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Abstract In many application settings, data have missing entries, which makes

subsequent analyses challenging. An abundant literature addresses missing values

in an inferential framework, aiming at estimating parameters and their variance

from incomplete tables. Here, we consider supervised-learning settings: predicting

a target when missing values appear in both training and test data. We first rewrite

classic missing values results for this setting. We then show the consistency of two

approaches, test-time multiple imputation and single imputation in prediction. A

striking result is that the widely-used method of imputing with a constant prior

to learning is consistent when missing values are not informative. This contrasts

with inferential settings where mean imputation is frowned upon as it distorts the

distribution of the data. The consistency of such a popular simple approach is
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important in practice. Finally, to contrast procedures based on imputation prior

to learning with procedures that optimize the missing-value handling for predic-

tion, we consider decision trees. Indeed, decision trees are among the few methods

that can tackle empirical risk minimization with missing values, due to their abil-

ity to handle the half-discrete nature of incomplete variables. After comparing

empirically different missing values strategies in trees, we recommend using the

“missing incorporated in attribute” method as it can handle both non-informative

and informative missing values.

Keywords Bayes consistency, empirical risk minimization, decision trees, missing

values, imputation, missing incorporated in attribute

1 Introduction

As volumes of data increase, they are harder to curate and clean. They may come

from the aggregation of various sources (e.g. merging multiple databases) and con-

tain variables of different natures (e.g. different sensors). Such heterogeneous data

collections can lead to many missing values: samples only come with a fraction of

the features observed. Though there is a vast literature on treating missing values,

it focuses on estimating parameters and their variance in the presence of missing

values in a single data set. In contrast, there are few studies of supervised-learning

settings where the aim is to predict a target variable given input variables with

missing entries. These settings only require to use discriminative (or conditional)

models, compared to the first inferential frameworks, which often assume para-

metric data distributions (generative modelling). Besides, a predictive model is

applied on a test set, different from the training set, a separation seldom consid-

ered in inferential settings. Therefore, inference and prediction in the presence of

missing values are intrinsically two very different problems.

Beyond the aggregation of multiple sources, missing values can appear for a variety

of reasons. For sensor data, missing values can arise from device failure. Informative

missing values can be found for instance in poll data where participants may not
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answer sensitive questions related to unpopular opinions. In medical studies, some

measurements may be impractical on patients in a critical state, in which case

the presence of missing values can be related to the variable of interest, target of

the prediction (e.g. patient status). These various scenarios correspond to different

missing-value mechanisms.

The classical literature on missing values, led by Rubin [1976], defines missing-

values mechanisms based on the relationship between missingness and observed

values: if they are independent, the mechanism is said to be Missing Completely

At Random (MCAR); if the missingness only depends on the observed values,

then it is Missing At Random (MAR); otherwise it is Missing Not At Random

(MNAR). However, this nomenclature has seldom been discussed in the context

of supervised learning, accounting for the target variable of the prediction.

Many statistical methods tackle missing values [Josse and Reiter, 2018, Mayer

et al., 2022]. Listwise deletion, i.e. removing incomplete observations, may allow

to train the model on complete data. However, it may lead to the deletion of almost

all data especially in high dimension and may result in biased sample depending

on the missing values mechanism. In addition, it does not suffice for supervised

learning, as the test set may also contain incomplete data. Hence the prediction

procedure should handle missing values. A popular solution is to impute missing

values, that is to replace them with plausible values to produce a completed data

set. The benefit of imputation is that it adapts existing pipelines and software to

the presence of missing values. The widespread practice of imputing with the mean

of the variable on the observed entries has serious drawbacks in inferential settings,

as it distorts the joint and marginal distributions of the data which induces bi-

ased estimators [Little and Rubin, 2019]. Yet, few studies focus on the impact of

constant imputation in a predictive setting. Imputation itself must be revisited for

out-of-sample prediction settings: users resort to different strategies such as im-

puting separately the train and test sets or imputing them jointly. More elaborate

strategies rely on using maximum likelihood with expectation maximization (EM)
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to fit a model on incomplete data [Dempster et al., 1977, Little, 1992, Jiang et al.,

2019]. However, such techniques often rely on strong parametric assumptions. Al-

ternatively, some learning algorithms, such as decision trees, can readily handle

missing values, accounting for their discrete nature.

In this paper, we study the classic tools of missing values in the context of super-

vised learning. We start in Section 2 by setting the notations and briefly summariz-

ing the missing-value literature. Our first contribution, detailed in Section 3, is to

adapt the formalism for missing values to supervised learning: we show how to use

standard missing-values techniques to make predictions on a test set with missing

values. Section 4 presents our main contribution: studying the consistency of two

approaches to estimate the prediction function with missing values. The first the-

orem states that, given an optimal predictor for the completely-observed data, a

consistent procedure can be built by predicting on a test set where missing entries

are replaced by multiple imputation. The second theorem, which is the most strik-

ing and has important consequences in practice, shows that constant imputation

prior to learning is consistent for supervised learning. This is, as far as we know,

the first result justifying this very convenient practice of handling missing values.

In Section 5, we compare imputation to learning directly with missing values via

decision trees. Indeed, their greedy and discrete natures allow adapting them to

handle missing values directly. We compare the different tree methods (together

with classic machine learning approaches such as SVM or nearest neighbours) on

simulated data with missing values and recommend to use the “Missing incorpo-

rated in attributes” (MIA, Twala et al. 2008) approach, whose good predictive

performances have been highlighted by Kapelner and Bleich [2015], one of the few

studies of trees with missing values for supervised learning. Other experimental

works have shown that tree-based methods are competitive in terms of predictive

performances [see Jäger et al., 2021]. We also show the benefits for prediction

of an approach often used in practice, which consists in “adding the mask”, i.e.

adding binary variables that code for the missingness of each variables as new co-
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variates, even though this method is not recommended for parameter estimation

[Jones, 1996].

2 Definitions, problem setting, prior art

Notation. Throughout the paper, bold letters refer to vectors; CAPITAL letters

refer to random variables, while lower-case letters are realisations. In addition, as

usual, for any two variables A and B of joint density g,

g(b) := gB(b) :=

∫
g(α, b) dµ(α), g(a|b) := gA|B=b(a) :=

g(a, b)

g(b)
.

2.1 Supervised learning

Supervised learning is typically focused on learning to predict a target Y ∈ Y from

inputs X ∈ X =
⊗d

j=1 Xj , where the pair (X, Y ) is considered as random, drawn

from a distribution P . Formally, the goal is to find a function f : X → Y, that

minimizes E[ℓ(f(X), Y )] given a cost function ℓ : Y×Y → R, called the loss [Vapnik,

1999]. The best possible prediction function is known as the Bayes predictor, given

by

f⋆ ∈ argmin
f :X→Y

E [ℓ(f(X), Y )] , (1)

and its expected loss is the Bayes loss [Devroye et al., 2013]. A learning procedure is

used to create a function f based on a set of training pairs Dn,train = {(Xi, Yi), i =

1, . . . , n}. The function f is therefore itself a function of Dn,train, and can be written

f̂Dn,train
or simply f̂n. There are many different learning procedures, including

random forests [Breiman, 2001] or support vector machines [SVM, see Cortes and

Vapnik, 1995]. A learning procedure that, given an infinite amount of data, yields

a function that achieves the Bayes loss is said to be Bayes consistent. In other

words, f̂n is Bayes consistent if

lim
n→∞

E[ℓ(f̂n(X), Y )] = E[ℓ(f⋆(X), Y )].
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A learning procedure that is Bayes consistent for every distribution (X, Y ) is said

to be (Bayes) universally consistent. In a classification setting, Y is drawn from a

finite set of discrete values, and the cost ℓ is typically the zero-one loss: ℓ(Y1, Y2) =

1Y1 ̸=Y2
. In a regression setting, Y is drawn from continuous values in R and is

assumed to satisfy E[Y 2] < ∞. A common cost is then the square loss, ℓ(Y1, Y2) =

(Y1 − Y2)
2. Considering the zero-one loss [Rosasco et al., 2004] or the square loss

(see e.g. sec 1.5.5 of Bishop [2006]), the Bayes predictor f⋆, that minimizes the

expected loss, satisfies f⋆(X) = E[Y |X].

Note that the learning procedure has access to a finite sample Dn,train, and not to

the distribution P , hence it can only use the empirical risk,
∑

i=1...n ℓ(f(Xi), Y ),

rather than the expected risk. A typical learning procedure is therefore the empir-

ical risk minimization defined as the following optimization problem

f̂n ∈ argmin
f :X→Y

(
1

n

n∑
i=1

ℓ (f(Xi), Yi)

)
.

A new data set Dn,test is then needed to estimate the generalization error of the

resulting function f̂n.

2.2 Background on missing values

In this section, we introduce the classic work on missing values, including the

different missing-value mechanisms. We then summarize the main methods to

handle missing values: imputation and likelihood-based methods. Most of this prior

art to deal with missing values is based on a single data set with no distinction

between training and test set. One challenge in formalizing statistical learning

with missing values is adapting notations to describe precisely incomplete feature

vectors: notations not explicit enough have led to confusions [Seaman et al., 2013];

the literature is in flux [Little and Rubin, 2019, preface].

Notations for missing values In presence of missing values, we do not observe a

complete vector X. To define precisely the observed quantity, we introduce the
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missing indicator vector M ∈ {0, 1}d which satisfies, for all 1 ≤ j ≤ d, Mj = 1 if

and only if Xj is not observed. The random vector M acts as a mask on X. To

formalize incomplete observations, we use the incomplete feature vector X̃ (see

Rubin [1976], Rosenbaum and Rubin 1984, appendix B; Mohan and Pearl 2018,

Yoon et al. 2018) defined as X̃j = NA if Mj = 1, and X̃j = Xj otherwise. As X is

a cartesian product, X̃ belongs to the space X̃ =
⊗d

j=1(Xj ∪ {NA}). We have

X̃ = X⊙ (1−M) + NA⊙M,

where ⊙ is the term-by-term product, with the convention that, for all one-

dimensional x ̸= 0, NA · x = NA and NA · 0 = 0. As such, when the data are

real, X̃ can be seen as a mixed categorical and continuous variable, taking val-

ues in R ∪ {NA}. Here is an example of realizations (lower-case letters) of previous

random variables: for a given vector x = (1.1, 2.3,−3.1, 8, 5.27) with the missing

pattern m = (0, 1, 0, 0, 1), we have

x̃ = (1.1, NA, −3.1, 8, NA).

To write likelihoods (see Section 2.2.1), we must also introduce notations xobs(m)

and xmis(m), classic in the missing value literature. For any vector x, and any set

J ⊂ {1, . . . , d}, we let xJ be the subvector of x composed of the components of x

indexed by J . We also let |J | be the cardinal of J . For any vector m ∈ {0, 1}d,

we let obs(m) = {j ∈ {1, . . . , d},mj = 0} and mis(m) = {j ∈ {1, . . . , d},mj = 1}.

Hence xobs(m) ∈
⊗

j∈obs(m) Xj is composed of observed entries in x and xmis(m) ∈⊗
j∈mis(m) Xj contains the missing components in x. To shorten notations, we will

sometimes write xo (resp. xm) instead of xobs(m) (resp. xmis(m)). To continue the

above example, we have

xobs(m) = x(1,3,4) = (1.1, −3.1, 8), xmis(m) = x(2,5) = (2.3, 5.27).
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Given a vector x ∈
⊗d

j=1 Xj and a missingness pattern m, one can recompose x

based on xobs(m), xmis(m) andm by the ordering operator x = o(xobs(m),xmis(m);m).

Finally, we use the generic notation x̂ to denote x̃ in which missing values have

been imputed, based on any imputation procedure to be specified. For example, if

we impute the missing values by 0 in the previous example, we have

x̂ = (1.1, 0,−3.1, 8, 0).

Notations related to missing data are summarized in Table 1.

Notation Description

x ∈ X Complete input vector
y ∈ Y Complete output (always observed)

m ∈ {0, 1}d Missingness indicator vector

x̃ ∈
⊗d

j=1(Xj ∪ {NA}) Observed vector x where missing entries are writ-
ten as NA

xobs(m) ∈
⊗

j∈obs(m) Xj Subvector of x containing its observed compo-
nents

xmis(m) ∈
⊗

j∈mis(m) Xj Subvector of x containing its missing components

x = o(xobs(m),xmis(m);m) Complete vector x recreated by merging xobs(m)

and xmis(m) according to the missing pattern m

x̂ ∈ X Vector x for which missing entries have been im-
puted

Table 1: Notations and definitions used throughout the paper. Bold variables are
vectors

2.2.1 Missing data mechanisms

To follow the historical definitions which do not give to the response Y a particular

role, we temporarily consider Y as part of the input vector X, though we assume

that Y has no missing values. Rubin [1976] defines three missing data mechanisms

and fundamental results for working with likelihood models in the presence of

missing data. Let us consider that realizations (xi,mi) are sampled i.i.d. from a

distribution in P = {gθ(x)gϕ(m|x) : (θ, ϕ) ∈ Ωθ,ϕ} where Ωθ,ϕ ⊂ Θ×Φ is the joint

parameter space (marginally, θ ∈ Θ and ϕ ∈ Φ). The goal in statistical inference
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is to estimate the parameter θ. This is usually done by maximizing the likelihood

L(θ) =
∏n

i=1 gθ(xi), which is well defined when the xi are fully observed. Recall

that each xi can be decomposed into an observed vector xi,o and an unobserved

vector xi,m. Here, the likelihood is integrated over the missing values, resulting in

(full likelihood) L1(θ, ϕ) =
n∏

i=1

∫
gθ(o(xi,o,xi,m;m))gϕ(mi|o(xi,o,xi,m;m)) dxi,m,

where the integration is taken on the components of xi,m only. The parameter ϕ is

generally not considered as of interest. In addition, modelling the missing values

mechanism may require strong parametric assumptions. An easier quantity would

be

(likelihood of observed data) L2(θ) =
n∏

i=1

∫
gθ(o(xi,o,xi,m;m)) dxi,m

ignoring the missing data mechanism. To leave the difficult term, i.e. the missing

values mechanism, out of the expectation, Rubin [1976] introduces an ad hoc as-

sumption, called Missing At Random (MAR), which is that for all ϕ ∈ Φ, for all

i ∈ J1, nK, for all x′ ∈ X ,

x′
obs(mi) = xi,o, ⇒ gϕ(mi|x′) = gϕ(mi|xi),

for instance, for all a, b ∈ R, gϕ((0, 1, 0, 0)|(1, a, 3, 10)) = gϕ((0, 1, 0, 0)|(1, b, 3, 10)).

Using this assumption, he states the following result.

Theorem 1 (Theorem 7.1 in Rubin [1976]) Let ϕ such that for all 1 ≤ i ≤ n,

gϕ(mi|xi) > 0. Assume (a) MAR, (b) Ωθ,ϕ = Θ × Φ, then L2(θ) is proportional to

L1(θ, ϕ) with respect to θ, so that the inference for θ can be obtained by maximizing

the likelihood L2, which ignores the missing mechanism.

MAR has a stronger version, more intuitive:Missing Completely At Random (MCAR).

In its simplest and strongest form, it states that M |=X (the model density is
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gθ(x)gϕ(m)). At the other end of the spectrum, if it is not possible to ignore the

mechanism, the corresponding model is called Missing Not At Random (MNAR).

These definitions are often subject to debates [Seaman et al., 2013] but can be

understood using the following example: let us consider two variables, income and

age with missing values on income. MCAR means that the missing values are

independent of any values; MAR is satisfied if missing values on income depend

on the values of age (older people are less incline to reveal their income) whereas

MNAR holds if rich people are less prone to reveal their income.

There is little literature on missing data mechanism for supervised learning or dis-

criminative models. Kapelner and Bleich [2015] formalise the problem by separat-

ing the role of the response y, factorising the likelihood as gθ(x)gϕ(m|x)gχ(y|x,m).

Note that they do not write gϕ(m|x, y). They justify this factorisation with the –

somewhat causal – consideration that the missing values are part of the features,

which precede the response. The need to represent the response variable in the

factorization show that it may be useful to extend the traditional mechanisms

for a supervised learning setting: the link between the mechanism and the output

variable can have a significant impact on the results. Davidian [2017] and Arel-

Bundock and Pelc [2018] noticed that as long as M does not depend on Y , it is

possible to estimate regression coefficients without bias even with listwise deletion

and MNAR values. Ding and Simonoff [2010] generalise the MAR assumption with

the following nomenclature MXY: the missing mechanism can marginally depend

on the target (**Y), on the features that are always observed (*X*) or on the

features that can be missing (M**).

2.2.2 Imputation prior to analysis

Most statistical models and machine-learning procedures are not designed for in-

complete data. To use existing pipelines in the presence on missing values, imputing

the data is commonly used to form a completed data set. To (single) impute data,

joint modeling (JM) approaches capture the joint distribution across features [Lit-
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tle and Rubin, 2019]. A simple example of joint modeling imputation is to assume

a Gaussian distribution of the data and to estimate the mean vector and covari-

ance matrix from the incomplete data (using an EM algorithm, see Section 2.2.3).

Missing entries can then be imputed with their conditional expectation knowing

the observed data and the estimated parameters. More powerful methods can be

based on low-rank models [Hastie et al., 2015, Josse et al., 2016]. While KNN im-

putation is not intrinsically suited for high-dimensional data, such methods often

yield good predictive performances [see, e.g., Batista and Monard, 2003, Poulos

and Valle, 2018]. Recently, several deep learning (DL) architectures have been pro-

posed to impute datasets, based on variational autoencoder [Mattei and Frellsen,

2019], GAN such as GAIN [Yoon et al., 2018] or MisGAN [Li et al., 2019], or on

denoising autoencoders as MIDA [Vincent et al., 2008, Gondara and Wang, 2018]

just to name a few. The quality of an imputation strategy is usually assessed via

its RMSE performance: several observed values are first hidden, then the imputed

values are compared to the true ones in terms of RMSE. While such a protocol is

easy to implement, it has been recently criticized [see, e.g., Näf et al., 2023] as the

optimal imputation is then the conditional mean, therefore reducing the variabil-

ity of the distribution of imputed data, compared to the actual true distribution.

While DL architectures show promising performances for imputation in terms of

RMSE, DL architectures fails to provide a correct imputation in terms of distribu-

tional statistics [mean, variance, correlation, see Wang et al., 2022]. A new line of

research aims at designing imputation scores able to reflect how the distribution of

imputed value is close to the actual distribution [see, e.g., Näf et al., 2023]. In this

paper, we are interested in the predictive performance of any methods (including

imputation followed by a learning algorithm) capable of handling missing data.

Therefore, the quality of imputation is not assessed on its own but through the

predictive performance of subsequent learning algorithm applied on the imputed

data set.
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Another class of popular approaches to impute data defines the joint distribution

implicitly by the conditional distributions of each variable. These approaches are

called fully conditional specification (FCS) or imputation with conditional equa-

tion (ICE) [van Buuren, 2018]. This formulation is very flexible and can easily

handle variables of a different nature such as ordinal, categorical, numerical, etc,

via a separate model for each, e.g. using supervised learning. Well-known examples

of such approach are missForest, using iterative imputation of each variable by

random forests [Stekhoven and Bühlmann, 2011], or MICE [Buuren and Groothuis-

Oudshoorn, 2010]. Their computational scalability however prohibits their use on

large dataset. As they fit one model per feature, their cost is at least O(d2): using

random forests as a base model leads to a complexity O(d2n log n) and using a

ridge model amounts to a complexity O(d2nmin(n, d)).

The role of the dependent variable Y and whether or not to include it in the

imputation model has been a rather controversial point. Indeed, it is quite counter-

intuitive to include it when the aim is to apply a conditional model on the imputed

data set to predict the outcome Y . Nevertheless, it is recommended as it can

provide information for imputing covariates [Allison, 2001, p.57]. Sterne et al.

[2009] illustrated the point for the simple case of a bivariate Gaussian data (X,Y )

with a positive structure of correlation and missing values on X. Imputing using

only X is not appropriate when the aim is to estimate the parameters of the linear

regression model of Y given X.

One important issue with “single” imputation, i.e. predicting only one value for

each missing entries, is that it forgets that some values were missing and considers

imputed values and observed values in the same way. It leads to underestimation of

the variance of the parameters [Little and Rubin, 2019] estimated on the completed

data. One solution, to incorporate the uncertainty of the imputed values is to use

multiple imputation (MI, Rubin 1987) where many plausible values are generated

for each missing entries, leading to many imputed data sets. Then, MI consists

in applying an analysis on each imputed data sets and combining the results.
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Although many procedures to generate multiple imputed data sets are available

[Murray, 2018], here again, the case of discriminative models is rarely considered,

with the exception of Wood et al. [2008] who use a variable selection procedure on

each imputed data set and propose to keep the variables selected in all imputed

data sets to construct the final model [see also Liu et al., 2016].

2.2.3 EM algorithm

Imputation leads to two-step methods that are generic in the sense that any anal-

ysis can be performed from the same imputed data set. On the contrary, the

expectation maximization (EM) algorithm [Dempster et al., 1977] proceeds di-

rectly in one step. It can thus be better suited to a specific problem but requires

the development of a dedicated algorithm.

The EM algorithm can be used in missing data settings to compute maximum

likelihood estimates from an incomplete data set. Indeed, with the assumptions of

Theorem 1 (MAR settings), maximizing the observed likelihood L2 gives principle

estimation of parameters θ. The log-likelihood of the observed data is

logL2(θ) =
n∑

i=1

log

∫
gθ(o(xi,o,xi,m;m)) dxi,m.

Starting from an initial parameter θ(0), the algorithm alternates the two following

steps,

(E-step) Q(θ|θ(t)) =
n∑

i=1

∫
(log gθ(o(xi,o,xi,m;m)))gθ(t)(o(xi,o,xi,m;m)) dxi,m.

(M-step) θ(t+1) ∈ argmax
θ∈Θ

Q(θ|θ(t)).

The well-known property of the EM algorithm states that at each step t, the ob-

served log-likelihood increases, although there is no guarantee to find the global

maximum. In Appendix C.2 we give an example of an EM algorithm to estimate

the parameters of a bivariate Gaussian distribution from incomplete data. The in-
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terested reader can refer to Roche [2011] and the references therein for a theoretical

review on the EM algorithm.

3 Supervised learning procedures with missing data on train and test set

Supervised learning typically assumes that the data are i.i.d. In particular, an out-

of-sample observation (test set) is supposed to be drawn from the same distribution

as the original sample (train set). Hence, it must possess the same missing-values

mechanism. An appropriate method should then be able to predict on new data

with missing values. Here we discuss how to adapt classic missing-values techniques

to machine-learning settings, and vice versa.

3.1 Out-of-sample imputation

Using missing-value imputation in a supervised learning setting is not straightfor-

ward as it requires to impute new, out-of-sample, test data, where the target Y is

unavailable.

A simple strategy is to fit an imputation model on the training set; let us consider

a parametric imputation model governed by a parameter α . Based on the training

set, we estimate a value α̂ and use this value to impute the training set, which is

then denoted by X̂train. Then a supervised-learning model is learned using X̂train

and Ytrain. If the supervised-learning procedure is indexed by a parameter β, it

yields the estimated parameter β̂. Finally, on the test set, the covariates must be

imputed with the same imputation model (using α̂) and the prediction is built

using the imputed test set and the estimated learning model (using β̂).

This approach is easy to implement for univariate imputation methods that con-

sider each feature separately, for instance with mean imputation: parameters α̂

correspond to the mean µ̂j of each column which is learned on the training set,

and new observations on the test set are imputed by (µ̂1, . . . , µ̂d). This approach

can also be implemented with a joint Gaussian model on (X, Y ), learning param-
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eters of the Gaussian with the EM algorithm on the training set. Indeed, one can

then impute the test set using the conditional expectations of the missing features

given the observed features (without Y ) and the estimated parameters.

For more general imputation methods, two issues hinder out-of-sample imputation.

First, many available imputation methods are “black-boxes” that take as input an

incomplete data set and output a completed data set: they do not separate the es-

timation of model parameters from their use to complete the data. This is the case

for many implementations of iterative conditional imputation such as missForest

[Stekhoven and Bühlmann, 2011], through scikit-learn [Pedregosa et al., 2011] and

recent versions of MICE [van Buuren, 2018] (using an argument ”ignore”) provides

out-of-sample iterative conditional imputation. It is also difficult for powerful im-

puters presented in Section 2.2.2 such as low-rank matrix completion, which cannot

be easily marginalised on X alone.

As most existing implementations cannot easily impute a new data set with the

same imputation model, some analysts resort to performing separate imputation of

the training set and the test set. But the smaller the test set, the more suboptimal

this strategy is, and it completely fails in the case where only one observation has

to be predicted. Another option is to consider semi-supervised settings, when the

test set is available at train time: grouped imputation can then simultaneously

impute the train and the test set [Kapelner and Bleich, 2015], while the predictive

model is subsequently learned on the training set only.

3.2 EM and out-of-sample prediction

The likelihood framework (Section 2.2.1) enables predicting new observation, though

it has not been much discussed. Jiang et al. [2019] consider a special case of this

approach for a logistic regression where covariates X are assumed to be Gaussian.

Let the assumptions of Theorem 1 be verified (MAR settings). The true parameters

of the model can then be estimated by maximizing the observed log-likelihood

logL2 with an EM algorithm on the train data (Section 2.2.3). The corresponding
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estimates θ̂n can be used for out-of-sample prediction with missing values. The

probability distribution of y as a function of the observed values xo = xobs(m)

only, can be related to that on a fully-observed data set:

g
θ̂n
(y|Xo = xo) =

g
θ̂n
(y,xo)

g
θ̂n
(xo)

=
1

g
θ̂n
(xo)

∫
g
θ̂n
(y, o(xo,xm;m)) dxm

=

∫
g
θ̂n
(y|o(xo,xm;m))

g
θ̂n
(o(xo,xm;m))

g
θ̂n
(xo)

dxm

= EXm|Xo=xo

[
g
θ̂n
(y|o(xo,Xm;m))

]
(2)

It is then possible to approximate the expectation with Monte Carlo sampling

from the distribution g
θ̂n
(Xm|Xo = xo). Such a sampling is easy in simple models,

e.g. using Schur’s complements for Gaussian distributions in linear regression set-

tings. But in more complex settings, such as logistic regression, there is no explicit

solution and one option is to use Metropolis-Hasting algorithms [Hastings, 1970].

3.3 Empirical risk minimization with missing data

The two approaches discussed above are specifically designed to fix the missing-

values issue: imputing or specifying a parametric model and computing the prob-

ability of the response given the observed values. However, in supervised-learning

settings, the goal is rather to build a prediction function that minimizes an ex-

pected risk. Empirical risk minimization, the workhorse of machine learning, can

be adapted to deal with missing data.

Recall that in missing-values settings, we do not have access to X but rather to

the incomplete vector X̃. Therefore, we aim at minimizing the empirical risk over

the set of measurable functions from X̃ to Y, that is

f̂n ∈ argmin
f :X̃→Y

1

n

n∑
i=1

ℓ
(
f(X̃i), Yi

)
. (3)
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Unfortunately, the half-discrete nature of X̃ =
⊗d

j=1(Xj∪{NA}) makes the problem

difficult. Indeed, many learning algorithms do not work with mixed data types,

such as R ∪ {NA}, but rather require a vector space. This is true in particular for

gradient-based algorithms. As a result, the optimization problem (3) is hard to

solve with typical learning tools.

Another point of view can be adopted for losses which leads to Bayes-optimal

solutions defined as f⋆
X̃
(X̃) = E[Y |X̃]. As there are at most 2d admissible missing

patterns, we can rewrite the Bayes estimate as

f⋆
X̃
(X̃) =

∑
m∈{0,1}d

E
[
Y
∣∣Xobs(m),M = m

]
1M=m, (4)

This formulation highlights the combinatorial issues: solving (3) may require, as

suggested by Rosenbaum and Rubin [1984, Appendix B], to estimate 2d different

submodels, that is E
[
Y
∣∣Xobs(m),M = m

]
appearing in (4) for each m ∈ {0, 1}d,

which grows exponentially with the number of variables.

Modifying existing algorithms or creating new ones to deal with the optimization

problem (3) is in general a difficult task, due to the numerous possible missing

data patterns. Nevertheless, we will see in Section 5 and Appendix B that decision

trees are particularly well suited to address this problem.

Remark 1 Note that, in practice, not all patterns may be possible in the training

and test sets. For instance, if there are only complete data in the train set, the

only submodel of interest is E
[
Y
∣∣Xobs(m),M = m

]
for m = (0, . . . , 0), which boils

down to the regular supervised-learning scenario on a complete data set. However,

the train and test sets are assumed to be drawn from the same data distribution.

Hence, we expect to observe similar patterns of missingness in train and test sets.

If this is not the case, we are in presence of a distributional shift, which should

be tackled with dedicated methods [see, e.g., Sugiyama et al., 2017]. This may

happen for instance, when a study conducted on past data leads to operational
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recommendations, advising practitioners to focus on certain variables of interest.

In that case, they will more likely measure them systematically.

4 Consistency of imputation procedures

In this section, we show theoretically that, without assuming any parametric distri-

bution for the data, imputation procedures can lead to a Bayes-optimal predictor

in the presence of missing data on covariates (in both train and test sets), i.e. it

asymptotically targets the function f⋆
X̃
(X̃) = E[Y |X̃].

In Section 4.1, we assume that we are given the true regression function f⋆ on

the fully-observed data and study the performance of applying this regression

function to a test set with missing values, using several imputation strategies:

unconditional mean, conditional mean and multiple imputation. Note that, for

MCAR data, the function f⋆ can be estimated using the complete observations

only, i.e., by deleting observations with missing values in the train set and applying

a supervised procedure on the remaining observations. Such a strategy is relevant

for very large training sets and MCAR missing values.

In Section 4.2, we consider the full problem of tackling missing values in the train

and the test set, which is of particular interest when the training set is of reason-

able size as it can leverage the information contained in incomplete observations.

We study a classical approach, described in Section 3.1, which consists in imputing

the training set, fitting a learning algorithm on the imputed data, and predicting

on a test set which has been imputed with the same method. Although mean impu-

tation of variables is one of the most widely used approaches, it is highly criticised

in the classic literature for missing data [Little and Rubin, 2019]. Indeed, it leads

to a distortion of the data distribution and, consequently, statistics calculated on

the imputed data table are biased. A simple example is the correlation coefficient

between two variables, which is biased towards zero if the missing data are im-

puted by the mean. However, in a supervised-learning setting, the aim is not to

compute statistics representative of the data set, but to minimize a prediction risk
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by estimating a regression function. For this purpose, we show in Section 4.2 that

constant imputation may be completely appropriate and leads to consistent esti-

mation of the prediction function. This result is remarkable and extremely useful

in practice.

4.1 Test-time imputation

Here we consider that we have access to the optimal (Bayes) predictor f⋆ for the

complete data, i.e. f⋆(X) = E[Y |X], and we show that, in MAR settings, when

missing data appears in the test set, the optimal predictor for incomplete data can

be computed by using multiple imputation with f⋆.

4.1.1 Test-time conditional multiple imputation is consistent

Let us first make explicit the multiple imputation procedure for prediction. Recall

that we observe xobs(m). We then draw the missing values Xm from the conditional

distribution Xm|Xo = xo and compute the regression function on these completed

observations. The resulting multiple imputation function is given by:

f⋆MI(x̃) = EXm|Xo=xo
[f⋆(o(xo,Xm;m))]. (5)

Note that this expression is similar to the expression (2) given for EM, but assum-

ing that we know the true nonparametric distribution of the data.

Assumption 1 (Regression model) The regression model satisfies Y = f⋆(X)+ε,

where X takes values in Rd and ε satisfies a.s. E[ε|Xobs(M)] = 0.

Assumption 2 (Missingness pattern - MAR-Y ) We have Y |=M|Xobs(M)

The missingness pattern in Assumption 2 is more generic than MAR, since it is

notably verified if the missingness pattern is MAR, that is if P[M = m|X] = P[M =

m|Xobs(m)] (classic definition recalled in Section 2.2.1), i.e. if the probability to

observe a given pattern depends only on the observed values.
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Theorem 2 Grant Assumption 1 and 2. Then the multiple imputation procedure, de-

fined in (5) is Bayes optimal, that is, for all x̃ ∈ (R ∪ {NA})d,

f⋆MI(x̃) = f⋆
X̃
(x̃).

The proof is given in Appendix A. Theorem 2 justifies the use of multiple impu-

tation when missing pattern is MAR and when we have access to an estimate of

f⋆ and of the conditional distribution Xm|Xo = xo.

4.1.2 Single mean imputation is not consistent

Given the success of multiple imputation, it is worth checking that single impu-

tation is not sufficient. We show with two simple examples that indeed, single

imputation on the test set is not consistent even in MAR setting.

We first show, that (unconditional) mean imputation is not consistent, if the learn-

ing algorithm has been trained on the complete cases only.

Example 1 In one dimension, consider the following simple example,

X1 ∼ U(0, 1), Y = X2
1 + ε, M1 ∼ B(1/2) |= (X1, Y ),

with ε an independent centered Gaussian noise. Here, E[Y |X1] = X2
1 , and the

regression function f⋆
X̃
(X̃) = E[Y |X̃] satisfies

f⋆
X̃
(X̃) = X2

1 · 1M1=0 + E[Y |X̃ = NA] · 1M1=1

= X2
1 · 1M1=0 + E[X2

1 ] · 1M1=1

= X2
1 · 1M1=0 + (1/3) · 1M1=1. (6)
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In the oracle setting where the distribution of (X1, Y,M1) is known, ”plugging in”

the mean imputation of X1 yields the Plug-in Imputation function prediction

fPI(X̃) = X2
1 · 1M1=0 + (E[X1])

2 · 1M1=1

= X2
1 · 1M1=0 + (1/4) · 1M1=1. (7)

In this example, mean imputation is not optimal: when X1 is missing, the predic-

tion obtained by mean imputation is 1/4, whereas the optimal prediction (the one

which minimizes the square loss) is 1/3 as seen in (6).

Inspecting (6) and (7) reveals that the poor performance of mean imputation is

due to the fact that E[X2
1 ] ̸= (E[X1])

2. The non-linear relation between Y and

X1 breaks mean imputation. This highlights the fact that the imputation method

should be chosen in accordance with the learning algorithm that will be applied

later on. This is related to the concept of congeniality [Meng, 1994] defined in

multiple imputation.

4.1.3 Conditional mean imputation is consistent if there are deterministic relations

between input variables

We now consider conditional mean imputation, using information of other observed

variables to impute. Conditional mean imputation may work in situations where

there is redundancy between variables, as highlighted in Example 2. However, we

give a simple example below stressing that using it to impute the test may not be

Bayes optimal.

Example 2 Consider the following regression problem with two identical input vari-

ables:

X1 = X2 ∼ U([0, 1]), Y = X1 +X2
2 + ε, M2 ∼ B(1/2) |= (X1, X2, Y )
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The Bayes predictor is then given by

f⋆
X̃
(X̃) =

X1 +X2
2 if X̃2 ̸= NA

X1 + E[X2
2 |X1, X̃2 = NA] if X̃2 = NA

=

X1 +X2
2 if X̃2 ̸= NA

X1 +X2
1 if X̃2 = NA

Plugging in the previous expression the mean of X2 when missing leads to the

Plug-in Imputation function

fPI(X̃) =

X1 +X2
2 if X̃2 ̸= NA

X1 + (1/4) if X̃2 = NA,

whereas plugging in the Mean Imputation of X2 conditional on X1 leads to

fPMI(X̃) =

X1 +X2
2 if X̃2 ̸= NA

X1 +X2
1 if X̃2 = NA

,

as (E[X2|X1])
2 = X2

1 .

If there is no deterministic link between variables, conditional mean imputation

fails to recover the regression function, in the case where the regression function

is not linear (see Example 2, where X1 = X2 is replaced by X1 = X2 + ε).

4.1.4 Pathological case: missingness is a covariate

Example 3 below shows a situation in which any imputation method, single or

multiple, fails, because the missingness contains information about the response

variable Y . In this univariate setting, there is no distinction between conditional

and unconditional mean.

Example 3 Consider the following regression model,

X1 ∼ U(0, 1) M1 ∼ B(1/2) |=X1 Y = X1 · 1M1=0 + 3X1 · 1M1=1 + ε.
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Here, E[Y |X1] = X1 · P(M1 = 0) + 3X1 · P(M1 = 1) = 2X1 .

Plugging in the mean imputation of X1 leads to

fPI(X̃) = X1 · 1M1=0 + E[X1] · 1M1=1

= X1 · 1M1=0 + (1/2) · 1M1=1,

whereas the regression function satisfies

f⋆
X̃
(X̃) = X1 · 1M1=0 + 3E[X1|X̃ = NA] · 1M1=1

= X1 · 1M1=0 + (3/2) · 1M1=1.

In this case, the presence of missing values is informative in itself, and having access

to the complete data set (all values of X1) does not provide enough information.

Such a scenario advocates for considering the missingness as an additional input

variable. Indeed, in such situations, single and multiple imputation fail to recover

the targeted regression function, without adding a missingness indicator to the

input variables.

4.2 Constant imputation at train and test time is consistent

We now show that the same single imputation used in both train and test sets leads

to consistent procedures. More precisely, we allow missing data on X1 only, and

replace its value by some constant α ∈ R if X1 is missing. More precisely, for each

observed x̃ ∈ (R∪{NA})×Rd−1, the imputed entry is defined as x′ = (x′1, x2, . . . , xd)

where

(constant imputation) x′1 = x11M1=0 + α1M1=1.

We consider the following procedure: (i) impute the missing values on X1 in the

training set by α (ii) use a universally consistent algorithm (see the definition
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in Section 2) on the training set to approach the regression function f⋆SI(x
′) =

E[Y |X′ = x′]. Theorem 3 shows that this procedure is consistent under the follow-

ing assumptions.

Assumption 3 (Regression model) Let Y = f⋆(X)+ ε where X has a continuous

density g > 0 on [0, 1]d, f⋆ is continuous, and ε is a centred noise independent of

(X,M1).

Assumption 4 (Missingness pattern - MAR) The variables X2, . . . , Xd are fully

observed and the missingness pattern M1 on variable X1 satisfies M1 |=X1|X2, . . . , Xd

and is such that the function (x2, . . . , xd) 7→ P[M1 = 1|X2 = x2, . . . , Xd = xd] is

continuous.

As for Assumption 2, Assumption 4 states that the missingness pattern is a specific

MAR process since only X1 can be missing with a probability that depends only

on the other variables, which are always observed. The conditional distribution of

M is also assumed to be continuous to avoid technical complexities in the proof of

Theorem 3.

Theorem 3 Grant Assumption 3 and 4. The single imputation procedure described

above satisfies, for all imputed entries x′ ∈ Rd,

f⋆SI(x
′) = E[Y |X2 = x2, . . . , Xd = xd,M1 = 1]1x′

1=α1P[M1=1|X2=x2,...,Xd=xd]>0

+ E[Y |X = x′]1x′
1=α1P[M1=1|X2=x2,...,Xd=xd]=0

+ E[Y |X = x′,M1 = 0]1x′
1 ̸=α.

Consequently, letting X̃ =

 X′ if X ′
1 ̸= α

(NA, X2, . . . , Xd) if X
′
1 = α

,

the single imputation procedure is equal to the Bayes function almost everywhere, that

is

f⋆SI(X
′) = f⋆

X̃
(X̃). (8)
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The proof is given in Appendix A. Theorem 3 confirms that it is preferable to use

the same imputation for the training and test sets. Indeed, the learning algorithm

can learn the imputed value and use that information to detect that the entry

was initially missing. If the imputed value changes from train set to test set (for

example, if instead of imputing the test set with the mean of the variables of the

train set, one imputes by the mean of the variables on the test set), the learning

algorithm may fail, since the imputed data distribution would differ between train

and test sets.

Multivariate missingness. Interestingly, Theorem 3 remains valid when missing val-

ues occur for variables X1, . . . , Xj under the assumption that (M1, . . . ,Mj) |= (X1,

. . . , Xj) conditional on (Xj+1, . . . , Xd) and if for every patternm ∈ {0, 1}j×{0}d−j ,

the functions (xj+1, . . . , xd) 7→ P[M = m|Xj+1 = xj+1, . . . , Xd = xd] are continu-

ous.

Note that the precise imputed value α does not matter if the learning algorithm

is universally consistent. By default, the mean is not a bad choice, as it preserves

the first order statistic (mean) of the sample. However, our analysis does not

stress out any particular role of mean imputation. In fact, any imputation in the

support of X1 is equivalent and leads to a consistent procedure. The comment

below stresses out the benefit of choosing α outside of the support of X1.

Almost everywhere consistency. The equality between the constant imputation learner

f⋆SI and the Bayes function f⋆
X̃

holds almost surely but not for every x̃. Indeed,

under the setting of Theorem 3, let x̃ = (α, x2, . . . , xd), for any x2, . . . , xd ∈ [0, 1]

such that P[M1 = 1|X2 = x2, . . . , Xd = xd] > 0. In this case, x′ = (α, x2, . . . , xd)

and

f⋆SI(x
′) = E[Y |X2 = x2, . . . , Xd = xd,M1 = 1],
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which is different, in general, from

f⋆
X̃
(x̃) = E[Y |X1 = α,X2 = x2, . . . , Xd = xd].

Therefore, on the event A1 = {X̃, X̃1 = α}, the two functions f⋆SI and f⋆
X̃

differ,

and thus the equality between these functions does not hold pointwise. However,

since A1 is a zero probability event, the equality f⋆SI(X
′) = f⋆

X̃
(X̃) hold almost

everywhere, as stated in Theorem 3. A simple way to obtain the pointwise equality

in equation (8) is to impute missing entries by values that are out of the range

of the true distribution, which echoes the ”separate class” method advocated by

Ding and Simonoff [2010].

Discrete/categorical variables. According to Assumption 3, the variables X1, . . . , Xd

admit a density. Therefore, the proof of Theorem 3 is not valid for discrete vari-

ables. However, Theorem 3 can be extended to handle discrete variables, if missing

entries in each variable are imputed by an extra category “missing” for each vari-

able. In this framework, consistency boils down to estimating the expectation of

Y given a category which directly results from the universal consistency of the

selected algorithm.

Classification. Theorem 3 is established for a regression problem. However, in

a binary classification setting where Y ∈ {0, 1}, the plug-in classifier ĝn(x) =

1η̂n(x)≥1/2 is universally consistent if the estimate η̂n (an estimator of E[Y |X]) is

universally consistent, according to Corollary 6.2 in Devroye et al. [2013]. Theo-

rem 3 can be applied to consistently estimate E[Y |X = x] via η̂n(x), which leads

to a universally consistent plug-in classifier ĝn. Consequently, Theorem 3 is also

valid for classification frameworks.

Universal consistency. In Theorem 3, we assume to be given a universally consistent

algorithm which may appear as a strong restriction on the choice of the algorithm.

However many estimators exhibit this property as, for example, local averaging
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estimate [kernel methods, nearest neighbors and decision trees, see Devroye et al.,

2013]. The key point of Theorem 3 is to state that the universal consistency of

a procedure with missing values results directly from the universal consistency of

an algorithm applied to an imputed data set, therefore providing guarantees that

consistent algorithm and imputation are useful tools to handle missing values.

Optimizing the imputed values. Bertsimas et al. [2018]1 propose a general framework

to optimize the imputation values, and instantiate this framework for different

learning algorithm. Extended simulations show that their proposal is competitive

in terms of imputation quality (measured via MAE/RMSE) or predictive perfor-

mances.

Consistency for some specific distributions. In Theorem 3, we assume to be given a

universally consistent algorithm. One can legitimately ask if the result still holds

if an algorithm which is consistent only for some specific data distribution was

used instead. For example, assume that data are generated via a linear model and

a linear estimator is used after missing values have been imputed. One can show

that the 2d submodels are not linear in general and consequently, using a single

linear model on imputed data does not yield the Bayes loss [Le Morvan et al.,

2020]. In a nutshell, Theorem 3 is not valid for procedures that are consistent for

some specific data distributions only. The interested reader can refer to Le Morvan

et al. [2020] for further details on missing values in linear generative models.

5 Simulations

In Section 3, we provided theoretical guarantees justifying the common practice

of imputing by a constant, in a specific MAR setting and in an asymptotic sample

regime. More precisely, Theorem 3 gives us a positive response in principle regard-

ing the usage of constant imputation for prediction purpose but does not establish

1 Their work were submitted after our contribution.
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the predictive performances of such methods in a finite-sample regime. To go be-

yond the framework of Theorem 3, we now evaluate the predictive performances of

learning algorithms trained on imputed data sets (following the imputation prior-

to-learning strategy of Theorem 3) and, to give a broader perspective, we compare

it to that of procedures intrinsically able to handle missing values. In general such

procedures are hard to design, but decision trees offer natural approaches for em-

pirical risk minimization with missing values [Saar-Tsechansky and Provost, 2007,

Twala et al., 2008]. This is due to their ability to handle the half-discrete nature

of X̃, as they rely on greedy decisions rather than smooth optimization.

We first present the different approaches available to handle missing values in

tree-based methods in Section 5.1. We then compare numerically the two different

strategies: imputation prior to learning and learning directly with missing data.

5.1 Dealing with missing values using decision trees

There exist several approaches to build decision trees based on data sets containing

missing data. These approaches can be divided into two parts: (i) those for which

the splitting mechanism omits missing data (namely Probabilistic splits, Block

propagation and surrogate splits) and (ii) those for which missing data are taken

into account to build the splits (Missing incorporated in attributes, MIA). These

approaches are detailed below.

For the first set of approaches, in each cell, a splitting criterion (see equation 21 in

Appendix B) is computed for each variable j ∈ {1, . . . , d}, based on observations

that have non-missing entries Xj . The best split (j⋆, z⋆) (corresponding to a split

at position z⋆ along variable j⋆), is then chosen as the one optimizing this criterion

(see Algorithm 1 in Appendix B.2 for details). Since such an approach omits the

missing data for building the best split, one need to specify a method to send

partially-observed data down the tree. The following approaches propose different

strategies.
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Surrogate splits Surrogate splits search for a split on another variable that induces

a data partition close to the original one. More precisely, for a selected split (j⋆0 , z
⋆
0),

to send down the tree observations with no j⋆0th variable, a new stump, i.e., a tree

with one cut, is fitted to the response 1Xj⋆0
≤z⋆

0
, using variables (Xj)j ̸=j⋆0

. The split

(j⋆1 , z
⋆
1) which minimizes the misclassification error is selected, and observations are

split accordingly. Those that lack both variables j⋆0 and j⋆1 are split with the second

best, j⋆2 , and so on until the proposed split has a worse misclassification error than

the blind rule of sending all remaining missing values to the same daughter, the

most populated one. To predict, the training surrogates are kept (see Algorithm 2

in Appendix B.2 for details). This construction is the default method in rpart

[Therneau et al., 1997]. Surrogate method is expected to be appropriate when

there are relationships between covariates.

Probabilistic splits Another option is to propagate missing observations according

to a Bernoulli distribution B( #L
#L+#R ), where #L (resp. #R) is the number of

points already on the left (resp. right) (see Algorithm 3 in Appendix B.5). This is

the default method in C4.5 [Quinlan, 2014].

Block propagation A third option is to choose the split on the observed values, and

then send all incomplete observations as a block, to a side chosen by minimizing

the error (see Algorithm 4 in Appendix B.5). This is the method used in Light-

GBM [Ke et al., 2017].

Missing incorporated in attribute (MIA, Twala et al. 2008) A second class of methods

uses missing values to compute the splitting criterion itself. Consequently, the

splitting location depends on the missing values, contrary to all methods presented

above. Its most common instance is “missing incorporated in attribute” (MIA),

which considers the following splits, for all splits (j, z):

– {X̃j ≤ z or X̃j = NA} vs {X̃j > z},



30 Julie Josse et al.

– {X̃j ≤ z} vs {X̃j > z or X̃j = NA},

– {X̃j ̸= NA} vs {X̃j = NA}.

In a nutshell, MIA tries to send all missing values to the left or to the right for each

possible split, or to separate observed values from missing ones. For each option,

the prediction error is computed and the selected option is the one minimizing the

prediction error (see Algorithm 5 in Appendix B.5 for details).

Missing values are treated as a category by MIA, which is thus nothing but a

greedy algorithm minimizing the square loss between Y and a function of X̃ and

consequently targets the quantity (4) which separate E[Y |X̃] into 2d terms. How-

ever, it is not exhaustive: at each step, the tree can cut for each variable according

to missing or non missing and selects this cut when it is relevant, i.e. when it min-

imizes the prediction error. The final leaves can correspond to a cluster of missing

values patterns (observations with missing values on the two first variables for

instance and any missing patterns for the other variables).

MIA is thought to be a good method to apply when missing pattern is informa-

tive, as this procedure allows to cut with respect to missing/non missing and uses

missing data to compute the best splits. Note this latter property implies that

the MIA approach does not require a different method to propagate missing data

down the tree. Notably, MIA is implemented in the R packages partykit [Hothorn

and Zeileis, 2015] and grf [Tibshirani et al., 2020], as well as in XGBoost [Chen

and Guestrin, 2016] and for the HistGradientBoosting models in scikit-learn [Pe-

dregosa et al., 2011].

In Appendix B.4, we conduct a theoretical analysis on a very simple regression

models to highlight differences between the above strategies. In particular, we

compare in Proposition 2 the risk of the different splitting strategies (probabilistic

split, block propagation, surrogate split, and MIA) and prove that MIA and surro-

gate splits are the two best strategies, one of which may be better than the other

depending on the dependence structure of covariates. Note that block propagation

can be seen as a greedy way of successively optimizing the choices in the two first
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options in MIA. However, as we show in Proposition 1, these successive choices

are sub-optimal.

5.2 Simulation settings

We consider three regression models with covariates (X1, . . . , Xd) distributed as

N (µ,Σ) with µ = 1d and Σ = ρ1d1
T
d + (1 − ρ)Id, where 1d is the d-dimensional

vector composed of ones and Id the d × d identity matrix. By default, ρ is set to

0.5 in our experiments. The first model is quadratic, the second one is linear, and

the third one has been used as a benchmark for tree methods by several authors,

including Friedman [1991] and Breiman [1996]. We also consider a last regression

model where the relationship between covariates are nonlinear. In all four models,

ε is a centered Gaussian noise with standard deviation 0.1.

Model 1 (Quadratic) Y = X2
1 +X2

2 +X2
3 + ε

Model 2 (Linear) Y = Xβ + ε with β = (1, 2,−1, 3,−0.5,−1, 0.3, 1.7, 0.4,−0.3).

Model 3 (Friedman) Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε

Model 4 (Friedman, Nonlinear) Y = sin(πX1X2)+2(X3−0.5)2+X4+ .5X5+ε

where X is a hidden uniform variable on [−3, 0] and the covariates (X1, . . . , Xd) are

distributed as

X1 = X2 + ε1

X2 = sin(X) + ε2

X3 = tanh(X) exp(X) sin(X) + ε3

X4 = sin(X − 1) + cos(X − 3)3 + ε4

X5 = (1−X)3 + ε5



X6 =
√
sin(X2) + 2 + ε6

X7 = X − 3 + ε7

X8 = (1−X) sin(X) cosh(X) + ε8

X9 = 1
sin(2X)−2 + ε9

X10 = X4 + ε10

,

where εi are independent centered Gaussian with standard deviation 0.05.

In our experiments, we generate missing data as follows.
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Missing Pattern 1 (MCAR) For p ∈ [0, 1], the missingness on variable j is gener-

ated according to a Bernoulli distribution

∀i ∈ J1, nK,Mi,j ∼ B(p).

Missing Pattern 2 (Censoring MNAR) A direct way to select a proportion p of

missing values on a variable Xj , that depends on the underlying value, is to crop them

above the 1− p-th quantile

∀i ∈ J1, nK,Mi,j = 1Xi,j>[Xj ](1−p)n
.

Missing Pattern 3 (Predictive Missingness) Last, we consider a pattern mixture

model, letting Mj be part of the regression function, with Mj |=X,

∀i ∈ J1, nK,Mi,j ∼ B(p), and Y =
3∑

j=1

(
X2

j + 2Mj

)
+ ε.

MCAR is the most simple instance of missing patterns. In particular, it falls in the

framework of Theorem 3, for which constant imputation leads to consistent predic-

tive methods. MNAR is a more complex pattern where the missingness indicator

depends on the true value of the variable. For such a pattern, adding the mask

can help the prediction, but using the dependencies between the missing covariate

and the existing ones can help to build an accurate prediction. The third missing

pattern is, in some sense, pathological (see Example 3) as the output depends di-

rectly on the missingness indicator. In such extreme settings, good performances

can only be obtained if the mask is added as input variable.

We compare the following methods using implementation in R [R Core Team, 2018]

and default values for the tuning parameters. We compare tree-based methods

(decision trees, random forests, gradient boosting) able to handle directly missing

values, with more classic machine learning methods like Support Vector Machines

[SVM, see Cortes and Vapnik, 1995] or K nearest neighbours [KNN, see Cover

and Hart, 1967]. Unless stated otherwise, we use the following packages: rpart
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[Therneau and Atkinson, 2018] for decision trees, ranger [Wright and Ziegler, 2015]

for random forests, XGBoost [Chen and Guestrin, 2016] for gradient boosting,

e1071 for SVM and caret for KNN. Note that we have used surrogate splits only

with decision trees. More precisely, we compare for decision trees the following

strategies:

– MIA: missing in attributes (see Remark 2 in Appendix B.3 for implementation

details)

– rpart+mask/ rpart: CART with surrogate splits, with or without the indicator

M in the covariates

– ctree+mask/ ctree: conditional trees, implemented in package partykit [Hothorn

and Zeileis, 2015] with or without the indicator M in the covariates

– impute mean+mask/ impute mean: missing values are imputed by uncondi-

tional mean with or without the indicator M added in the covariates

– impute OOR+mask / impute OOR: missing values are imputed by a constant

value, chosen out of range (OOR) from the values of the corresponding covariate

in the training set, with or without the indicator M added in the covariates

– impute Gaussian+mask /impute Gaussian: missing values are imputed by

conditional expectation when data are assumed to follow a Gaussian multivari-

ate distribution. More precisely, the parameters of the Gaussian distribution

are estimated with an EM algorithm (R package norm [Fox, 2013]). Note that

for numerical reasons, we shrink the estimated covariance matrix (replacing Σ̂

by 0.99× Σ̂+0.01× tr(Σ̂)Id) before imputing. The method can also be applied

with the indicator M added in the imputed values.

For KNN and SVM, we compare the last three methods, namely mean imputa-

tion, Out-Of-Range (OOR) imputation, Gaussian imputation (as other methods

do not apply), with and without adding the mask, whereas for random forests and

gradient boosting methods, we also use MIA.

To evaluate the performance of the methods, we repeatedly draw a training set

and a testing set of the same size 1000 times. We choose to display the percentage
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of explained variance, i.e. the R2 statistic computed on the test set, defined as

R2 = 1−
1

ntest

∑ntest

i=1 (ŷi − yi)
2

V[Y ]
, (9)

The numerator corresponds to the Mean Square Error (MSE) computed on the

test set, and the denominator is the true variance of Y , available since we know

the generative model. Using the R2 metric allows us to quickly assess the quality

of a regression model: values close to one indicate a very good predictive model.

Note that, depending on the regression model and the missing mechanism at hand,

some predictive tasks are easier than other, thus explaining the differences in the

average predictive performance of all methods. The code for these experiments is

available online2.

Experiment 1 In the first experiment, we use Model 1 with d = 9 and introduce

missing values onX1,X2, andX3 according to the mechanisms described hereafter.

Results are depicted in Figure 1.

Experiment 2 In the second experiment, the other three models are used with

d = 10, with a MCAR mechanism on all variables. Results are shown in Figure 3.

5.3 Results comparing strategies for fixed sample sizes

Figure 1 presents the results for one choice of correlation (ρ = 0.5) between covari-

ates and percentage of missing entries (20%), as others give similar interpretation

(see Appendix D for different values of the correlation ρ and the missing rate).

In the MCAR case, all decision-tree methods perform similarly aside from out-of-

range imputation which significantly under-performs. Performing a “good” condi-

tional imputation, i.e. one that captures the relationships between variables such as

impute Gaussian, slightly helps prediction. This is all the most true as the correla-

tion between variables increases, which we have not displayed. Adding the missing-

2 https://github.com/jacobmchen/supervised_missing/

https://github.com/jacobmchen/supervised_missing/
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Fig. 1: R2 scores on model 1 •Normalized explained variance for the three missing
data mechanisms (MCAR, Censoring MNAR, Predictive Missingness) introduced
above, with 20% of missing values, n = 1000, d = 9 and ρ = 0.5.

value mask is not important. For powerful models, random forests and gradient

boosting, the benefit of conditional imputation compared to MIA is much reduced.

These models give significantly better prediction accuracy than tree-based models

as expected.

More complex patterns (MNAR or predictive missingness) reveal the importance

of adding the missing mask in most imputation strategies, except for the OOR

imputation. MIA achieves excellent performance even for these more complex

missing-values mechanisms. Remarkably, mean imputation also achieves good per-
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formances with random forests and xgboost methods though adding a mask helps.

This is not the case for KNN and SVM. Note that, whatever the missing data

mechanism, combining OOR imputation with SVM learners leads to sub-optimal

predictive performances.

Statistical tests In order to assess whether the differences observed in Figure 1 are

significant, we employ statistical tests. More precisely, for each learning algorithm

and each pair of imputation strategy, we consider the R2 of the 1000 repetitions.

As these values are computed on similar individuals (the generated data are the

same for all imputation methods and a given repetition), we employ paired t-

tests. A p-value lower than 0.05 indicates that the two considered imputation

method exhibits different predictive performances. Such results help us to assess

the significance of the difference observed via the boxplots in Figure 1. P-values

are displayed in Appendix D.2. The vast majority of differences observed in Fig-

ure 1 appear to be significant. For example, in the MCAR model, only the pair

Gaussian/Gaussian+mask and Mean/Mean+mask are not statistically different

for decision trees and random forests at the level 0.05.

Computational complexity The computational complexity together with the pre-

dictive performances are two main criteria to assess the usefulness of a method

handling missing values. We display in Figure 2 the training time (taking into ac-

count the imputation time and the training time on imputed data) of each method.

As expected, the computational time increases when adding the mask except for

the forests. In this low-dimensional setting, KNN is the quickest method, followed

by decision trees and SVMs. The most computationally intensive methods, as ex-

pected, are random forests and gradient boosting. Nevertheless, the computational

time for data of this size is not substantial. The computation time is primarily at-

tributable to the learners, and imputation methods have minimal impact.

Figure 3 compares methods for datasets with a non-linear generative model and

values missing completely at random. The figure focuses on methods without
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Fig. 2: Computation time (in seconds) of the different imputation meth-
ods/learning procedures for the MCAR generative mechanism with 20% of missing
values, n = 1000, d = 9 and ρ = 0.5.
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Fig. 3: Relative scores on different models in MCAR • Relative explained
variance for models 2, 3, 4, MCAR with 20% of missing values, n = 1000, d = 10
and ρ = 0.5.

adding the mask, as it makes little difference in MCAR settings. Even with non

linearities, Gaussian imputation often performs as well or better than mean im-

putation or MIA, likely because the non-linear supervised model compensates for

the non linearity. All in all, MIA proves to be a strong option in all the scenarios

that we have experimented when using tree-based methods, although Gaussian

imputation with the mask can outperform it in these MCAR settings.

5.4 Consistency and learning curves

In the third experiment, we compare the methods of Section 5.2 varying sample

size to assess their asymptotic performances, on models 2, 3 and 4. We wish to

compare the tree performance with respect to the Bayes loss. For each sample size

(between 300 and 104), we summarize 200 repetitions by their median and quartiles

(as in the boxplots). Assuming MCAR, the Bayes estimator is the expectation of

Y conditionally to the observed values,

E[Y |X̃] = E[f(X)|X̃] = E[f(X)|Xobs(m) = xobs(m),M = m].
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Fig. 4: Bayes consistency in MCAR • Consistency with 40% of MCAR values
on all variables, on models 2 (linear), 3 (Friedman), 4 (non-linear).
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It has an simple expression only if the joint distribution of (X, Y ) is Gaussian.

To compute an approximate Bayes loss for a nonlinear regression with Gaussian

features, we apply joint Gaussian multiple imputation, as justified in Section 4.1.1,

on a very large sample. For the third scenario with non-Gaussian features, we have

not computed the Bayes loss.

In linear settings, Figure 4 (left) shows that impute Gaussian benefits from cor-

relations between features and is the best-performing method; For decision trees

and forests, mean imputation, MIA and surrogate splits are also consistent but

with a slower convergence rate (we have not displayed conditional trees as they

exhibit the same behaviour as rpart with surrogate splits). Adding the indicator

matrix in the data changes almost nothing here, so we have not displayed the cor-

responding curves. For non-linear associations (Figure 4, middle and right), the

benefit brought by Gaussian imputation over the others methods seems to carry

over though it is less pronounced for random forests and boosting. For low-noise

settings (Figure 4, right) MIA and mean imputation seem equivalent. Gaussian im-

putation is also the best method compared to mean imputation when using KNN

or SVM. Note that SVM is not a local averaging method (in contrast to tree-

based methods and nearest neighbors) and thus poor imputation may damage the

predictive performances in the whole input space. On the contrary, imputed data

points have only a local influence in tree-based methods and nearest neighbors,

which may make them less sensitive to a bad imputation technique.

For boosting, the difference between methods vanishes with large n, as can be

expected from boosting’s ability to turn weak learners into strong ones [Schapire,

1990]. Gaussian imputation is still beneficial for small sample sizes. Note that MIA

can easily be implemented as a preprocessing step (see Remark 2 in Appendix B.3

for implementation details).

Link to studies on real-life data The experiments above are simple synthetic prob-

lems to showcase the principles behind prediction with missing values. A bench-

mark on real-life data is beyond the scope of this work because it requires studying
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several datasets for generalizable findings. Perez-Lebel et al. [2022] conducted such

study on 13 different prediction tasks on data with missing values. Their findings

confirms that our results apply to real-life data. In particular: 1) given sufficient

data, constant imputation (eg with the mean) performs as well as conditional im-

putation; 2) using MIA in tree-based models gives leading methods for all sample

sizes; 3) often adding the missing indicator M in the features helps predictions.

Take-home messages First, mean imputation can be appropriate and is consistent

in a supervised-learning setting when missing values are MAR and not related to

the outcome. Second, tree-based methods are an efficient way to target f̃⋆(X̃) =

E[Y |X̃] especially when using MIA (Section B.3) and can handle well informative

pattern of missing values.

We compare imputation methods, using the “proper way” to impute as described

in Section 3.1, i.e., where imputation values from the training set are used to

impute the test set.

In addition, we consider imputation with the missing indicator M in the features.

The rationale behind this indicator is that it can be useful to improve the prediction

when going beyond the hypothesis of Theorem 3, i.e. considering a finite sample,

a learning algorithm with a low approximation capacity (as linear regression) and

with missing values that can either be MNAR or depend on Y .

6 Discussion and conclusion

We have studied procedures for supervised learning with missing data. Unlike in

the classic missing data literature, the goal of the procedures is to yield the best

possible prediction on test data with missing values. Focusing on simple ways of

adapting existing procedures, our theoretical and empirical results outline simple

practical recommendations:

– In presence of MAR missing values, Bayes-consistent estimate can be built by

applying the Bayes predictor (on complete data) to data imputed via condi-
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tional multiple imputation, and averaging the resulting prediction (Theorem

2). Thus, Theorem 2 justifies the use of multiple conditional imputation in a

MAR setting.

– To train and test on data with missing values, the same imputation model

should be used. Constant imputation is consistent, if used in conjunction with

a powerful, non-linear learning model (Theorem 3).

– There are a variety of manners to handle missing values inside decision trees.

Among them, Missing Incorporated in Attribute (MIA, Twala et al. 2008, see

Remark 2 in Appendix B.3), which works by optimizing jointly the split and

the handling of the missing values is the most versatile, as it adapts to different

missing data scenarios (see Section 5 and theoretical analysis in Appendix B.4).

– Empirically, the choice of imputation methods (applied at train and test time)

may lead to a reduction of the number of samples required to reach a given

prediction performance (Figure 4).

– When missingness is related to the prediction target, imputation does not suffice

and it is useful to add the missingness indicators as features (Example 3 and

Figure 1).

These recommendations hold to minimize the prediction error in an asymptotic

regime. More work is needed to establish theoretical results in the finite sample

regime. In addition, different practices may be needed to control for the uncertainty

associated to a prediction.
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A Proofs of Section 4

A.1 Proof of Theorem 2

Proof (Proof of Theorem 2: consistency of test-time conditional multiple imputation)

Let x̃ ∈ (R ∪ {NA})d. By Assumption 1, E[ε|Xobs(M)] = 0 a.s., which yields, a.s.,

E[Y |Xobs(m) = xobs(m)] = E[f⋆(X) + ε|Xobs(m) = xobs(m)]

= E[f⋆(X)|Xobs(m) = xobs(m)]

= E[f⋆(o(Xobs(m),Xmis(m);m))|Xobs(m) = xobs(m)].
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By definition, the multiple imputation procedure described in Theorem 2 is given by

f⋆
MI(x̃) = EXmis(m)|Xobs(m)=xobs(m)

[f⋆(o(xobs(m),Xmis(m);m))]

= E[f⋆(o(Xobs(m),Xmis(m);m))|Xobs(m) = xobs(m)]

= E[Y |Xobs(m) = xobs(m)]. (10)

Besides, since the missing pattern is MAR,

f⋆
X̃
(x̃) = E[Y |X̃ = x̃]

= E[Y |Xobs(m) = xobs(m),M = m]

= E[Y |Xobs(m) = xobs(m)] (11)

Combining (10) and (11), we finally obtain

f⋆
MI(x̃) = f⋆

X̃
(x̃).

A.2 Proof of Theorem 3

Proof (Proof of Theorem 3: consistency of mean imputation at train and test time)

We distinguish the three following cases in order to make explicit the expression of E[Y |X′ = x].

First case : let x ∈ [0, 1]d such that x1 ̸= α.

For 0 < ρ < |x1 − α|, letting B(x, ρ) be the euclidean ball centered at x of radius ρ,

E[Y |X′ ∈ B(x, ρ)] =
E[Y 1X′∈B(x,ρ)]

P[X′ ∈ B(x, ρ)]

=
E[Y 1X∈B(x,ρ)1M1=0]

P[X ∈ B(x, ρ),M1 = 0]

= E[Y |X ∈ B(x, ρ),M1 = 0] . (12)

Taking the limit of (12) when ρ tends to zero,

E[Y |X′ = x] = lim
ρ→0

E[Y |X′ ∈ B(x, ρ)] = E[Y |X = x,M1 = 0]. (13)

Second case : let x ∈ [0, 1]d such that x1 = α.

First Subcase: assume P[M1 = 1|X2 = x2, . . . , Xd = xd] = 0.
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We have {X′ = x} = {X′ = x,M1 = 0} = {X = x}, and consequently,

E[Y |X′ = x] = E[Y |X = x]. (14)

Second Subcase: assume P[M1 = 1|X2 = x2, . . . , Xd = xd] > 0.

We have

P[X′ ∈ B(x, ρ)] = E[1X′∈B(x,ρ)1M1=0] + E[1X′∈B(x,ρ)1M1=1]

= E[1X∈B(x,ρ)1M1=0] + E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1],

and

E[f(X)1X′∈B(x,ρ)] = E[f(X)1X∈B(x,ρ)1M1=0]

+ E[f(X)1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1].

Therefore,

E[Y |X′ ∈ B(x, ρ)] =
E[f(X)1X′∈B(x,ρ)]

P[X′ ∈ B(x, ρ)]

=
E[f(X)1X∈B(x,ρ)1M1=0] + E[f(X)1(X2,...,Xd)∈B((x2,...,xd),ρ)

1M1=1]

E[1X∈B(x,ρ)1M1=0] + E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1]

.

(15)

The terms in (15) involving M1 = 0 satisfy

E[1X∈B(x,ρ)1M1=0] ≤ µ(B(x, ρ)) ≤
πd/2

Γ ( d
2
+ 1)

∥g∥∞ρd, (16)

and

|E[f(X)1X∈B(x,ρ)1M1=0]| ≤ E[|f(X)|1X∈B(x,ρ)]|

≤
πd/2

Γ ( d
2
+ 1)

∥g∥∞∥f∥∞ρd. (17)

The second term of the denominator in (15) can be bounded from below,

E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1]

= E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
P[M1 = 1|X2, . . . , Xd]]

≥
π(d−1)/2

Γ ( d−1
2

+ 1)

(
inf

[0,1]d
g
)
ρd−1η. (18)
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The second term of the numerator in (15) verifies

E[f(X)1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1]

= E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
E[f(X)1M1=1|X2, . . . , Xd]]

= E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
E[f(X)|X2, . . . , Xd]E[1M1=1|X2, . . . , Xd]].

If E[f(X)|X2 = x2, . . . , Xd = xd] > 0, by uniform continuity of f and g,

E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
E[f(X)|X2, . . . , Xd]E[1M1=1|X2, . . . , Xd]]

≥ E[f(X)|X2 = x2, . . . , Xd = xd]
π(d−1)/2

Γ ( d−1
2

+ 1)

(
inf

[0,1]d
g
)
ρd−1η.

Similarly, if E[f(X)|X2 = x2, . . . , Xd = xd] < 0, we have

E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
E[f(X)|X2, . . . , Xd]E[1M1=1|X2, . . . , Xd]]

≤ E[f(X)|X2 = x2, . . . , Xd = xd]
π(d−1)/2

Γ ( d−1
2

+ 1)

(
inf

[0,1]d
g
)
ρd−1η

≤ 0.

Hence, if E[f(X)|X2 = x2, . . . , Xd = xd] ̸= 0

|E[f(X)1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1]|

≥ |E[f(X)|X2 = x2, . . . , Xd = xd]|
π(d−1)/2

Γ ( d−1
2

+ 1)

(
inf

[0,1]d
g
)
ρd−1η. (19)

Gathering inequalities (16)-(19) and using equation (15), we have, if E[f(X)|X2 = x2, . . . , Xd =

xd] ̸= 0

lim
ρ→0

E[Y |X′ ∈ B(x, ρ)] = lim
ρ→0

E[f(X)1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1]

E[1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1]

= E[f(X)|X2 = x2, . . . , Xd = xd,M1 = 1].

Finally, if E[f(X)|X2 = x2, . . . , Xd = xd] = 0 then by uniform continuity of f , there exists ερ

such that ερ → 0 as ρ→ 0 satisfying,

|E[f(X)1(X2,...,Xd)∈B((x2,...,xd),ρ)
1M1=1]| ≤ ερρ

d−1 πd/2

Γ ( d
2
+ 1)

∥g∥∞,
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hence

lim
ρ→0

E[Y |X′ ∈ B(x, ρ)] = 0

= E[f(X)|X2 = x2, . . . , Xd = xd]

= E[f(X)|X2 = x2, . . . , Xd = xd,M1 = 1],

since M1 |=X1|(X2, . . . , Xd). Consequently, for all x ∈ [0, 1]d such that x1 = α,

lim
ρ→0

E[Y |X′ ∈ B(x, ρ)] = E[f(X)|X2 = x2, . . . , Xd = xd,M1 = 1]. (20)

Combining equations (13), (14) and (20), the prediction given by the mean imputation followed

by learning is, for all x′ ∈ Rd,

f⋆
X̃
(x′) = E[Y |X2 = x2, . . . , Xd = xd,M1 = 1]1x′

1=α1P[M1=1|X2=x2,...,Xd=xd]>0

+ E[Y |X = x′]1x′
1=α1P[M1=1|X2=x2,...,Xd=xd]=0

+ E[Y |X2 = x2, . . . , Xd = xd,M1 = 0]1x′
1 ̸=α,

which concludes the proof.

B Decision trees: an example of empirical risk minimization with missing

data

Aside from using procedures that require imputation prior to learning in order to handle

missing values (as theoretically discussed in the previous section), one can use procedures

intrinsically able to handle missing values. Among them, decision trees offer a natural way for

empirical risk minimization with missing values [Saar-Tsechansky and Provost, 2007, Twala

et al., 2008]. This is due to their ability to handle the half-discrete nature of X̃, as they rely

on greedy decisions rather than smooth optimization.

We first present the different approaches available to handle missing values in tree-based meth-

ods in Sections B.2 and B.3. We then compare them theoretically in Section B.4, highlighting

the interest of using the “missing incorporated in attribute” approach in particular when the

missing values are informative. In Section 5, we will compare numerically the two different

strategies: imputation prior to learning and learning directly with missing data.
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B.1 Tree construction with CART

CART (Classification And Regression Trees, Breiman et al. 1984) is one of the most popular

tree algorithm, originally designed for complete data sets. It recursively builds a partition of the

input space X = Rd, and predicts by aggregating the observation labels (average or majority

vote) inside each terminal node, also called leaf. For each node A =
∏d

j=1[aj,L, aj,R] ⊂ Rd,

CART algorithm finds the best split (j⋆, z⋆) among the set of all eligible splits S = {(j, z), j ∈

J1, dK, z ∈ R, zj ∈ [aj,L, aj,R]}, where a split is defined by the variable j along which the split

is performed and the position z of the split. More precisely, the best split (j⋆, z⋆) in any node

A is the solution of the following optimization problem

(j⋆, z⋆) ∈ argmin
(j,z)∈S

E
[(
Y − E[Y |Xj ≤ z,X ∈ A]

)2 · 1Xj≤z,X∈A

+
(
Y − E[Y |Xj > z,X ∈ A]

)2 · 1Xj>z,X∈A

]
. (21)

For each cell A, problem (21) can be rewritten as

f⋆ ∈ argmin
f∈Pc

E
[(
Y − f(X)

)2
1X∈A

]
, (22)

where Pc is the set of piecewise-constant functions on A ∩ {xj ≤ s} and A ∩ {xj > s} for

(j, s) ∈ S. Therefore the optimization problem (22) amounts to solving a least square problem

on the subclass of functions Pc. Thus, by minimizing the mean squared error, the CART

procedure targets the quantity E[Y |X]. In the presence of missing values, this criterion must

be adapted and several ways to do so have been proposed. Section B.2 and Section B.3 detail

the existing criteria that can be used when dealing with missing values.

B.2 Splitting criterion discarding missing values

A simple option to extend CART methodology in presence of missing values is to select the

best split only on the available cases for each variable. More precisely, for any node A, the best

split in presence of missing values is a solution of the new optimization problem

(j⋆, z⋆) ∈ argmin
(j,z)∈S

E
[(
Y − E[Y |Xj ≤ z,Mj = 0,X ∈ A]

)2 · 1Xj≤z,Mj=0,X∈A

+
(
Y − E[Y |Xj > z,Mj = 0,X ∈ A]

)2 · 1Xj>z,Mj=0,X∈A

]
, (23)

which is nothing but problem (21) computed, for each j ∈ {1, . . . , d}, on observed values

“Mj = 0” only. Note that, by convention, the problem (23) is optimised empirically along



On the consistency of supervised learning with missing values 55

the variables j that have at least two observed entries (we do not allow splits to be performed

along variables that have less than two observed entries). This splitting strategy is described in

Algorithm 1. As the missing values were not used to calculate the criterion, it is still necessary

to specify to which cell they are sent. The solution consisting in discarding missing data at

each step would lead to a drastic reduction of the data set and is therefore not viable. The

different methods to propagate missing data down the tree are explained below.

Algorithm 1 Splitting strategy

1: Input: a node A, a sample Dn of observations falling into A.
2: For each variable j ∈ {1, . . . , d} and position z, compute the CART splitting criterion on

observed values “Mj = 0” only.
3: Choose a split (j⋆, z⋆) that minimizes the previous criterion (see optimization problem

23).
4: Split the cell A accordingly. Two new cells AL and AR are created.
5: Output: Split (j⋆, z⋆), AL, AR.

Surrogate splitsOnce the best split is chosen via Algorithm 1, surrogate splits search for a

split on another variable that induces a data partition close to the original one. More precisely,

for a selected split (j⋆0 , z
⋆
0 ), to observations send down the tree with no j⋆0 th variable, a new

stump, i.e., a tree with one cut, is fitted to the response 1Xj⋆0
≤z⋆0

, using variables (Xj)j ̸=j⋆0
.

The split (j⋆1 , z
⋆
1 ) which minimizes the misclassification error is selected, and observations are

split accordingly. Those that lack both variables j⋆0 and j⋆1 are split with the second best,

j⋆2 , and so on until the proposed split has a worse misclassification error than the blind rule

of sending all remaining missing values to the same daughter, the most populated one. To

predict, the training surrogates are kept. This construction is described in Algorithm 2 and

is the default method in rpart [Therneau et al., 1997]. Surrogate method is expected to be

appropriate when there are relationships between covariates.

Probabilistic splitsAnother option is to propagate missing observations according to a Bernoulli

distribution B( #L
#L+#R

), where #L (resp. #R) is the number of points already on the left (resp.

right) (see Algorithm 3 in Appendix B.5). This is the default method in C4.5 [Quinlan, 2014].

Block propagationA third option is to choose the split on the observed values, and then send

all incomplete observations as a block, to a side chosen by minimizing the error (see Algo-

rithm 4 in Appendix B.5). This is the method used in LightGBM [Ke et al., 2017].

Note that Hothorn et al. [2006] proposed conditional trees, a variant of CART which also

uses surrogate splits, but adapts the criterion (23) to missing values. Indeed, this criterion
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implies a selection bias: it leads to underselecting the variables with many missing values

due to multiple comparison effects [Strobl et al., 2007]. As a result, it favors variables where

many splits are available, and therefore those with fewer missing values. Conditional trees are

based on the calculation of a linear statistic of association between Y and each feature Xj ,

T = ⟨Xj , Y ⟩. Then, its distribution under the null hypothesis of independence between Y

and Xj is estimated by permutation, and the variable with the smallest p-value is selected.

As illustrated in Appendix C.1, conditional trees are meant to improve the selection of the

splitting variables but do not ensure an improvement in prediction performance.

B.3 Splitting criterion with missing values: MIA

A second class of methods uses missing values to compute the splitting criterion itself. Conse-

quently, the splitting location depends on the missing values, contrary to all methods presented

in Section B.2. Its most common instance is “missing incorporated in attribute” (MIA, Twala

et al. 2008, ). More specifically, MIA considers the following splits, for all splits (j, z):

– {X̃j ≤ z or X̃j = NA} vs {X̃j > z},

– {X̃j ≤ z} vs {X̃j > z or X̃j = NA},

– {X̃j ̸= NA} vs {X̃j = NA}.

In a nutshell, for each possible split, MIA tries to send all missing values to the left or to the

right, and compute for each choice the corresponding error (right-hand side in 21, as well as

Algorithm 2 Surrogate strategy

1: Input: a node A, a sample Dn of observations falling into A, a split (j⋆0 , z
⋆
0 ) produced by

Algorithm 1
2: Create the variable 1Xj⋆0

≤z⋆0

3: Let J = {1, . . . , d} − {j0}
4: while Missing data have not been sent down the tree do
5: Compute the misclassification error ε⋆ corrresponding to sending all remaining missing

observation on the most populated side.
6: for all j ∈ J do
7: Fit a tree with one split along j, on data in Dn with observed values Xj and Xj⋆0

, in

order to predict 1Xj⋆0
≤z⋆0

.

8: For j,∈ J , let εj be the misclassification error of the previous trees
9: Let jmin ∈ argminj∈J εj
10: end for
11: if εjmin < ε⋆ then
12: Use the tree built on jmin to send data with missing values on j0 into AL or AR,

depending on the tree prediction
13: J ← J ∪ {jmin}
14: else
15: Send all remaining missing values to the most populated cell (AL or AR)
16: end if
17: end while
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the error associated to separating the observed values from the missing ones. Finally, it chooses

the split among the previous ones with the lowest error (see Algorithm 5 in Appendix B.5).

Note that block propagation can be seen as a greedy way of successively optimizing the choices

in two first options. However, as we show in Prop. 1, these successive choices are sub-optimal.

Missing values are treated as a category by MIA, which is thus nothing but a greedy algorithm

minimizing the square loss between Y and a function of X̃ and consequently targets the

quantity (4) which separate E[Y |X̃] into 2d terms. However, it is not exhaustive: at each step,

the tree can cut for each variable according to missing or non missing and selects this cut when

it is relevant, i.e. when it minimizes the prediction error. The final leaves can correspond to a

cluster of missing values patterns (observations with missing values on the two first variables

for instance and any missing patterns for the other variables).

MIA is thought to be a good method to apply when missing pattern is informative, as this

procedure allows to cut with respect to missing/ non missing and uses missing data to compute

the best splits. Note this latter property implies that the MIA approach does not require a

different method to propagate missing data down the tree. Notably, MIA is implemented in the

R packages partykit [Hothorn and Zeileis, 2015] and grf [Tibshirani et al., 2020], as well as in

XGBoost [Chen and Guestrin, 2016] and for the HistGradientBoosting models in scikit-learn

[Pedregosa et al., 2011].

Remark 2 Implementation: A simple way to implement MIA consists in duplicating the

incomplete columns, and replacing the missing entries once by +∞ and once by −∞ (or an

extreme out-of-range value). This creates two dummy variables for each original one containing

missing values. Splitting along a variable and sending all missing data to the left (for example)

is the same as splitting along the corresponding dummy variable where missing entries have

been completed by −∞. Alternatively, MIA can be with two scans on a feature’s values in

ascending and descending orders [Chen and Guestrin, 2016, Alg 3].

Remark 3 Implicit imputation: Whether it is in the case where the missing values are

propagated in the available case method (Section B.2), or incorporated in the split choice in

MIA, missing values are assigned either to the left or the right interval. Consequently, handling

missing values in a tree can be seen as implicit imputation by an interval value.

B.4 Theoretical comparison of CART versus MIA

We now compare theoretically the positions of the splitting point at the root and the prediction

errors on simple examples with MCAR values. Proposition 1 computes the splitting position

of MIA and CART, and highlights that the splitting position of MIA varies even for MCAR
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Fig. 5: Split position chosen by MIA and
CART criterion, depending on the frac-
tion p of missing values on X1.
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missing data. Proposition 2 then compares the risk of the different splitting strategies: proba-

bilistic split, block propagation, surrogate split, and MIA. We prove that MIA and surrogate

splits are the two best strategies, one of which may be better than the other depending on the

dependence structure of covariates.

Proposition 1 Let p ∈ [0, 1]. Consider the regression model

 Y = X1

X1 ∼ U([0, 1])
,

 P[M1 = 0] = 1− p

P[M1 = 1] = p
,

where M1 |= (X1, Y ) is the missingness pattern on X1. Let CMIA(1, s, q, p) be the value of the

splitting MIA criterion computed on X1 at threshold s such that (1, s) ∈ S, and q ∈ {L,R},

where q stands for the side where missing values are sent. Therefore,

1. The best split s⋆ given by the CART criterion (23) is s⋆ = 1/2.

2. The best splits s⋆MIA,L(p) and s⋆MIA,R(p) given by the MIA procedure (described in Sec-

tion B.3), assuming that all missing values are sent to the left node (resp. to the right

node), satisfy

s⋆MIA,L(p) = argmin
s∈[0,1]

CMIA(1, s,L, p), (24)

where

CMIA(1, s,L, p) =
1

3
−

1

p+ (1− p)s

(p

2
+

(1− p)s2

2

)2
− (1− p)(1− s)

(1 + s

2

)2
,

and s⋆MIA,R(p) = 1− s⋆MIA,L(p).

The proof is given in Appendix A. Proposition 1 shows that the split given by optimizing the

CART criterion does not depend on the percentage p of missing values since the pattern is

independent of (X,Y ). A numerical solution to equation (24) is displayed in Figure 5. When

there are no missing values (p = 0), the split occur at s = 1/2 as expected. When p increases,

the threshold does not correspond anymore to the one calculated using observed values only
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as it is influenced by the missing entries even in the MCAR setting. It may be surprising that

the splitting position change in a MCAR setting but the missing values correspond to data

from the whole interval [0, 1] and thus introduce noise in the side they are sent to. This implies

that the cell that receives missing values must be bigger than usual so that the noise of the

missing data is of the same order than the noise of original observations belonging to the cell.

Recall that, since the threshold in MIA is chosen by taking into account missing values, it is

straightforward to propagate a new element with missing values down the tree.

Recall that the quadratic risk R of a function f⋆ is defined as R(f⋆) = E[(Y − f⋆(X))2].

Proposition 2 enables us to compare the risk of a tree with a single split computed with

the different strategies. It highlights that even in the simple case of MCAR, MIA gives more

accurate predictions than block propagation or probabilistic split.

Proposition 2 Consider the regression model


Y = X1

X1 ∼ U([0, 1])

X2 = X11W=1

,

 P[W = 0] = η

P[W = 1] = 1− η
,

 P[M1 = 0] = 1− p

P[M1 = 1] = p,
,

where (M1,W ) |= (X1, Y ). The random variable M1 is the pattern of missingness for X1 and

W stands for the link between X1 and X2. Let f⋆
MIA, f⋆

block, f⋆
prob, f⋆

surr be respectively, the

theoretical prediction resulting from one split according to MIA, CART with block propagation

and CART with probabilistic splitting strategy, and a single split, where missing data are

handled via surrogate split (in the infinite sample setting). We have

R(f⋆
MIA) = min

s∈[0,1]
CMIA(1, s,L, p)1p≤η + min

s∈[0,1]
CMIA(1, s,L, η)1p>η ,

R(f⋆
block) = CMIA(1, 1/2, L, p) = CMIA(1, 1/2, R, p)

R(f⋆
prob) = −

p2

16
+

p

8
+

1

48
,

R(f⋆
surr) =

1

48
+

6

48
ηp.

where CMIA(1, s,L, p) is defined in Proposition 1. In particular,

R(f⋆
MIA) ≤ R(f⋆

block) and R(f⋆
MIA) ≤ R(f⋆

prob).

Proof is given in Appendix A. Figure 6 depicts the risk of each estimate, in the context of

proposition 2, resulting from a split computed via one of the four methods described above.

Only surrogate and MIA risks depend on the value η which measures the independence between

X1 and X2. As proved, the risk of probabilistic split and block propagation is larger than that
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Fig. 6: Theoretical risk of the splitting methods as a function of p, for three values
of η parameter that controls the amount of coupling between X1 and X2 in the
model of Proposition 2.

of MIA. Besides, surrogate split is better than MIA if the link between X1 and X2 is strong

(small values of η) and worse if this link is weak (high values of η).

B.5 Splitting algorithms

Algorithm 3 Probabilistic split

1: Input: a node A, a sample Dn of observations falling into A, a split (j⋆0 , z
⋆
0 ) produced by

Algorithm 1
2: Compute the number nL of points with observed Xj⋆0

falling into AL.

3: Compute the number nR of points with observed Xj⋆0
falling into AR.

4: for all data with missing value along j⋆0 do
5: Send the data randomly to AL (resp. AR) with probability nL/(nL + nR) (resp.

nR/(nL + nR))
6: end for

Algorithm 4 Block propagation

1: Input: a node A, a sample Dn of observations falling into A, a split (j⋆0 , z
⋆
0 ) produced by

Algorithm 1
2: Consider sending all observations with missing values on j⋆0 into AL. Compute the corre-

sponding error (criterion on the right-hand side in 21)
3: Consider sending all observations with missing values on j⋆0 into AR. Compute the corre-

sponding error (criterion on the right-hand side in 21).
4: Choose the alternative with the lowest error and send all missing data on the same side

accordingly.
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Algorithm 5 Missing Incorporated in Attribute (MIA)

1: Input: a node A, a sample Dn of observations falling into A
2: for each split (j, z) do
3: Send all observations with missing values on j on the left side. Compute the error εj,z,L

(right-hand side in 21)
4: Send all observations with missing values on j on the right side. Compute the error

εj,z,R (right-hand side in 21)
5: end for
6: for each j ∈ {1, . . . , d} do
7: Compute the error εj,−,− associated to separating observations with missing data on j

from the remaining ones.
8: end for
9: Choose the split corresponding to the lowest error ε·,·,·. Split the data accordingly.

B.6 Proof of Proposition 1

Cart splitting criterion. Under the model given in Proposition 1, simple calculations show

that

E[Y |X ∈ [0, s]] =
s

2
, E[Y 2|X ∈ [0, s]] =

s2

3

E[Y |X ∈ [s, 1]] =
1 + s

2
, E[Y 2|X ∈ [s, 1]] =

1− s3

3(1− s)

P[X ∈ [0, s]] = s, P[X ∈ [s, 1]] = 1− s.

Thus the CART spltting criterion can be written as

C(1, s) = E[Y 2]− (P[X ∈ [0, s]](E[Y |X ∈ [0, s]])2 + P[X ∈ [s, 1]](E[Y |X ∈ [s, 1]])2)

=
1

3
−

(
s
( s

2

)2
+ (1− s)

(
1 + s

2

)2 )
=

s(s− 1)

4
+

1

12
.

By definition,

s⋆ = argmin
s∈[0,1]

(
1

4
s(s− 1) +

1

12

)
= 1/2,

and the criterion evaluated in s = 1/2 is equal to 1/48. The calculations are exactly the same

when a percentage of missing value is added if M1 |=X1.

MIA splitting criterion. By symmetry, we can assume than missing values are sent left. It

is equivalent to observing

X′ = 01M=1 +X1M=0.
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The MIA splitting criterion is then defined as

s⋆MIA,L = argmin
s∈[0,1]

E
[(
Y − E[Y |X′ ≤ s]1X′≤s − E[Y |X′ > s]1X′>s

)2]
= argmin

s∈[0,1]
P(X′ ≤ s)E

[(
Y − E[Y |X′ ≤ s]

)2∣∣∣X′ ≤ s
]

+ P(X′ > s)E
[(
Y − E[Y |X′ > s]

)2∣∣∣X′ > s
]
.

We have

E[Y |X′ ∈ [0, s]] = E[X|X′ ∈ [0, s]]

= E[X1M=1 +X1M=0|X′ ∈ [0, s]]

=
1

P[X′ ∈ [0, s]]
E[X1M=1,X′∈[0,s] +X1M=0,X′∈[0,s]]

=
1

p+ (1− p)s

(p

2
+

(1− p)s2

2

)
.

Besides,

E[Y 2|X′ ∈ [0, s]] = E[X2|X′ ∈ [0, s]]

= E[X21M=1 +X21M=0|X′ ∈ [0, s]]

=
1

p+ (1− p)s
E[X21M=1,X′∈[0,s] +X21M=0,X′∈[0,s]]

=
1

p+ (1− p)s

(p

3
+

(1− p)s3

3

)

Thus the left-part of the criterion is given by

P(X′ ∈ [0, s])E[(Y − E[Y |X′ ∈ [0, s]])2|X′ ∈ [0, s]]

=
(
p+ (1− p)s

)(
E[Y 2|X′ ∈ [0, s]]− (E[Y |X′ ∈ [0, s]])2

)
=

(
p+ (1− p)s

)( 1

p+ (1− p)s

(p

3
+

(1− p)s3

3

)
−

( 1

p+ (1− p)s

(p

2
+

(1− p)s2

2

))2)
=

(p

3
+

(1− p)s3

3

)
−

1

p+ (1− p)s

(p

2
+

(1− p)s2

2

)2
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On the other hand, we have

E[Y |X′ ∈ [s, 1]] = E[X|X′ ∈ [s, 1]]

= E[X1M=1 +X1M=0|X′ ∈ [s, 1]]

=
1

(1− p)(1− s)
E[X1M=1,X′∈[s,1] +X1M=0,X′∈[s,1]]

=
1

(1− p)(1− s)

(
(1− p)

1− s2

2

)
=

1 + s

2
.

Besides,

E[Y 2|X′ ∈ [s, 1]] = E[X2|X′ ∈ [s, 1]]

= E[X21M=1 +X21M=0|X′ ∈ [s, 1]]

=
1

(1− p)(1− s)
E[X21M=1,X′∈[s,1] +X21M=0,X′∈[s,1]]

=
1

(1− p)(1− s)

(
(1− p)

1− s3

3

)
=

1− s3

3(1− s)
.

Thus the right-part of the criterion is given by

P(X′ ∈ [s, 1])E[(Y − E[Y |X′ ∈ [s, 1]])2|X′ ∈ [s, 1]]

=
(
(1− p)(1− s)

)(
E[Y 2|X′ ∈ [s, 1]]− (E[Y |X′ ∈ [s, 1]])2

)
=

(
(1− p)(1− s)

)( 1− s3

3(1− s)
− (

1 + s

2
)2
)

= (1− p)
1− s3

3
− (1− p)(1− s)

(1 + s

2

)2
.

Finally,

s⋆MIA,L = argmin
s∈[0,1]

{(p

3
+

(1− p)s3

3

)
−

1

p+ (1− p)s

(p

2
+

(1− p)s2

2

)2

+ (1− p)
1− s3

3
− (1− p)(1− s)

(1 + s

2

)2
}
,

which concludes the proof.



64 Julie Josse et al.

B.7 Proof of proposition 2

Probabilistic and block propagation. First, note that the variable X2 = X11W=1 is

similar to the variable studied for the computation of the MIA criterion in Proposition 1.

Therefore, the value of the CART splitting criterion along the first variable is CMIA(1, 1/2,L, 0)

and its value along the second variable is CMIA(2, s⋆MIA,L,L, η). Since the function

α 7→ CMIA(·, s⋆MIA,L,L, α)

is increasing, splitting along the first variable leads to the largest variance reduction. Thus, for

probabilistic and block propagation, splits occur along the first variable. Let us now compare

the value of these criteria. We have

P[X1 ≤ 1/2] = P[X1 ≥ 1/2] = 1/2.

The quantities related to the left cell are given by

E[Y |X1 ≤ 1/2] =
p+ 1

4
and E[Y 2|X1 ≤ 1/2] =

p

4
+

1

12
.

The quantities related to the right cell are given by

E[Y |X1 ≥ 1/2] =
3− p

4
and E[Y 2|X1 ≥ 1/2] =

7

12
−

p

4
.

Thus, the value of the criterion satisfies

R(f⋆
prob) =

1

2

(p

4
+

1

12
−

(
p+ 1

4

)2 )
+

1

2

( 7

12
−

p

4
−

(
3− p

4

)2 )
= −

p2

16
+

p

8
+

1

48
.

Let, for all p ∈ [0, 1],

h(p) = R(f⋆
prob)−R(f⋆

block)

= −
p2

16
+

p

8
+

1

48
−

(
−
11

48
+

1

8

3p+ 2

2p+ 1

)
= −

p2

16
+

p

8
+

1

16
−

1

16

1

2p+ 1
.
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We have,

h′(p) = −
p

8
+

1

8
+

1

8(2p+ 1)2
,

and consequently,

h′′(p) = −
1

8
−

1

2(2p+ 1)3
.

An inspection of the variation of h reveals that h(p) ≥ 0 for all p ∈ [0, 1], which concludes the

first part of the proof.

MIA. As noticed above, the criterion computed along the second variable is given by

CMIA(2, s⋆MIA,L,L, η)

Since the function

α 7→ CMIA(·, s⋆MIA,L,L, α)

is increasing, MIA split will occur along the first variable if p ≤ η and along the second variable

if p ≥ η. Therefore, the risk of the MIA splitting procedure is given by

R(f⋆
MIA) = min

s∈[0,1]
CMIA(1, s,L, p)1p≤η + min

s∈[0,1]
CMIA(1, s,L, η)1p>η .

Surrogate split. Consider the model Y = X1 and X2 = X11W=1, where P[W = 0] = η.

Let us determine the best split along X2 to predict Z = 1X1<0.5. Since {X2 ≤ s} = {X1 ≤

s,W = 1} ∪ {W = 0}, and {X2 > s} = {X1 > s,W = 1},

P[X2 ≤ s] = s(1− p) + p and P[X2 > s] = (1− s)(1− p).

Consequently,

E[Z|X2 ≤ s] =
E[1X1≤0.5,X2≤s]

P[X2 ≤ s]

=
1

s(1− p) + p
E[1X1≤0.5,X1≤s,W=1 + 1X1≤0.5,W=0]

=
1

s(1− p) + p

[
(1− p)min(0.5, s) +

p

2

]
.
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E[Z|X2 ≥ s] =
E[1X1≤0.5,X2>s]

P[X2 > s]

=
1

(1− s)(1− p)
P[X1 ≤ 0.5,W = 1, X1 ≥ s]

=
(0.5− s)+

1− s
.

Besides, note that E[Z2] = P[X1 ≤ 0.5] = 0.5. Therefore, the splitting criterion to predict

1X1≤0.5 with X2 is given by

f(s) =
1

2
− P[X2 ≤ s](E[Z|X2 ≤ s])2 − P[X2 > s](E[Z|X2 > s])2

=
1

2
−

1

s(1− p) + p

(
(1− p)min(0.5, s) +

p

2

)2
−

1− p

1− s
((0.5− s)+)2.

For s ≥ 1/2,

h(s) =
1

2
−

1

4(s(1− p) + p)
,

which is minimal for s = 1/2. For s ≤ 1/2,

h(s) =
1

2
−

1

4

(
p2

p+ s(1− p)
+

1− p

1− s

)
.

Hence,

h′(s) = −
1− p

4

(1− 2p)s2 + 2ps

(1− s)2(s(1− p) + p)2
.

Let g(s) = (1− 2p)s2 + 2ps. If p ≤ 1/2, the solutions of g(s) = 0 are negative, thus, g(s) ≥ 0

for all s ∈ [0, 1/2] and thus the minimum of h is reached at s = 1/2. If p ≥ 1/2, one solution

of g(s) = 0 is zero and the other is s = 2p/(2p− 1) > 1. Thus, g(s) ≥ 0 for all s ∈ [0, 1/2] and

the minimum of h is reached at s = 1/2. Finally, the minimum of h is reached at s = 1/2. The

risk of the surrogate estimate is then given by

R(f⋆
surr) = E[(Y − f⋆

surr(X))2]

= E[(Y − f⋆
surr(X))21M1=0 + (Y − f⋆

surr(X))21M1=1].
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Here,

E[(Y − f⋆
surr(X))2|M1 = 1]

= E[(X1 − 0.25)21X2<0.5 + (X1 − 0.75)21X2≥0.5]

= ηE[(X1 − 0.25)2] + (1− η)E[(X1 − 0.25)21X1≤0.5]

+ (1− η)E[(X1 − 0.75)21X1>0.5]

=
1

48
+

6η

48
.

Finally,

R(f⋆
surr) =

1− p

48
+ p

( 1

48
+

6η

48

)
=

1

48
+

6

48
ηp.

C Miscellaneous

C.1 Variable selection properties of the tree methods with missing values

Decision trees based on the CART criterion (implemented in the R library rpart) and on

conditional trees (implemented in the the R library partykit) lead to different ways of selecting

splitting variables. We illustrate this behaviour on the simple following model:


X1 |=X2 ∼ N (0, 1)

ε ∼ N (0, 1)

Y = 0.25X1 + ε.

We insert MCAR values, either on the first variable or on both variables. Stumps (decision

trees of depth one) are fit on 500 Monte-Carlo repetitions. We vary the sample size and the

percentage of missing values. Figure 7 show that CART and conditional trees give similar

results when there are missing values on both variables. However, Figure 8 shows that CART

has a tendency to underselect X1 when there are missing values only on X1. For instance, for

a sample of size 50 with 75% missing values, CART selects the non-informative variable X2

more frequently than X1, while conditional trees keep selecting X1 more often.
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(a) CART (b) Conditional trees

Fig. 7: Frequency of selection of X1 when there are missing values on X1 and X2

(a) CART (b) Conditional trees

Fig. 8: Frequency of selection of X1 when there are missing values on X1 only

C.2 Example of EM algorithm

Let us consider a simple case of n observations (x1,x2) = (xi1, xi2)1≤i≤n sampled from the

distribution of (X1, X2), a bivariate Gaussian distribution with parameters (µ,Σ). We assume

that X2 is subjected to missing values and that only r values are observed. The aim is to

get the maximum likelihood estimates of (µ,Σ) from the incomplete data set. The algorithm

described below can be straightforwardly extended to the multivariate case. Note that from

(µ̂, Σ̂), it is then possible to directly estimate the parameters of a linear regression model and

thus to perform linear regression with missing values.

We denote by f1,2(x1,x2;µ,Σ), f1(x1;µ1, σ11) and f2|1(x2|x1;µ,Σ), respectively, the proba-

bility of joint distribution of (X1, X2), marginal distribution of X1 and conditional distribution

of X2|X1. The joint distribution of observed data can be decomposed as:

f1,2(x1,x2;µ,Σ) =
n∏

i=1

f1(xi1;µ1, σ11)

r∏
j=1

f2|1(xj2|xj1;µ,Σ),
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and the observed log-likelihood is written (up to an additional constant that does not appear

in the maximization and that we therefore drop):

ℓ(µ,Σ;x1,x2) = −
n

2
log(σ2

11)−
1

2

n∑
i=1

(xi1 − µ1)2

σ2
11

−
r

2
log

(
(σ22 −

σ2
12

σ11
)2
)

−
1

2

r∑
i=1

(
xi2 − µ2 − σ12

σ11
(xi1 − µ1)

)2

(σ22 −
σ2
12

σ11
)2

We skip the computations and directly give the expression of the closed form maximum like-

lihood estimates of the mean:

µ̂1 = n−1
n∑

i=1

xi1

µ̂2 = β̂20.1 + β̂21.1µ̂1,

where

β̂21.1 = s12/s11, β̂20.1 = x̄2 − β̂21.1x̄1,

x̄j = r−1
r∑

i=1

xij and sjk = r−1
r∑

i=1

(xij − x̄j)(xik − x̄k), j, k = 1, 2.

In this simple setting, we have an explicit expression of the maximum likelihood estimator

despite missing values. However, this is not always the case but it is possible to use an EM

algorithm to get the maximum likelihood estimators in the cases where data are missing.

The EM algorithm consists in maximizing the observed likelihood through successive max-

imization of the complete likelihood (if we had observed all n realizations of x1 and x2).

Maximizing the complete likelihood

ℓc(µ,Σ;x1,x2) = −
n

2
log (det(Σ))−

1

2

n∑
i=1

(xi1 − µ1)
TΣ−1(xi1 − µ1)

would be straightforward if we had all the observations. However elements of this likelihood are

not available. Therefore, we replace them by the conditional expectation given observed data

and the parameters of the current iteration. These two steps of computation of the conditional

expectation (E-step) and maximization of the completed likelihood (M step) are repeated until

convergence. The update formulas for the E and M steps are as follows:

E step: The sufficient statistics of the likelihood are:

s1 =

n∑
i=1

xi1, s2 =
n∑

i=1

xi2, s11 =

n∑
i=1

x2
i1, s22 =

n∑
i=1

x2
i2, s12 =

n∑
i=1

xi1xi2.
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Since some values of x2 are not available, we fill in the sufficient statistics with:

E[xi2|xi1;µ,Σ] = β20.1 + β21.1xi1

E[x2
i2|xi1;µ,Σ] = (β20.1 + β21.1xi1)

2 + σ22.1

E[xi2xi2|xi1;µ,Σ] = (β20.1 + β21.1xi1)xi1.

with, β21.1 = σ12/σ11, β20.1 = µ2 − β21.1µ1, and σ22.1 = σ22 − σ2
12/σ11.

M step: The M step consists in computing the maximum likelihood estimates as usual. Given

s1, s2, s11, s22, and s12, update µ̂ and σ̂ with

µ̂1 = s1/n, µ̂2 = s2/n,

σ̂1 = s11/n− µ̂2
1, σ̂2 = s22/n− µ̂2

2, σ̂12 = s12/n− µ̂1µ̂2

Note that s1, s11, µ̂1 and σ̂1 are constant across iterations since we do not have missing values

on x1.

Remark 4 Note that EM imputes the sufficient statistics and not the data.
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D Additional experiments

D.1 Varying the correlation strength and the missing rate
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Fig. 9: R2 scores on model 1 • Normalized explained variance for different mech-
anisms with 20% of missing values, n = 1000, d = 9 and ρ = 0.2.
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Fig. 10: R2 scores on model 1 • Normalized explained variance for different
mechanisms with 20% of missing values, n = 1000, d = 9 and ρ = 0.5.
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Fig. 11: R2 scores on model 1 • Normalized explained variance for different
mechanisms with 20% of missing values, n = 1000, d = 9 and ρ = 0.8.
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Fig. 12: R2 scores on model 1 • Normalized explained variance for different
mechanisms with 40% of missing values, n = 1000, d = 9 and ρ = 0.5.
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Fig. 13: R2 scores on model 1 • Normalized explained variance for different
mechanisms with 60% of missing values, n = 1000, d = 9 and ρ = 0.5.



ctree
ctree + mask

rpart
rpart + mask

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

ctree

ctree + mask

rpart

rpart + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.000

0.000 0.000 nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000 0.000 0.000 0.059 0.059 0.001

0.000 0.000 0.000 0.000 0.000 nan 0.000 0.000 0.311 0.313 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.004 0.000 0.000 0.059 0.311 0.000 0.000 nan 0.888 0.000

0.000 0.004 0.000 0.000 0.059 0.313 0.000 0.000 0.888 nan 0.000

0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 nan

DECISION TREE

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.120 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.456 0.000

0.000 0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 0.000 nan 0.000 0.000 0.000

0.120 0.000 0.000 0.000 nan 0.000 0.000

0.000 0.456 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan

RANDOM FOREST

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000 0.000

0.000 0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan

XGBOOST

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

nan 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 nan 0.000 0.000 0.000

0.000 0.000 0.000 nan 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 nan

SVM

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

nan 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000

0.000 0.000 nan nan 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 nan

KNN

0.0

0.1

0.2

0.3

0.4

0.5

D.2 Statistical tests

Fig. 14: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MCAR model (ρ = 0.2, missing rate of 20%)
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Fig. 15: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MNAR model (ρ = 0.2, missing rate of 20%)
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Fig. 16: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a Predictive M model (ρ = 0.2, missing rate of 20%)
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Fig. 17: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MCAR model (ρ = 0.5, missing rate of 20%)
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Fig. 18: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MNAR model (ρ = 0.5, missing rate of 20%)
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Fig. 19: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a Predictive M model (ρ = 0.5, missing rate of 20%)



ctree
ctree + mask

rpart
rpart + mask

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

ctree

ctree + mask

rpart

rpart + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 nan 0.218 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.218 nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.466 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.466 nan 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nan 0.008 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 nan 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nan

DECISION TREE

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000 0.000

0.000 0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 0.000 nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.226 0.000

0.000 0.000 0.000 0.000 0.226 nan 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan

RANDOM FOREST

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000 0.000

0.000 0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan

XGBOOST

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

nan 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 nan 0.000 0.000 0.000

0.000 0.000 0.000 nan 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 nan

SVM

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

nan 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000

0.000 0.000 nan nan 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 nan

KNN

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 20: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MCAR model (ρ = 0.8, missing rate of 20%)
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Fig. 21: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MNAR model (ρ = 0.8, missing rate of 20%)



ctree
ctree + mask

rpart
rpart + mask

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

ctree

ctree + mask

rpart

rpart + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.001 0.000 0.000 0.000 0.000 0.000 0.018 0.109 0.000

0.000 0.001 nan 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 nan 0.000 0.000 0.000 0.000 0.000 0.000 0.520

0.000 0.000 0.000 0.000 nan 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 nan 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.018 0.000 0.000 0.000 0.000 0.000 0.000 nan 0.000 0.000

0.000 0.109 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.520 0.000 0.000 0.000 0.000 0.000 0.000 nan

DECISION TREE

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000 0.000

0.000 0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 0.000 nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000 0.000

0.000 0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan

RANDOM FOREST

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

MIA

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

MIA

nan 0.000 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000 0.000

0.000 0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 0.000 nan

XGBOOST

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

nan 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 nan 0.000 0.000 0.000

0.000 0.000 0.000 nan 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 nan

SVM

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian
Gaussian + mask

oor
oor + mask

mean
mean + mask

Gaussian

Gaussian + mask

oor

oor + mask

mean

mean + mask

nan 0.000 0.000 0.000 0.000 0.000

0.000 nan 0.000 0.000 0.000 0.000

0.000 0.000 nan nan 0.000 0.000

0.000 0.000 nan nan 0.000 0.000

0.000 0.000 0.000 0.000 nan 0.000

0.000 0.000 0.000 0.000 0.000 nan

KNN

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 22: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a Predictive M model (ρ = 0.8, missing rate of 20%)
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Fig. 23: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MCAR model (ρ = 0.5, missing rate of 40%)
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Fig. 24: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MNAR model (ρ = 0.5, missing rate of 40%)
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Fig. 25: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a Predictive M model (ρ = 0.5, missing rate of 40%)
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Fig. 26: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MCAR model (ρ = 0.5, missing rate of 60%)
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Fig. 27: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a MNAR model (ρ = 0.5, missing rate of 60%)
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Fig. 28: P-values of paired t-tests for each pair of imputation method and for each
learning algorithm in a Predictive M model (ρ = 0.5, missing rate of 60%)
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