finite sample, Dn,train,
and not to the distribution P hence, it can only use the empirical risk,∑

i=1...n `(f(Xi), Y ), rather than the expected risk. A typical learning pro-
cedure is therefore the empirical risk minimization defined as the following
optimization problem

f̂n ∈ argmin
f :X→Y

(
1

n

n∑
i=1

` (f(Xi), Yi)

)
.

A new data set Dn,test is then needed to estimate the generalization error
rate of the resulting function f .

2.2 Prior art on missing values

In this section, we review the different missing data mechanisms. We then
summarize the main methods to handle missing values: imputation methods
and likelihood-based ones. Most of this prior art to deal with missing values
is based on a single data set with no distinction between training and test
set.

2.2.1 Missing data mechanisms

To follow the historical definitions which do not give the response Y a par-
ticular role, we temporarily consider Y as part of the input vector X, though
we assume that Y has no missing values. Rubin (1976) defines three miss-
ing data mechanisms and fundamental results for working with likelihood
models in the presence of missing data. These are defined by consider-
ing the realised data set (xi) = (xij) ∈ Rn×d, as one realisation from a
distribution in Rn×d. The missingness is encoded as an indicator matrix
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(mi) = (mij) ∈ Rn×d where, for all i and j, mij = 0 if xij is observed, and
mij = 1 if xij is missing.

The definitions of Rubin (1976) can naturally be adapted to the i.i.d. setting.
All rows (xi,mi) are assumed to be sampled i.i.d. from a distribution in
P = {fθ(x)gφ(m|x) : (θ, φ) ∈ Ωθ,φ} where, marginally, θ ∈ Θ and φ ∈ Φ.
The goal in statistical inference is to estimate the parameter θ. This is
usually done by maximizing the likelihood L(θ) =

∏n
i=1 fθ(xi), which is well

defined when the xi are fully observed. Here, the likelihood is integrated
over the missing values, resulting in

(full likelihood) L1(θ, φ) =
n∏
i=1

∫
gφ(mi|x)fθ(x) dδo(·,mi)=o(xi,mi)(x)

where o(x,m) denotes the observed values for any realisation (x,m) of
(X,M) (Seaman et al., 2013), and δ the Dirac measure. The parameter
φ is generally not considered as of interest. In addition, modeling the miss-
ing values mechanism requires strong parametric assumptions. An easier
quantity would be

(likelihood of observed data) L2(θ) =
n∏
i=1

∫
fθ(x) dδo(·,mi)=o(xi,mi)(x)

ignoring the missing data mechanism. To leave the difficult term, i.e. the
missing values mechanism, out of the expectation, Rubin (1976) introduces
an ad hoc assumption, called Missing At Random (MAR), which is that for
all φ ∈ Φ, for all i ∈ J1, nK, for all x′ ∈ X ,

o(x′,mi) = o(xi,mi)⇒ gφ(mi|x′) = gφ(mi|xi),

and states the following result.

Theorem 1 (Theorem 7.1 in Rubin (1976)). Let φ such that for all 1 ≤
i ≤ n, gφ(mi|xi) > 0. Assuming (a) MAR, (b) Ωθ,φ = Θ × Φ, L2(θ) is
proportional to L1(θ, φ) with respect to θ, so that the inference for θ can be
obtained by maximizing the likelihood L2 which ignores the mechanism.

MAR has a stronger version, more intuitive: Missing Completely At Random
(MCAR). In its simplest and strongest form, it states that M |= X (the
model’s density is fθ(x)gφ(m)). At the other end of the spectrum, if it is
not possible to ignore the mechanism, the corresponding model is called
Missing Not At Random (MNAR).
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There is little literature on missing data mechanism for supervised learning
or discriminative models. Kapelner and Bleich (2015) formalise the prob-
lem by separating the role of the response y, factorising the likelihood as
fθ(x)gφ(m|x)hχ(y|x,m). Note that they do not write gφ(m|x, y). They
justify this factorisation with the – somewhat causal – consideration that
the missing values are part of the features, which precede the response. The
need to represent the response variable in the factorization show that it may
be useful to extend the traditional mechanisms for a supervised learning set-
ting: the link between the mechanism and the output variable can have a
significant impact on the results. Davidian (2017) and Arel-Bundock and
Pelc (2018) noticed that as long as M does not depend on Y , it is possible to
estimate regression coefficients without bias even with listwise deletion and
MNAR values. Ding and Simonoff (2010) generalise the MAR assumption
with the following nomenclature MXY: the missing mechanism can marginally
depend on the target (∗ ∗ Y), on the features that are always observed (∗X∗)
or on the features that can be missing (M ∗ ∗).

2.2.2 Imputation prior to analysis

Most statistical models and machine learning procedures are not designed
for incomplete data. It is therefore useful to impute the data, forming a
completed data set that can be analysed by any procedure, e.g. supervised
learning methods. To impute data, joint modeling (JM) approaches capture
the joint distribution across features (Little and Rubin, 2002). A simple
example of joint modeling imputation is to assume a Gaussian distribution
of the data, to estimate the mean vector and covariance matrix from the
incomplete data (using an EM algorithm, see Section 2.2.3). Missing en-
tries can then be imputed with their conditional expectation knowing the
observed data and the estimated parameters. More powerful methods can
be based on low-rank models (Hastie et al., 2015; Josse et al., 2016), or
deep learning approaches such as denoising autoencoders (DAEs, Vincent
et al. 2008; Gondara and Wang 2018) and generative adversarial networks
(Li et al., 2017; Yoon et al., 2018). Another popular approach to impute
data is called fully conditional specification (FCS) also known as imputation
with conditional equation (ICE) (van Buuren, 2018). It also assumes a joint
distribution for the data, but defines it implicitly by the conditional distri-
butions of each variable. This approach is popular because it is flexible and
can easily handle variables of a different nature such as ordinal, categorical,
numerical, etc. A powerful example of this class uses iterative imputation
of each variable by random forests (Stekhoven and Bühlmann, 2011).
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The role of the dependent variable Y and whether or not to include it in
the imputation model has been a rather controversial point. Indeed, it is
quite counter-intuitive to include it when the aim is to apply a conditional
model on the imputed data set to predict the outcome Y . Nevertheless, it is
recommended as it can provide information for imputing covariates (Allison,
2001, p.57). Sterne et al. (2009) illustrated the point for the simple case of a
bivariate Gaussian data (X,Y ) with a positive structure of correlation and
missing values on X. Imputing using only X is not appropriate when the
aim is to estimate the parameters of the linear regression model of Y given
X.

One important issue with “single” imputation, i.e. predicting only one value
for each missing entries, is that it forgets that some values were missing and
considers imputed values and observed values in the same way. It leads to
underestimation of the variance of the parameters (Little and Rubin, 2002)
estimated on the completed data. One solution, to incorporate the uncer-
tainty of the prediction of values is to use multiple imputation (MI, Rubin
1987) where many plausible values are generated for each missing entries,
leading to many imputed data sets. Then, MI consists in applying an anal-
ysis on each imputed data sets and combining the results. Although many
procedures to generate multiple imputed data sets are available (Murray,
2018), here again, the case of discriminatory models is only rarely consid-
ered, with the exception of Wood et al. (2008) who use a variable selection
procedure on each imputed data set and propose to keep the variables se-
lected in all imputed data sets to construct the final model (see also Liu
et al., 2016). We note that even when imputing data, the objective is to
make an inference with missing data, e.g. to best estimate parameters and
their variance in the presence of an incomplete data set.

2.2.3 EM algorithm

Imputation leads to two-step methods that are generic in the sense that
any analysis can be performed from the same imputed data set. On the
contrary, the expectation maximization (EM) algorithm (Dempster et al.,
1977) proceeds directly in one step. It can thus be better suited to a specific
problem but requires the development of a dedicated algorithm.

The EM algorithm can be used in missing data settings to compute max-
imum likelihood estimates from an incomplete data set. Indeed, with the
assumptions of Theorem 1 (MAR settings), maximizing the observed like-
lihood L2 gives principle estimation of parameters θ. The log-likelihood of
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the observed data is

`2(θ) =
n∑
i=1

log

∫
fθ(x) dδo(·,mi)=o(xi,mi)(x).

Starting from an initial parameter θ(0), the algorithm alternates the two
following steps,

(E-step) Q(θ|θ(t)) =
n∑
i=1

∫
(log fθ(x))fθ(t)(x) dδo(·,mi)=o(xi,mi)(x).

(M-step) θ(t+1) ∈ argmax
θ∈Θ

Q(θ|θ(t)).

The well-known property of the EM algorithm states that at each step t,
the observed log-likelihood increases, although there is no guarantee to find
the global maximum. In Appendix B.2 we give an example of an EM algo-
rithm to estimate the parameters of a bivariate Gaussian distribution from
incomplete data.

3 Supervised learning procedures with missing data
on train and test set

Supervised learning typically assumes that the data are i.i.d. In particu-
lar, an out-of-sample observation is supposed to be drawn from the same
distribution as the original sample. Hence it has the same missing data
mechanism. An appropriate method should be able to predict on new data
with missing values. Here we discuss how to adapt classic missing data
techniques to machine learning settings, and vice versa.

Notations Following Rubin (1976) and others (Rosenbaum and Rubin
1984, appendix B; Mohan and Pearl 2018; Yoon et al. 2018), we define the
incomplete feature vector X̃ as X̃j = NA if Mj = 1, and X̃j = Xj otherwise.

As X is a cartesian product, X̃ belongs to the space X̃ =
⊗d

j=1(Xj ∪ {NA}).
We have

X̃ = X� (1−M) + NA�M,

where � is the term-by-term product, with the convention that, for all one-
dimensional x, NA · x = NA. As such, when the data are real, X̃ can be seen
as a mixed categorical and continuous variable, taking values in R ∪ {NA}.
The observed training set, which is available for statistical analysis, is then
defined as D̃n,train = ((X̃i, Yi))1≤i≤n.
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3.1 Out-of-sample imputation

Using missing value imputation in a supervised learning setting is not straight-
forward as it requires to impute new, out-of-sample, test data, where the
target is unavailable.

A simple strategy is to fit an imputation model on the training set, yielding
the estimated parameter α̂. X̂train denoting the imputed training data set,
a predictive model can then be learned using X̂train and Ytrain, yielding
the estimated parameter β̂. Finally, on the test set, the covariates must
be imputed with the same imputation model (using α̂) and the dependent
variable predicted using the imputed test set and the estimated learning
model (using β̂).

This approach is easy to implement for univariate imputation methods that
consider each feature separately, for instance with mean imputation: the
parameter α̂ corresponds to the mean µ̂i of each column which is learned on
the training set, and any new observation on the test set can be imputed by
(µ̂1, . . . , µ̂d). The imputation with joint Gaussian model on (X, Y ) – which
parameters are learned by the EM algorithm on the training set– is also
appropriate as one can impute the test set using the conditional expectations
of the missing features given the observed features (and without a Y ) and
the estimated parameters.

For more general imputation methods, two issues hinder out-of-sample im-
putation. First, many available imputation methods are “black-boxes” that
take as input an incomplete data set and output a completed data set: they
do not separate the estimation of model parameters from their usage to
complete the data. This is the case for many implementations of itera-
tive conditional imputation such as MICE (van Buuren, 2018) or missForest
(Stekhoven and Bühlmann, 2011). It is also difficult for powerful imput-
ers presented in Section 2.2.2 such as low-rank matrix completion, as they
cannot be easily marginalised on X alone.

As most existing implementations cannot easily impute a new data set with
the same imputation model, some analysts resort to performing separate
imputation of the training set and the test set. But the smaller the test
set, the more suboptimal this strategy is, and it completely fails in the case
where only one observation has to be predicted. Another option is to con-
sider semi-supervised settings, where the test set is available at train time:
grouped imputation can then simultaneously impute the train and the test
set (Kapelner and Bleich, 2015), while the predictive model is subsequently
learned on the training set only.
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3.2 EM and out-of-sample prediction

The likelihood framework (Section 2.2.1) enables predicting new observation,
though it has not been much discussed. Jiang et al. (2018) consider a special
case of this approach for a logistic regression and by assuming a Gaussian
model on the covariates X.

Let the assumptions of Theorem (1) be verified (MAR settings). Model pa-
rameters θ? can then be estimated by maximizing the observed log-likelihood
`2 with an EM algorithm (Section 2.2.3). The corresponding maximum like-
lihood estimate θ̂n can be used for out-of-sample prediction with missing val-
ues. More precisely, for a fixed missing indicator m, we write xo = o(x,m)
the observed values and xm the missing values. The probability of y as a
function of the observed values xo only, can be related to that on a fully-
observed data set:

pθ̂n(y|xo) =
pθ̂n(y,xo)

pθ̂n(xo)
=

1

pθ̂n(xo)

∫
pθ̂n(y,xm,xo) dxm

=
1

pθ̂n(xo)

∫
pθ̂n(y|xm,xo)pθ̂n(xm|xo)pθ̂n(xo) dxm

=

∫
pθ̂n(y|xm,xo)pθ̂n(xm|xo) dxm

= EXm|Xo=xo

[
pθ̂n(y|Xm,xo)

]
(2)

It is then possible to approximate the expectation with Monte Carlo sam-
pling from the distribution pθ̂n(Xm|Xo = xo). Such a sampling is easy in
simple models, e.g. using Schur’s complements for Gaussian distributions
in linear regression settings. But in more complex settings, such as logistic
regression, there is no explicit solution and one option is Metropolis Hasting
Monte Carlo.

3.3 Empirical risk minimization with missing data

The two previous approaches that we discussed are specifically designed to
fix the missing data issue: imputing or specifying a parametric model and
computing the probability of the response given the observed values. How-
ever, in supervised learning settings, the goal is rather to build a prediction
function that minimizes an expected risk. Empirical risk minimization, the
workhorse of machine learning, can be adapted to deal with missing data.

Recall that in missing data settings, we do not have access to X but rather
to X̃. Therefore, given a class of functions F from X̃ to Y, we aim at
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minimizing the empirical risk on this class, that is

f̂n ∈ argmin
f∈F

1

n

n∑
i=1

`
(
f(X̃i), Yi

)
. (3)

Unfortunately, the half-discrete nature of X̃ =
⊗d

j=1(Xj ∪ {NA}), makes the
problem difficult. Indeed, many learning algorithms do not work with mixed
data types, such as R ∪ NA, but rather require a vector space. This is true
in particular for gradient-based algorithms. As a result, the optimization
problem (3) is hard to solve with typical learning tools.

Another point of view can be adopted for losses which leads to Bayes-optimal
solutions such that f̃?(X̃) = E[Y |X̃]. As there are at most 2d admissible
missing patterns, we can rewrite the Bayes estimate as

E
[
Y
∣∣∣X̃] =

∑
m∈{0,1}d

E [Y |o(X,m),M = m] 1M=m, (4)

This formulation highlights the combinatorial issues: solving (3) may re-
quire, as suggested by Rosenbaum and Rubin (1984, Appendix B), to es-
timate 2d different submodels, that is E [Y |o(X,m),M = m] appearing in
(4) for each m ∈ {0, 1}d, which grows exponentially with the number of
variables.

Modifying existing algorithms or creating new ones to deal with the op-
timization problem (3) is in general a difficult task due to the numerous
possible missing data patterns. We will see in Section 5 that decision trees
are particularly well suited to address this problem.

Remark 1. Note that in practice, not all patterns may be possible in the
training and test sets. For instance, if there is only complete data in the
train set, the only submodel of interest is E [Y |o(X,m),M = m] for m =
(0, . . . , 0), which boils down to the regular supervised learning scenario on a
complete data. However, the train and test set are assumed to be drawn from
the same data distribution. Hence, we expect to observe similar patterns of
missingness in train and test sets. If this is not the case, it corresponds
to a distributional shift, and should be tackled with dedicated methods (see,
e.g., Sugiyama et al., 2017). This may happen for instance, when a study
conducted on past data led to operational recommendations, making the prac-
titioners measure systematically the variables of interest.
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4 Bayes-risk consistency of imputation procedures

In this section, we show theoretically that, without assuming any parametric
distribution for the data, single imputation procedures can lead to a Bayes-
optimal predictor in the presence of missing data on covariates (in both
train and test sets), i.e. they asymptotically target the function f̃?(X̃) =
E[Y |X̃]. We first focus on the risk of a predictor, consistent for the complete
data, computed on test data with missing values, using several imputation
strategies: unconditional mean, conditional mean and multiple imputation.
We then consider the full problem of tackling missing values in the train
and the test set. We study a classical approach, described in Section 3.1,
which consists first in imputing the training set, learning on the imputed
data, and predicting on a test set which has been imputed with the same
method. Although mean imputation of variables is one of the most widely
used approaches, it is highly criticised in the classic literature for missing
data (Little and Rubin, 2002). Indeed, it leads to a distortion of the data
distribution and consequently statistics calculated on the imputed data ta-
ble are biased. A simple example is the correlation coefficient between two
variables, which is biased towards zero if the missing data are imputed by
the mean. However, in a supervised learning setting the aim is not to com-
pute statistics representative of the data set, but to minimize a prediction
risk by estimating a regression function. For this purpose, we show in Sec-
tion 4.2 that mean imputation may be completely appropriate and leads to
consistent estimation of the prediction function. This result is remarkable
and extremely useful in practice.

4.1 Test-time imputation

Here we consider that we have an optimal (Bayes-consistent) predictor f for
the complete data, i.e. f(X) = E[Y |X], and we show that when there is
missing data in the test set, in MAR settings, multiple imputation with f
can give the optimal prediction, i.e. Bayes consistent for incomplete data.
In the case of MCAR values, i.e. where the complete data is a random
subsample from the sample, the function f can be obtained for instance by
“listwise deletion” in the train set: fitting a supervised learning procedure
on data for which the samples with missing data have been removed.

4.1.1 Test-time conditional multiple imputation is consistent

Let us first make explicit the multiple imputation procedure for prediction.
For a given vector x̃ ∈ (R ∪ {NA})d, we let m be the missing indicator and
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write xo = o(x,m) for observed values and xm the missing values. We then
draw the missing values Xm from their distribution conditional on Xo = xo
and compute the regression function on these completed observations. The
resulting multiple imputation function is given by:

f?mult imput(x̃) = EXm|Xo=xo
[f(Xm,xo)]. (5)

Note that this expression is similar to the expression Equation 2 given for
EM but assuming that we know the true nonparametric distribution of the
data.

Theorem 2. Consider the regression model

Y = f(X) + ε,

where X = (X1, . . . , Xd) takes values in Rd, for all subset S ⊂ {1, . . . , d},
(Mj)j∈S |= (Xj)j∈S conditional on (Xk)k∈Sc (MAR mechanism) and where
ε |= (M1, X1, . . . ,Md, Xd) is a centred noise. Then the multiple imputation
procedure, defined in (5), is consistent, that is, for all x̃ ∈ (R ∪ NA)d,

f?mult imput(x̃) = E[Y |X̃ = x̃].

The proof is given in Appendix A.

4.1.2 Single mean imputation is not consistent

Given the success of multiple imputation, it is worth checking that single
imputation is not sufficient. We show with two simple examples that indeed,
single imputation on the test set is not consistent even in MAR setting.
We first show, that (unconditional) mean imputation is not consistent, if
the learning algorithm has been trained on the complete cases only.

Example 1. In one dimension, consider the following simple example,

X1 ∼ U(0, 1), Y = X2
1 + ε, M1 ∼ B(1/2) |= (X1, Y ),

with ε an independent centered Gaussian noise. Here, E[Y |X1] = X2
1 , and

the regression function f̃?(X̃) = E[Y |X̃] satisfies

f̃?(X̃) = X2
1 · 1M1=0 + E[Y |X̃ = NA] · 1M1=1

= X2
1 · 1M1=0 + E[X2

1 ] · 1M1=1

= X2
1 · 1M1=0 + (1/3) · 1M1=1. (6)
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In the oracle setting where the distribution of (X1, Y,M1) is known, ”plug-
ging in” the mean imputation of X1 yields the prediction

fimputation(X̃) = X2
1 · 1M1=0 + (E[X1])2 · 1M1=1

= X2
1 · 1M1=0 + (1/4) · 1M1=1. (7)

In this example, mean imputation is not optimal: when X1 is missing, the
prediction obtained by mean imputation is 1/4, whereas the optimal predic-
tion (the one which minimizes the square loss) is 1/3 as seen in (6).
Inspecting (6) and (7) reveals that the poor performance of mean imputa-
tion are due to the fact that E[X2

1 ] 6= (E[X1])2. The non-linear relation
between Y and X1 breaks mean imputation. This highlights the fact that
the imputation method should be chosen in accordance with the learning
algorithm that will be applied later on. This is related to the concept of
congeniality (Meng, 1994) defined in multiple imputation.

4.1.3 Conditional mean imputation is consistent if there are de-
terministic relations between input variables

We now consider conditional mean imputation, using information of other
observed variables to impute. Conditional mean imputation may work in
situations where there is redundancy between variables, as highlighted in
Example 2. However, we give a simple example below stressing that using
it to impute the test may not be Bayes optimal.

Example 2. Consider the following regression problem with two identical
input variables:

X1 = X2 ∼ U([0, 1]), Y = X1 +X2
2 + ε, M2 ∼ B(1/2) |= (X1, X2, Y )

The Bayes-optimal predictor is then given by

f̃?(X̃) =

{
X1 +X2

2 if X̃2 6= NA

X1 + E[X2
2 |X̃2 = NA] if X̃2 = NA

=

{
X1 +X2

2 if X̃2 6= NA

X1 +X2
1 if X̃2 = NA

Imputation with the mean of X2 in this function leads to

fimputation(X̃) =

{
X1 +X2

2 if X̃2 6= NA

X1 + (1/4) if X̃2 = NA

15



whereas, imputing X2 by its mean conditional on X1 gives

fimputation using X1(X̃) =

{
X1 +X2

2 if X̃2 6= NA

X1 +X2
1 if X̃2 = NA

,

as (E[X2|X1])2 = X2
1 .

If there is no deterministic link between variables, conditional mean impu-
tation fails to recover the regression function, in the case where the regres-
sion function is not linear (see Example 2, where X1 = X2 is replaced by
X1 = X2 + ε).

4.1.4 Pathological case: missingness is a covariate

Example 3 shows a situation in which any imputation methods single or mul-
tiple fail, since missingness contains information about the response variable
Y .

Example 3. Consider the following regression model,

X1 ∼ U(0, 1) M1 ∼ B(1/2) |= X1 Y = X1 · 1M1=0 + 3X1 · 1M1=1 + ε.

Here,

E[Y |X1] = X1 · P(M1 = 0) + 3X1 · P(M1 = 1) = 2X1 .

Unconditional mean imputation prediction is given by

fimputation(X̃) = X1 · 1M1=0 + E[X1] · 1M1=1

= X1 · 1M1=0 + (1/2) · 1M1=1,

whereas, the regression function satisfies

f̃?(X̃) = X1 · 1M1=0 + 3E[X1|X̃ = NA] · 1M1=1

= X1 · 1M1=0 + (3/2) · 1M1=1.

In this case, the presence of missing values is informative in itself, and having
access to the complete data set (all values of X1) does not provide enough
information. Such scenario advocates for considering the missingness as an
additional input variable. Indeed, in such situation, single and multiple
imputation fail to recover the targeted regression function, without adding
a missingness indicator to the input variables.
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4.2 Mean imputation at train and test time is consistent

We now show that learning on the mean-imputed training data, imputing
the test set with the means (of the variables on the training data), and pre-
dicting is optimal if the missing data are MAR and if the learning algorithm
is consistent when trained on complete data only. Theorem 3 deals with
missing data on X1 only. In that scenario, for each observed x̃ ∈ R∪NA, the
imputed entry is defined as x′ = (x′1, x2, . . . , xd) where

x′1 = x11M1=0 + E[X1]1M1=1.

We need the following assumption.

Assumption 1 (Missingness pattern). The variables X2, . . . , Xd are fully
observed and the missingness pattern M1 on variable X1 satisfies M1 |= X1|X2,
. . . , Xd and is such that the function (x2, . . . , xd) 7→ P[M1 = 1|X2 = x2, . . . , Xd =
xd] is continuous.

Theorem 3. Consider the input vector X = (X1, . . . , Xd) which has a con-
tinuous density g > 0 on [0, 1]d , the response

Y = f(X) + ε

such that ‖f‖∞ < ∞. Assume that the missingness pattern satisfies As-
sumption 1 and that ε is a centered noise independent of (X,M1). If, after
mean imputation, one uses a learning algorithm that is universally consis-
tent when trained on any fully observed data set, then, the overall procedure
will predict, for all (possibly partially missing) entries x′ ∈ Rd,

f?impute(x
′) = E[Y |X2 = x2, . . . , Xd = xd,M1 = 1]1x′1=E[X1]1P[M1=1|X2=x2,...,Xd=xd]>0

+ E[Y |X = x′]1x′1=E[X1]1P[M1=1|X2=x2,...,Xd=xd]=0

+ E[Y |X = x′,M1 = 0]1x′1 6=E[X1].

Letting

X̃ =

{
X′ if X ′1 6= E[X1]

(NA, X2, . . . , Xd) if X ′1 = E[X1]
,

the mean imputation prediction is equal to the Bayes function almost every-
where, that is

f?impute(X
′) = f̃?(X̃). (8)
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The proof is given in Appendix A. Theorem 3 confirms that it is preferable
to use the same imputation for the train and the test set. Indeed, the
learning algorithm can learn the imputed value (here the mean) and use that
information to detect that the entry was initially missing. If the imputed
value changes from train set to test set (for example, if instead of imputing
the test set with the mean of the variables of the train set, one imputes by
the mean of the variables on the test set), the learning algorithm may fail,
since the imputed data distribution would differ between train and test sets.

Note that the precise imputed value does not matter if the learning algorithm
is consistent when trained on fully observed data. By default, the mean is
not a bad choice even if it only preserves the first order statistic (mean)
of the sample. Theorem 3 remains valid when missing values occur for
variablesX1, . . . , Xj under the assumption that (M1, . . . ,Mj) |= (X1, . . . , Xj)
conditional on (Xj+1, . . . , Xd) and if for every pattern m ∈ {0, 1}j×{0}d−j ,
the functions (xj+1, . . . , xd) 7→ P[M = m|Xj+1 = xj+1, . . . , Xd = xd] are
continuous.

Almost everywhere consistency. Note that the equality between the
mean imputation learner and the Bayes function holds almost surely but not
for every x̃. Indeed, under the setting of Theorem 3, let x̃ = (E[X1], x2, . . . , xd),
for any x2, . . . , xd ∈ [0, 1] such that

P[M1 = 1|X2 = x2, . . . , Xd = xd] > 0.

In this case, x′ = (E[X1], x2, . . . , xd) and

f?impute(x
′) = E[Y |X2 = x2, . . . ,Xd = xd,M1 = 1],

which is different, in general, from

f̃?(x̃) = E[Y |X1 = E[X1], X2 = x2, . . . , Xd = xd].

Therefore, on the event A1 = {X̃, X̃1 = E[X1]}, the two functions f?impute
and f̃? differ. Since A1 is a zero probability event, the equality f?impute(X

′) =

f̃?(X̃) does not hold pointwise (as shown above) but hold almost everywhere
(as stated in Theorem 3). However, a simple way to obtain the pointwise
equality in equation (8) is to impute missing data by values that are out of
the range of the true distribution, which echoes the ”separate class” method
advocated by Ding and Simonoff (2010).
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5 Decision trees: an example of empirical risk min-
imization with missing data

Decision trees offer a natural way for empirical risk minimization with miss-
ing values. This is in part due to their ability to handle the half-discrete
nature of X̃.

We first present the different approaches available to handle missing values
in tree-based methods in Sections 5.2 and 5.3. We then compare them
theoretically in Section 5.4 and showing the interest of using the “missing
incorporated in attribute” approach whether the missing values are MCAR
or informative.

5.1 Tree construction with CART

The algorithm CART (Classification And Regression Trees, Breiman et al.
1984) is one of the most popular tree algorithm, originally designed for
complete data sets. Each leaf of the tree defines an interval on each variable
A =

∏d
j=1[aj,L, aj,R] ⊂ Rd. OnA, the algorithm finds the best split (j?, z?) ∈

S, where a split is defined by the choice of a feature j along which the split is
performed and the position z of the split. Writing S = {(j, z), j ∈ J1, dK, z ∈
R, zj ∈ [aj,L, aj,R]} the set of all possible splits in the cell A, the best split
is defined as the solution of the following optimization problem

(j?, z?) ∈ argmin
(j,z)∈S

E
[(
Y − E[Y |Xj ≤ z,X ∈ A]

)2 · 1Xj≤z,X∈A

+
(
Y − E[Y |Xj > z,X ∈ A]

)2 · 1Xj>z,X∈A

]
. (9)

For each cell A, the problem (9) can be rewritten as

f? ∈ argmin
f∈Pc

E
[(
Y − f(X)

)2
1X∈A

]
, (10)

where Pc is the set of piecewise-constant functions on A ∩ {xj ≤ s} and
A∩{xj > s} for (j, s) ∈ S. Therefore the optimization problem (10) amounts
to solving a least square problem on the subclass of functions Pc. Thus,
by minimizing the mean squared error, the CART procedure targets the
quantity E[Y |X]. In the presence of missing values, this criterion must be
adapted and several ways to do so have been proposed, as detailed below.
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5.2 Splitting criterion discarding missing values

The most popular option is to select the split only on the available cases for
each variable:

(j?, z?) ∈ argmin
(j,z)∈S

C(j, s), (11)

where C(j, s) =E
[(
Y − E[Y |Xj ≤ z,X ∈ A,Mj = 0]

)2 · 1Xj≤z,X∈A,Mj=0

+
(
Y − E[Y |Xj > z,X ∈ A,Mj = 0]

)2 · 1Xj>z,X∈A,Mj=0

]
.

As the missing values were not used to construct the criterion, it is still
necessary to specify to which cell they are sent. Indeed, the solution of
discarding missing data at each step would lead to a drastic reduction of the
data set. The different methods to propagate missing data down the tree
are detailed below.

Surrogate splits Once the best split is chosen, surrogate splits search
for a split on another variable that induces a data partition close to the
original one. More precisely, let (j?0 , z

?
0) be the selected split. To send

down the tree observations with no j?0th variable, a new stump, i.e., a tree
with one cut, is fitted to the response 1Xj?0

≤z?0 , using variables (Xj)j 6=j?0 .

The split (j?1 , z
?
1) which minimizes the misclassification error is selected,

and observations are split accordingly. Those that lack both variables j?0
and j?1 are split with the second best, j?2 , and so on until the proposed
split has a worse misclassification error than the blind rule of sending all
remaining missing values to the same daughter, the most populated one. In
the predicting phase, the training surrogates are kept. They are the default
method in the rpart implementation (Therneau et al., 1997). Surrogate
method is expected to be appropriate when there are relationship between
the covariates.

Probabilistic splits Another possibility is to propagate missing obser-
vations according to a Bernoulli distribution B( #L

#L+#R), where #L (resp.
#R) is the number of points already on the left (resp. right). This is the
default method in the C4.5 algorithm (Quinlan, 2014).

Block propagation The third choice is to send all incomplete observa-
tions as a block, to a side chosen by minimizing the error. This is the method
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in XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke et al., 2017).

Note that Hothorn et al. (2006) proposed conditional trees, which adapt the
criterion (11) to missing values. Indeed, this criterion implies a selection
bias: it leads to underselecting the variables with many missing values due
to the multiple comparison effects (Strobl et al., 2007). As a result, it
favors variables where many splits are available, and therefore those with
fewer missing values. Conditional trees are based on the calculation of a
linear statistic of association between Y and each feature Xj , T = 〈Xj , Y 〉
on the observed feature. Then, its distribution under the null hypothesis
of independence between Y and Xj is estimated by permutation and the
variable with the smallest p-value is selected. Note that the improvement,
illustrated in Appendix B.1, is meant to be on the selection of the variables
but does not ensure that it improves the prediction performance. Once the
variables have been selected, Hothorn et al. (2006) use surrogate splits to
propagate the missing entries. One potential drawback of this approach is
the use of a linear statistic for association.

5.3 Splitting criterion with missing values: MIA

The second important class of methods uses missing values to compute the
criterion for each split and thus best split location. Its most common in-
stance is “missing incorporated in attribute” (MIA, Twala et al. 2008). More
specifically, MIA selects

f? ∈ argmin
f∈Pc,miss

E
[(
Y − f(X̃)

)2
1
X̃∈A

]
, (12)

where Pc,miss = Pc,miss,L ∪ Pc,miss,R ∪ Pc,miss,sep with

• Pc,miss,L is the set of all functions piecewise constant on a partition of

the form {{X̃j ≤ z ∨ X̃j = NA}, {X̃j > z}}, for any z ∈ R, j ∈ J1, dK}.

• Pc,miss,R is the set of all functions piecewise constant on a partition of

the form {{X̃j ≤ z}, {X̃j > z ∨ X̃j = NA}}, for any z ∈ R, j ∈ J1, dK}.

• Pc,miss,sep is the set of all functions piecewise constant on a partition

of the form {{X̃j 6= NA}, {X̃j = NA}}, for any j ∈ J1, dK}.

This means that the missing values are treated like a category by the algo-
rithm, they are simply distinct from real numbers which is appropriate to
handle the space R ∪ NA. It is a greedy algorithm to minimize a square loss
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between Y and a function of X̃ and consequently targets the quantity (4)
which separate E[Y |X̃] into 2d terms. However, it is not exhaustive: at each
step, the tree can cut for each variable according to missing or non missing
and selects this cut when it is relevant, i.e. when it minimizes the prediction
error. The final leaves can correspond to a cluster of missing values patterns
(observations with missing values on the two first variables for instance and
any missing patterns for the other variables). MIA is thought to be a good
method to apply when missing pattern is informative, as this procedure al-
lows to cut with respect to missing/ non missing and uses missing data to
compute the best splits. Note this latter property implies that the MIA ap-
proach does not require a different method to propagate missing data down
the tree.

Remark 2. Implicit imputation: Whether it is in the case where the missing
values are propagated in the available case method (Section 5.2), or incor-
porated in the split choice in MIA, missing values are assigned either to the
left or the right interval. Consequently, handling missing values in a tree
can be seen as implicit imputation by an interval.

5.4 Theoretical comparison of CART versus MIA

We now compare theoretically the positions of the splitting point at the root
and the prediction errors on simple examples with MCAR values. Proposi-
tion 1 computes the splitting position of MIA and CART, and highlights
that the splitting position of MIA varies even for MCAR missing data.
Proposition 2 then compares the risk of the different splitting strategies:
probabilistic split, block propagation, surrogate split, and MIA. We prove
that MIA and surrogate splits are the two best strategies, one of which
may be better than the other depending on the dependence structure of
covariables.

Proposition 1. Let p ∈ [0, 1]. Consider the regression model{
Y = X1

X1 ∼ U([0, 1])
,

{
P[M1 = 0] = 1− p
P[M1 = 1] = p

,

where M1 |= (X1, Y ) is the missingness pattern on X1. Let CMIA(j, s, q, p) be
the value of the splitting MIA criterion computed at (1, s) ∈ S, q ∈ {L,R},
where q stands for the side where missing values are sent. Therefore,

1. The best split s? given by the CART criterion (11) is s? = 1/2.
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2. The best splits s?MIA,L(p) and s?MIA,R(p) given by the MIA criterion
(12), assuming that all missing values are sent to the left node (resp.
to the right node), satisfy

s?MIA,L(p) = argmin
s∈[0,1]

CMIA(1, s,L, p), (13)

where

CMIA(1, s,L, p) =
1

3
− 1

p+ (1− p)s

(p
2

+
(1− p)s2

2

)2
− (1− p)(1− s)

(1 + s

2

)2
,

and s?MIA,R(p) = 1− s?MIA,L(p).

The proof is given in Appendix A. Proposition 1 shows that the split given
by optimizing the CART criterion does not depend on the percentage p
of missing values since the pattern is independent of (X,Y ). A numerical
solution to equation (13) is displayed in Figure 1. When there are no missing
values (p = 0), the split occur at s = 1/2 as expected. When p increases, the
threshold does not correspond anymore to the one calculated using observed
values only as it is influenced by the missing entries even in the MCAR
setting. Indeed, with MIA the threshold is selected as the one minimizing
the prediction error. Hence MIA optimizes both the threshold and the side
of the split on which it sends all the missing entries such that the prediction
error is the smallest. This is important as it allows to propagate a new
observation in the test set with missing values.

Recall that the quadratic risk R of a function f? is defined as R(f?) =
E[(Y −f?(X))2]. Proposition 2 enables us to compare the risk of a single split
performed with the different strategies. It highlights that even in the simple
case of MCAR, MIA gives more accurate predictions than block propagation
or probabilistic split.

Figure 1: s?MIA, the split chosen by
the MIA criterion, as a function of the
fraction p of missing values on X1, as-
suming values are sent left.
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Proposition 2. Consider the regression model
Y = X1

X1 ∼ U([0, 1])
X2 = X11W=1

,

{
P[W = 0] = η
P[W = 1] = 1− η ,

{
P[M1 = 0] = 1− p
P[M1 = 1] = p,

,

where (M1,W ) |= (X1, Y ). The random variable M1 is the pattern of miss-
ingness for X1 and W stands for the link between X1 and X2. Let f?MIA,
f?block, f

?
prob, f

?
surr be respectively, the theoretical prediction resulting from one

split according to MIA, CART with block propagation and CART with prob-
abilistic splitting strategy, and a single split, where missing data are handled
via surrogate split (in the infinite sample setting). We have

R(f?MIA) = min
s∈[0,1]

CMIA(1, s,L, p)1p≤1−η + min
s∈[0,1]

CMIA(1, s,L, 1− η)1p>1−η,

R(f?block) = CMIA(p, 1/2)

R(f?prob) = −p
2

16
+
p

8
+

1

48
,

R(f?surr) =
1

48
+

6

48
ηp.

where CMIA(1, s,L, p) is defined in Proposition 1. In particular,

R(f?MIA) ≤ R(f?block) and R(f?MIA) ≤ R(f?prob).

Proof is given in Appendix A.

Figure 2 depicts the risk of each estimate, in the context of proposition 2,
resulting from a split computed via one of the four methods described above.
Only surrogate and MIA risks depend on the value η which measures the
independence between X1 and X2. As proved, the risk of probabilistic split
and block propagation is larger than that of MIA. Besides, surrogate split
is better than MIA if the link between X1 and X2 is strong (small values of
η) and worse if this link is weak (high values of η).

6 Simulations

This section illustrates experimentally the take-home messages of the article.
The code for these experiments is available online1. First, mean imputation
can be appropriate and is consistent in a supervised learning setting when

1https://github.com/nprost/supervised_missing
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Figure 2: Theoretical risk of the four splitting methods in function of p, for
three values of η parameter that controls the amount of coupling between
X1 and X2 in the model of Proposition 2.

missing values are MAR and not related to the outcome. Second, tree-
based methods are an efficient way to target f̃?(X̃) = E[Y |X̃] especially
when using MIA (Section 5.3) and can handle well informative pattern of
missing values. While Proposition 2 compares the risk of the tree methods
for a single split, simulations allow us to study grown trees.

We compare imputation methods, using the “proper way” to impute as
described in Section 3.1, i.e., where imputation values from the training set
are used to impute the test set.

In addition, we consider imputation with the missing indicator M in the
features. The rationale behind this indicator is that it can be useful to
improve the prediction when going beyond the hypothesis of Theorem 3, i.e.
considering a finite sample, a learning algorithm with a low approximation
capacity (as linear regression) and with missing values that can either be
MNAR or depend on Y .

6.1 Simulation setting

We consider three regression models, with covariates (X1, . . . , Xd) distributed
as N (µ,Σ) with µ = 1d and Σ = ρ11T + (1 − ρ)Id. The first model is
quadratic, the second one is linear, and the third one has been used as a
benchmark for tree methods by several authors, including Friedman (1991)
and Breiman (1996). We also consider a last regression model where the
relationship between covariables are nonlinear. In all four models, ε is a
centered gaussian noise with standard deviation 0.1, which makes it propor-
tionally smaller in model 4 than in the others.

Model 1 (Quadratic). Y = X2
1 + ε
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Model 2 (Linear). Y = Xβ+ε with β = (1, 2,−1, 3,−0.5,−1, 0.3, 1.7, 0.4,−0.3).

Model 3 (Friedman). Y = 10 sin(πX1X2)+20(X3−0.5)2 +10X4 +5X5 +ε

Model 4 (Friedman, Nonlinear). Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 +
10X4 + 5X5 + ε where X is a hidden uniform variable on [−3, 0] and the
covariates (X1, . . . , Xd) are distributed as

X1 = X2 + ε1

X2 = sin(X) + ε2

X3 = tanh(X) exp(X) sin(X) + ε3

X4 = sin(X − 1) + cos(X − 3)3 + ε4

X5 = (1−X)3 + ε5


X6 =

√
sin(X2) + 2 + ε6

X7 = X − 3 + ε7

X8 = (1−X) sin(X) cosh(X) + ε8

X9 = 1
sin(2X)−2 + ε9

X10 = X4 + ε10

,

where εi are independent centered Gaussian with standard deviation 0.05.

In the first experiment, we use Model 1 with d = 3 and introduce missing
values on X1 according to the following mechanisms. Results are depicted
in Figure 3.

Missing Pattern 1 (MCAR). For p ∈ [0, 1] the missingness is generated
according to a Bernoulli distribution

∀i ∈ J1, nK,Mi,1 ∼ B(p).

Missing Pattern 2 (Censoring MNAR). A direct way to select a proportion
p of missing values on a variable, that depends on the underlying value, is
to crop them above the 1− p-th quantile

∀i ∈ J1, nK,Mi,1 = 1Xi,1>[X1](1−p)n
.

Missing Pattern 3 (Predictive missingness). Last, we can consider a
pattern mixture model, letting M1 be part of the regression function, with
M1 |= X and

Y = X2
1 + 3M1 + ε.

In the second experiment, the other three models are used with d = 10,
with a MCAR mechanism on all variables. Results are shown in Figure 4.
We compare the following methods using implementation in the R (R Core
Team, 2018) software and default values for the tuning parameters. We run
a first comparison with decision trees, a second with random forests, and a
third with gradient boosting. Indeed, while we have mostly covered single
decision trees in this paper, their aggregation into boosting or random forests

26



is much more powerful in practice. Unless stated otherwise, the package used
for decision trees is rpart (Therneau and Atkinson, 2018), the package used
for random forests is ranger (Wright and Ziegler, 2015) and for gradient
boosting XGBoost (Chen and Guestrin, 2016). Note that we have used
surrogate splits only with single decision trees.

• MIA: missing in attributes, implemented as described in Remark 3

• block: block propagation, implemented only in XGBoost (Chen and
Guestrin, 2016)

• rpart+mask/ rpart: CART with surrogate splits, with or without the
indicator M in the covariates

• ctree+mask/ ctree: conditional trees, implemented in package par-
tykit (Hothorn and Zeileis, 2015) with or without the indicator M in the
covariates

• impute mean+mask/ impute mean: CART when missing values are
imputed by unconditional mean with or without the indicator M added
in the covariates

• impute Gaussian: CART when missing values are imputed by con-
ditional expectation when data are assume to follow a Gaussian mul-
tivariate distribution. More precisely, the parameters of the Gaussian
distribution are estimated with an EM algorithm (R package norm (Fox,
2013)). Note that for numerical reasons, we shrink the estimated covari-
ance matrix (replacing Σ̂ by 0.99× Σ̂ + 0.01× tr(Σ̂)Id) before imputing.

To train and evaluate the performance of the methods, we decompose the
observations into a training set (80%) and testing set (20%), and repeat the
process 500 times. The metric is the percentage of explained variance (i.e.
the R2 statistic) computed on the test set. For visual purposes, we display
the relative explained variance: for each of the 500 repetitions separately,
we center the scores of all the methods by substracting the mean. This is
also done separately for trees, forests, boosting.

Remark 3. From a practical point of view, a simple way to implement MIA
consists in duplicating the incomplete columns, and replacing the missing
entries once by +∞ and once by −∞ (or an extreme out-of-range value).
This creates two dummy variables for each original one containing missing
values. Splitting along a variable and sending all missing data to the left (for
example) is the same as splitting along the corresponding dummy variable
where missing entries have been completed by −∞.
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6.2 Results

Figure 3 presents the results for one choice of correlation between covariables
and percentage of missing entries, as others give similar interpretation.

In the MCAR case, all decision tree methods behave in the same way. Hav-
ing previously performed a “good” imputation, i.e. one that captures the
relationships between variables such as impute Gaussian in relation to mean
imputation, slightly helps prediction. This is all the most true as the corre-
lation between variables increases, which we have not displayed.

When the pattern is more complex (MNAR or predictive missingness), there
are clear differences between methods. As expected, MIA achieves excellent
performance, together with the other methods that code for missing values
by adding the mask. The classic versions of rpart and ctree (cut-off on ob-
served data and surrogate split) are not sufficient and need the addition of
the mask. What is perhaps remarkable is that mean imputation with rpart
still has excellent performances. Boosting exhibits the same behaviour as
single decision trees. For random forests however mean imputation under-
performs without the addition of a mask.

Figure 4 compares the results for different datasets with values missing com-

XGBOOST

RANDOM FOREST

DECISION TREE

−0.2 −0.1 0 +0.1

−0.05 −0.025 0 +0.025

−0.3 −0.2 −0.1 0 +0.1 +0.2
0. MIA

2. impute mean

+ mask3. impute mean4. impute Gaussian

+ mask5. impute Gaussian6. rpart (surrogates)

+ mask7. rpart (surrogates)8. ctree (surrogates)

+ mask9. ctree (surrogates)

0. MIA
2. impute mean

+ mask3. impute mean4. impute Gaussian

+ mask5. impute Gaussian

0. MIA
1. block2. impute mean

+ mask3. impute mean4. impute Gaussian

+ mask5. impute Gaussian

Relative explained variance

XGBOOST
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−0.5 −0.25 0 +0.25
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Relative explained variance
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−0.4 −0.2 0 +0.2

−0.2 −0.1 0 +0.1

−0.4 −0.2 0 +0.2

Relative explained variance

MCAR MNAR Predictive M

Figure 3: Relative scores on model 1 • Relative explained variance for
different mechanisms with 20% of missing values, n = 1000, d = 3 and
ρ = 0.5.
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pletely at random. The non-linearity does not seem to hinder the Gaussian
imputation, as it performs better than mean imputation and MIA in most
cases. All in all, MIA proves to be a strong option in all the scenarios that
we have experimented, although Gaussian imputation with the mask is al-
ways equally good, and better in some cases. In these experiments, MIA
and block propagation give similar results.

6.3 Consistency

In the third experiment, we compare the methods of Section 6.1 varying
sample size to assess their asymptotic performances, on models 2, 3 and 4.
We wish to compare the tree performance with respect to the Bayes risk.
For each sample size (between 300 and 105), we summarize 200 repetitions
by their median and quartiles (as in the boxplots). Assuming MCAR, the
Bayes estimator is the expectation of Y conditionally to the observed values,

E[Y |X̃] = E[f(X)|X̃] = E[f(X)|o(X,M)].

It has an easy closed expression only if the joint distribution of (X, Y ) is
Gaussian. To compute an approximate Bayes rate for a nonlinear regression
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+ mask7. rpart (surrogates)8. ctree (surrogates)

+ mask9. ctree (surrogates)

0. MIA
2. impute mean

+ mask3. impute mean4. impute Gaussian

+ mask5. impute Gaussian

0. MIA
1. block2. impute mean

+ mask3. impute mean4. impute Gaussian

+ mask5. impute Gaussian

Relative explained variance
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−0.001 0 +0.001

Relative explained variance

MCAR: Model 2 (linear) Model 3 (Friedman) Model 4 (nonlinear)

Figure 4: Relative scores on different models in MCAR • Relative
explained variance for models 2, 3, 4, MCAR with 20% of missing values,
n = 1000, d = 10 and ρ = 0.5.
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with Gaussian features, we apply joint Gaussian multiple imputation, as
justified in Section 4.1.1, on a very large sample. For the third case scenario
where the features are not Gaussian, we have not computed the Bayes rate.

In linear settings, Figure 5 (left) shows that impute Gaussian benefits from
correlations between features and is the best-performing method; For deci-
sion trees and forests, mean imputation, MIA and surrogate splits are also
consistent but with a slower convergence rate (we have not displayed con-

103 104 105

Sample size

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

ai
ne

d 
va

ria
nc

e

Linear problem
(high noise)

103 104 105

Sample size

0.3

0.4

0.5

0.6

0.7

0.8
Ex

pl
ai

ne
d 

va
ria

nc
e

Friedman problem
(high noise)

103 104 105

Sample size

0.7

0.8

0.9

1.0

Ex
pl

ai
ne

d 
va

ria
nc

e

Non-linear problem
(low noise)

D
ECISIO

N
 TREE

103 104 105

Sample size

0.70

0.75

0.80

Ex
pl

ai
ne

d 
va

ria
nc

e

103 104 105

Sample size

0.55

0.60

0.65

0.70

0.75

Ex
pl

ai
ne

d 
va

ria
nc

e

103 104 105

Sample size

0.96

0.97

0.98

0.99

1.00
Ex

pl
ai

ne
d 

va
ria

nc
e RAN

D
O

M
 FO

REST

103 104 105

Sample size

0.65

0.70

0.75

0.80

Ex
pl

ai
ne

d 
va

ria
nc

e

103 104 105

Sample size

0.60

0.65

0.70

0.75

Ex
pl

ai
ne

d 
va

ria
nc

e

103 104 105

Sample size

0.96

0.97

0.98

0.99

1.00

Ex
pl

ai
ne

d 
va

ria
nc

e

XG
BO

O
ST

Surrogates (rpart)
Mean imputation

Gaussian imputation
MIA

Bayes rate
Block (XGBoost)

Figure 5: Bayes consistency in MCAR • Consistency with 40% of
MCAR values on all variables, on models 2 (linear), 3 (Friedman), 4 (non-
linear). Note that on the last row, the lines for MIA and block almost
overlap.
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ditional trees as they exhibit the same behaviour as rpart with surrogate
splits). Adding the indicator matrix in the data changes almost nothing
here, so we have not displayed the corresponding curves. For non-linear
associations (Figure 5, middle and right), the benefit brought by Gaussian
imputation over the others methods seems to carry over though it is less pro-
nounced for random forests and boosting. For low-noise settings (Figure 5,
right) MIA and mean imputation seem equivalent.

For boosting, the difference between methods vanishes with large n, as can
be expected from boosting’s ability to turn weak learners into strong ones
(Schapire, 1990). Gaussian imputation is still beneficial for small sample
sizes. Here again, block propagation overlaps with MIA, showing equally
good performances for all sample sizes. Block propagation is interesting
from a practical point of view, because it is implemented in computationally-
efficient way in XGBoost and LightGBM. Here it performs well empirically,
but proposition 2 and Figure 2 show that it can underperform compared
to MIA for strongly coupled variables. Note that MIA can easily be imple-
mented as a preprocessing step, as detailed in remark 3.

7 Discussion and conclusion

We have studied procedures for supervised learning with missing data. Un-
like in the classic missing data literature, the goal of the procedures is to
yield the best possible prediction on test data with missing values. Our
theoretical and empirical results outline simple practical recommendations:

• Given a model suitable for the fully observed data, good prediction can
be achieved on a test set by multiple imputation of its missing values
with a conditional imputation model fit on the train set (Theorem 2).

• To train and test on data with missing values, the same imputation model
should be used. Single mean imputation is consistent, provided a power-
ful, non-linear model (Theorem 3).

• For tree-based models, a good solution for missing values is Missing In-
corporated in Attribute (MIA, Twala et al. 2008, see implementation
Remark 3), which optimizes not only the split but also the handling of
the missing values (Proposition 2 and experimental results). Experiments
show that block propagation can also be a good option.

• Empirically, good imputation methods applied at train and test time re-
duce the number of samples required to reach good prediction (Figure 5).

• When missingness is related to the prediction target, imputation does
not suffice and it is useful to add indicator variables of missing entries as
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features (Example 3 and Figure 3).

These recommendations hold to minimize the prediction error in an asymp-
totic regime. More work is needed to establish theoretical results in the
finite sample regime. In addition, different practices may be needed to also
control for the uncertainty associated to a prediction.
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A Proofs

A.1 Proof of Theorem 2

Proof of Theorem 2: consistency of test-time conditional multiple imputation.
Let x̃ ∈ (R ∪ NA)d. Without loss of generality, assume that only x̃1, . . . , x̃j
are equal to NA, for some j ∈ {1, . . . , d}. Let gx̃j+1,...,x̃d be the distribution

of (X1, . . . , Xj) conditional on the event {X̃j+1 = x̃j+1, . . . , X̃d = x̃d}.
Let (X̂1, . . . , X̂j) be a random vector with distribution gx̃j+1,...,x̃d . By defi-
nition, the multiple imputation prediction described in Theorem 2 is given
by

f?mult imput(x̃) = EX̂1,...,X̂j
[f(X̂1, . . . , X̂j , x̃j+1, . . . , x̃d)]

= E[f(X̂1, . . . , X̂j , X̃j+1, . . . , X̃d)|X̃j+1 = x̃j+1, . . . , X̃d = x̃d]

= E[Y |X̃j+1 = x̃j+1, . . . , X̃d = x̃d], (14)

since Y = f(X) + ε, where ε |= (X,M). On the other hand, note that, since
the missing pattern is MAR,

E[Y |X̃ = x̃] = E[Y |X̃1 = NA, . . . , X̃j = NA, X̃j+1 = x̃j+1, . . . , X̃d = x̃d]

= E[Y |M1 = 1, . . . ,Mj = 1, X̃j+1 = x̃j+1, . . . , X̃d = x̃d]

= E[Y |X̃j+1 = x̃j+1, . . . , X̃d = x̃d]. (15)

Combining (14) and (15), we finally obtain

f?mult imput(x̃) = E[Y |X̃ = x̃].

A.2 Proof of Theorem 3

Proof of Theorem 3: consistency of mean imputation at train and test time.
Let x ∈ [0, 1]d such that x1 6= E[X1]. Thus, for 0 < h < |x1−E[X1]|, letting
B(x, h) be the euclidean ball centered at x of radius h,

E[Y |X′ ∈ B(x, h)] =
E[Y 1X′∈B(x,h)]

P[X′ ∈ B(x, h)]

=
E[Y 1X∈B(x,h)1M1=0]

P[X ∈ B(x, h),M1 = 0]

= E[Y |X ∈ B(x, h),M1 = 0] . (16)
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Taking the limit of (16) when h tends to zero,

E[Y |X′ = x] = lim
h→0

E[Y |X′ ∈ B(x, h)]

= E[Y |X = x,M1 = 0]. (17)

Now, let x ∈ [0, 1]d such that x1 = E[X1]. If P[M1 = 1|X2 = x2, . . . , Xd =
xd] = 0, then {X′ = x} = {X′ = x,M1 = 0} = {X = x}, and consequently,

E[Y |X′ = x] = E[Y |X = x]. (18)

Now, if P[M1 = 1|X2 = x2, . . . , Xd = xd] = η > 0, we have

P[X′ ∈ B(x, h)] = E[1X′∈B(x,h)1M1=0] + E[1X′∈B(x,h)1M1=1]

= E[1X∈B(x,h)1M1=0] + E[1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1],

and

E[f(X)1X′∈B(x,h)] = E[f(X)1X∈B(x,h)1M1=0]

+ E[f(X)1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1].

Therefore,

E[Y |X′ ∈ B(x, h)] =
E[f(X)1X′∈B(x,h)]

P[X′ ∈ B(x, h)]

=
E[f(X)1X∈B(x,h)1M1=0] + E[f(X)1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1]

E[1X∈B(x,h)1M1=0] + E[1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1]
.

(19)

The terms in (19) involving M1 = 0 satisfy

E[1X∈B(x,h)1M1=0] ≤ µ(B(x, h)) ≤ πd/2

Γ(d2 + 1)
‖g‖∞hd, (20)

and

|E[f(X)1X∈B(x,h)1M1=0]| ≤ E[|f(X)|1X∈B(x,h)]|

≤ πd/2

Γ(d2 + 1)
‖g‖∞‖f‖∞hd. (21)
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The second term of the denominator in (19) can be bounded from below,

E[1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1]

= E[1(X2,...,Xd)∈B((x2,...,xd),h)P[M1 = 1|X2, . . . , Xd]]

≥ π(d−1)/2

Γ(d−1
2 + 1)

(
inf

[0,1]d
g
)
hd−1η. (22)

The second term of the numerator in (19) verifies

E[f(X)1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1]

= E[1(X2,...,Xd)∈B((x2,...,xd),h)E[f(X)1M1=1|X2, . . . , Xd]]

= E[1(X2,...,Xd)∈B((x2,...,xd),h)E[f(X)|X2, . . . , Xd]E[1M1=1|X2, . . . , Xd]].

If E[f(X)|X2 = x2, . . . , Xd = xd] > 0, by uniform continuity of f and g,

E[1(X2,...,Xd)∈B((x2,...,xd),h)E[f(X)|X2, . . . , Xd]E[1M1=1|X2, . . . , Xd]]

≥ E[f(X)|X2 = x2, . . . , Xd = xd]
π(d−1)/2

Γ(d−1
2 + 1)

(
inf

[0,1]d
g
)
hd−1η.

Similarly, if E[f(X)|X2 = x2, . . . , Xd = xd] < 0, we have

E[1(X2,...,Xd)∈B((x2,...,xd),h)E[f(X)|X2, . . . , Xd]E[1M1=1|X2, . . . , Xd]]

≤ E[f(X)|X2 = x2, . . . , Xd = xd]
π(d−1)/2

Γ(d−1
2 + 1)

(
inf

[0,1]d
g
)
hd−1η

≤ 0.

Hence, if E[f(X)|X2 = x2, . . . , Xd = xd] 6= 0

|E[f(X)1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1]|

≥ |E[f(X)|X2 = x2, . . . , Xd = xd]|
π(d−1)/2

Γ(d−1
2 + 1)

(
inf

[0,1]d
g
)
hd−1η. (23)

Gathering inequalities (20)-(23) and using equation (19), we have, if E[f(X)|X2 =
x2, . . . , Xd = xd] 6= 0

lim
h→0

E[Y |X′ ∈ B(x, h)] = lim
h→0

E[f(X)1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1]

E[1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1]

= E[f(X)|X2 = x2, . . . , Xd = xd,M1 = 1].
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Finally, if E[f(X)|X2 = x2, . . . , Xd = xd] = 0 then by uniform continuity of
f , there exists εh such that εh → 0 as h→ 0 satisfying,

|E[f(X)1(X2,...,Xd)∈B((x2,...,xd),h)1M1=1]| ≤ εhhd−1 πd/2

Γ(d2 + 1)
‖g‖∞,

hence

lim
h→0

E[Y |X′ ∈ B(x, h)] = 0

= E[f(X)|X2 = x2, . . . , Xd = xd]

= E[f(X)|X2 = x2, . . . , Xd = xd,M1 = 1],

since M1 |= X1|(X2, . . . , Xd). Consequently, for all x ∈ [0, 1]d such that x1 =
E[X1],

lim
h→0

E[Y |X′ ∈ B(x, h)] = E[f(X)|X2 = x2, . . . , Xd = xd,M1 = 1]. (24)

Combining equations (17), (18) and (24), the prediction given by the mean
imputation followed by learning is, for all x′ ∈ Rd,

f?impute(x
′) = E[Y |X2 = x2, . . . , Xd = xd,M1 = 1]1x′1=E[X1]1P[M1=1|X2=x2,...,Xd=xd]>0

+ E[Y |X = x′]1x′1=E[X1]1P[M1=1|X2=x2,...,Xd=xd]=0

+ E[Y |X2 = x2, . . . , Xd = xd,M1 = 0]1x′1 6=E[X1],

which concludes the proof.

A.3 Proof of Proposition 1

Cart splitting criterion. Under the model given in Proposition 1, simple
calculations show that

E[Y |X ∈ [0, s]] =
s

2
, E[Y 2|X ∈ [0, s]] =

s2

3

E[Y |X ∈ [s, 1]] =
1 + s

2
, E[Y 2|X ∈ [s, 1]] =

1− s3

3(1− s)
P[X ∈ [0, s]] = s, P[X ∈ [s, 1]] = 1− s.

Thus the CART spltting criterion can be written as

C(1, s) = E[Y 2]− (P[X ∈ [0, s]](E[Y |X ∈ [0, s]])2 + P[X ∈ [s, 1]](E[Y |X ∈ [s, 1]])2)

=
1

3
−
(
s
(s

2

)2
+ (1− s)

(
1 + s

2

)2 )
=

s(s− 1)

4
+

1

12
.

40



By definition,

s? = argmin
s∈[0,1]

(
1

4
s(s− 1) +

1

12

)
= 1/2,

and the criterion evaluated in s = 1/2 is equal to 1/48. The calculations are
exactly the same when a percentage of missing value is added if M1 |= X1.

MIA splitting criterion. By symmetry, we can assume than missing
values are sent left. It is equivalent to observing

X ′ = 01M=1 +X1M=0.

The MIA splitting criterion is then defined as

s?MIA,L = argmin
s∈[0,1]

E
[(
Y − E[Y |X ′ ≤ s]1X′≤s − E[Y |X ′ > s]1X′>s

)2]
= argmin

s∈[0,1]
P(X ′ ≤ s)E

[(
Y − E[Y |X ′ ≤ s]

)2∣∣∣X ′ ≤ s]
+ P(X ′ > s)E

[(
Y − E[Y |X ′ > s]

)2∣∣∣X ′ > s
]
.

We have

E[Y |X ′ ∈ [0, s]] = E[X|X ′ ∈ [0, s]]

= E[X1M=1 +X1M=0|X ′ ∈ [0, s]]

=
1

P[X ′ ∈ [0, s]]
E[X1M=1,X′∈[0,s] +X1M=0,X′∈[0,s]]

=
1

p+ (1− p)s

(p
2

+
(1− p)s2

2

)
.

Besides,

E[Y 2|X ′ ∈ [0, s]] = E[X2|X ′ ∈ [0, s]]

= E[X21M=1 +X21M=0|X ′ ∈ [0, s]]

=
1

p+ (1− p)s
E[X21M=1,X′∈[0,s] +X21M=0,X′∈[0,s]]

=
1

p+ (1− p)s

(p
3

+
(1− p)s3

3

)
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Thus the left-part of the criterion is given by

P(X ′ ∈ [0, s])E[(Y − E[Y |X ′ ∈ [0, s]])2|X ′ ∈ [0, s]]

=
(
p+ (1− p)s

)(
E[Y 2|X ′ ∈ [0, s]]− (E[Y |X ′ ∈ [0, s]])2

)
=
(
p+ (1− p)s

)( 1

p+ (1− p)s

(p
3

+
(1− p)s3

3

)
−
( 1

p+ (1− p)s

(p
2

+
(1− p)s2

2

))2)
=
(p

3
+

(1− p)s3

3

)
− 1

p+ (1− p)s

(p
2

+
(1− p)s2

2

)2

On the other hand, we have

E[Y |X ′ ∈ [s, 1]] = E[X|X ′ ∈ [s, 1]]

= E[X1M=1 +X1M=0|X ′ ∈ [s, 1]]

=
1

(1− p)(1− s)
E[X1M=1,X′∈[s,1] +X1M=0,X′∈[s,1]]

=
1

(1− p)(1− s)

(
(1− p)1− s2

2

)
=

1 + s

2
.

Besides,

E[Y 2|X ′ ∈ [s, 1]] = E[X2|X ′ ∈ [s, 1]]

= E[X21M=1 +X21M=0|X ′ ∈ [s, 1]]

=
1

(1− p)(1− s)
E[X21M=1,X′∈[s,1] +X21M=0,X′∈[s,1]]

=
1

(1− p)(1− s)

(
(1− p)1− s3

3

)
=

1− s3

3(1− s)
.
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Thus the right-part of the criterion is given by

P(X ′ ∈ [s, 1])E[(Y − E[Y |X ′ ∈ [s, 1]])2|X ′ ∈ [s, 1]]

=
(

(1− p)(1− s)
)(

E[Y 2|X ′ ∈ [s, 1]]− (E[Y |X ′ ∈ [s, 1]])2
)

=
(

(1− p)(1− s)
)( 1− s3

3(1− s)
− (

1 + s

2
)2
)

= (1− p)1− s3

3
− (1− p)(1− s)

(1 + s

2

)2
.

Finally,

s?MIA,L = argmin
s∈[0,1]

{(p
3

+
(1− p)s3

3

)
− 1

p+ (1− p)s

(p
2

+
(1− p)s2

2

)2

+ (1− p)1− s3

3
− (1− p)(1− s)

(1 + s

2

)2
}
,

which concludes the proof.

A.4 Proof of proposition 2

Probabilistic and block propagation. First, note that the variable
X2 = X11W=1 is similar to the variable studied for the computation of
the MIA criterion in Proposition 1. Therefore, the value of the CART split-
ting criterion along the first variable is CMIA(1, 1/2,L, 0) and its value along
the second variable is CMIA(2, s?MIA,L,L, η). Since the function

α 7→ CMIA(·, s?MIA,L,L, α)

is increasing, splitting along the first variable leads to the largest variance
reduction. Thus, for probabilistic and block propagation, splits occur along
the first variable. Let us now compare the value of these criteria. We have

P[X1 ≤ 1/2] = P[X1 ≥ 1/2] = 1/2.

The quantities related to the left cell are given by

E[Y |X1 ≤ 1/2] =
p+ 1

4
and E[Y 2|X1 ≤ 1/2] =

p

4
+

1

12
.

43



The quantities related to the left cell are given by

E[Y |X1 ≥ 1/2] =
3− p

4
and E[Y 2|X1 ≥ 1/2] =

7

12
− p

4
.

Thus, the value of the criterion satisfies

R(f?prob) =
1

2

(p
4

+
1

12
−
(
p+ 1

4

)2 )
+

1

2

( 7

12
− p

4
−
(

3− p
4

)2 )
= −p

2

16
+
p

8
+

1

48
.

Let, for all p ∈ [0, 1],

h(p) = R(f?prob)−R(f?block)

= −p
2

16
+
p

8
+

1

48
−
(
−11

48
+

1

8

3p+ 2

2p+ 1

)
= −p

2

16
+
p

8
+

1

16
− 1

16

1

2p+ 1
.

We have,

h′(p) = −p
8

+
1

8
+

1

8(2p+ 1)2
,

and consequently,

h′′(p) = −1

8
− 1

2(2p+ 1)3
.

An inspection of the variation of h reveals that h(p) ≥ 0 for all p ∈ [0, 1],
which concludes the first part of the proof.

MIA. As noticed above, the criterion computed along the second variable
is given by

CMIA(2, s?MIA,L,L, η)

Since the function

α 7→ CMIA(·, s?MIA,L,L, α)
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is increasing, MIA split will occur along the first variable if p ≤ η and
along the second variable if p ≥ η. Therefore, the risk of the MIA splitting
procedure is given by

R(f?MIA) = min
s∈[0,1]

CMIA(1, s,L, p)1p≤η + min
s∈[0,1]

CMIA(1, s,L, η)1p>η.

Surrogate split. Consider the model Y = X1 and X2 = X11W=1, where
P[W = 0] = η. Let us determine the best split along X2 to predict Z =
1X1<0.5. Since {X2 ≤ s} = {X1 ≤ s,W = 1} ∪ {W = 0}, and {X2 > s} =
{X1 > s,W = 1},

P[X2 ≤ s] = s(1− p) + p and P[X2 > s] = (1− s)(1− p).

Consequently,

E[Z|X2 ≤ s] =
E[1X1≤0.5,X2≤s

P[X2 ≤ s]

=
1

s(1− p) + p
E[1X1≤0.5,X1≤s,W=1 + 1X1≤0.5,W=0]

=
1

s(1− p) + p

[
(1− p) min(0.5, s) +

p

2

]
.

E[Z|X2 ≥ s] =
E[1X1≤0.5,X2>s

P[X2 > s]

=
1

(1− s)(1− p)
P[X1 ≤ 0.5,W = 1, X1 ≥ s]

=
(0.5− s)+

1− s
.

Besides, note that E[Z2] = P[X1 ≤ 0.5] = 0.5. Therefore, the splitting
criterion to predict 1X1≤0.5 with X2 is given by

f(s) =
1

2
− P[X2 ≤ s](E[Z|X2 ≤ s])2 − P[X2 > s](E[Z|X2 > s])2

=
1

2
− 1

s(1− p) + p

(
(1− p) min(0.5, s) +

p

2

)2
− 1− p

1− s
((0.5− s)+)2.

For s ≥ 1/2,

h(s) =
1

2
− 1

4(s(1− p) + p)
,
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which is minimal for s = 1/2. For s ≤ 1/2,

h(s) =
1

2
− 1

4

(
p2

p+ s(1− p)
+

1− p
1− s

)
.

Hence,

h′(s) = −1− p
4

(1− 2p)s2 + 2ps

(1− s)2(s(1− p) + p)2
.

Let g(s) = (1 − 2p)s2 + 2ps. If p ≤ 1/2, the solutions of g(s) = 0 are
negative, thus, g(s) ≥ 0 for all s ∈ [0, 1/2] and thus the minimum of h is
reached at s = 1/2. If p ≥ 1/2, one solution of g(s) = 0 is zero and the other
is s = 2p/(2p− 1) > 1. Thus, g(s) ≥ 0 for all s ∈ [0, 1/2] and the minimum
of h is reached at s = 1/2. Finally, the minimum of h is reached at s = 1/2.
The risk of the surrogate estimate is then given by

R(f?surr) = E[(Y − f?surr(X))2]

= E[(Y − f?surr(X))21M1=1 + (Y − f?surr(X))21M1=1].

Here,

E[(Y − f?surr(X))2|M1 = 1]

= E[(X1 − 0.25)21X2<0.5 + (X1 − 0.75)21X2≥0.5]

= ηE[(X1 − 0.25)2] + (1− η)E[(X1 − 0.25)21X1≤0.5]

+ (1− η)E[(X1 − 0.75)21X1>0.5]

=
1

48
+

6η

48
.

Finally,

R(f?surr) =
1− p

48
+ p
( 1

48
+

6η

48

)
=

1

48
+

6

48
ηp.

B Miscellaneous

B.1 Variable selection properties of the tree methods with
missing values

Decision trees based on the CART criterion (implemented in the R library
rpart) and on conditional trees (implemented in the the R library partykit)
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lead to different ways of selecting splitting variables. We illustrate this
behaviour on the simple following model:


X1 |= X2 ∼ N (0, 1)

ε ∼ N (0, 1)
Y = 0.25X1 + ε.

We insert MCAR values, either on the first variable or on both variables.
Stumps (decision trees of depth one) are fit on 500 Monte-Carlo repetitions.
We vary the sample size and the percentage of missing values. Figure 6
show that CART and conditional trees give similar results when there are
missing values on both variables. However, Figure 7 shows that CART has
a tendency to underselect X1 when there are missing values only on X1.
For instance, for a sample of size 50 with 75% missing values, CART selects
the non-informative variable X2 more frequently than X1, while conditional
trees keep selecting X1 more often.

(a) CART (b) Conditional trees

Figure 6: Frequency of selection of X1 when there are missing values on X1

and X2

B.2 Example of EM algorithm

Let us consider a simple case of n observations (x1,x2) = (xi1, xi2)1≤i≤n
sampled from the distribution of (X1, X2), a bivariate Gaussian distribution
with parameters (µ,Σ). We assume that X2 is subjected to missing val-
ues and that only r values are observed. The aim is to get the maximum
likelihood estimates of (µ,Σ) from the incomplete data set. The algorithm
described below can be straightforwardly extended to the multivariate case.
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(a) CART (b) Conditional trees

Figure 7: Frequency of selection of X1 when there are missing values on X1

only

Note that from (µ̂, Σ̂), it is then possible to directly estimate the parame-
ters of a linear regression model and thus to perform linear regression with
missing values.
We denote by f1,2(x1,x2;µ,Σ), f1(x1;µ1, σ11) and f2|1(x2|x1;µ,Σ), respec-
tively, the probability of joint distribution of (X1, X2), marginal distribution
of X1 and conditional distribution of X2|X1. The joint distribution of ob-
served data can be decomposed as:

f1,2(x1,x2;µ,Σ) =

n∏
i=1

f1(xi1;µ1, σ11)

r∏
j=1

f2|1(xj2|xj1;µ,Σ),

and the observed log-likelihood is written (up to an additional constant that
does not appear in the maximization and that we therefore drop):

`(µ,Σ; x1,x2) = −n
2

log(σ2
11)− 1

2

n∑
i=1

(xi1 − µ1)2

σ2
11

− r

2
log

(
(σ22 −

σ2
12

σ11
)2

)

−1

2

r∑
i=1

(
xi2 − µ2 − σ12

σ11
(xi1 − µ1)

)2

(σ22 −
σ2
12
σ11

)2

We skip the computations and directly give the expression of the closed form
maximum likelihood estimates of the mean:

µ̂1 = n−1
n∑
i=1

xi1

48



µ̂2 = β̂20.1 + β̂21.1µ̂1,

where

β̂21.1 = s12/s11, β̂20.1 = x̄2 − β̂21.1x̄1,

x̄j = r−1
r∑
i=1

xij and sjk = r−1
r∑
i=1

(xij − x̄j)(xik − x̄k), j, k = 1, 2.

In this simple setting, we have an explicit expression of the maximum likeli-
hood estimator despite missing values. However, this is not always the case
but it is possible to use an EM algorithm to get the maximum likelihood
estimators in the cases where data are missing.
The EM algorithm consists in maximizing the observed likelihood through
successive maximization of the complete likelihood (if we had observed all
n realizations of x1 and x2). Maximizing the complete likelihood

`c(µ,Σ; x1,x2) = −n
2

log (det(Σ))− 1

2

n∑
i=1

(xi1 − µ1)TΣ−1(xi1 − µ1)

would be straightforward if we had all the observations. However elements
of this likelihood are not available. Therefore, we replace them by the con-
ditional expectation given observed data and the parameters of the current
iteration. These two steps of computation of the conditional expectation (E-
step) and maximization of the completed likelihood (M step) are repeated
until convergence. The update formulas for the E and M steps are as follows:
E step: The sufficient statistics of the likelihood are:

s1 =

n∑
i=1

xi1, s2 =

n∑
i=1

xi2, s11 =

n∑
i=1

x2
i1, s22 =

n∑
i=1

x2
i2, s12 =

n∑
i=1

xi1xi2.

Since some values of x2 are not available, we fill in the sufficient statistics
with:

E[xi2|xi1;µ,Σ] = β20.1 + β21.1xi1

E[x2
i2|xi1;µ,Σ] = (β20.1 + β21.1xi1)2 + σ22.1

E[xi2xi2|xi1;µ,Σ] = (β20.1 + β21.1xi1)xi1.

with, β21.1 = σ12/σ11, β20.1 = µ2 − β21.1µ1, and σ22.1 = σ22 − σ2
12/σ11.

M step: The M step consists in computing the maximum likelihood esti-
mates as usual. Given s1, s2, s11, s22, and s12, update µ̂ and σ̂ with

µ̂1 = s1/n, µ̂2 = s2/n,
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σ̂1 = s11/n− µ̂2
1, σ̂2 = s22/n− µ̂2

2, σ̂12 = s12/n− µ̂1µ̂2

Note that s1, s11, µ̂1 and σ̂1 are constant across iterations since we do not
have missing values on x1.

Remark 4. Note that EM imputes the sufficient statistics and not the data.
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