
HAL Id: hal-02024152
https://hal.science/hal-02024152v3

Submitted on 13 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

From normal functors to logarithmic space queries
Lê Thành Dũng Nguyễn, Cécilia Pradic

To cite this version:
Lê Thành Dũng Nguyễn, Cécilia Pradic. From normal functors to logarithmic space queries. 46th
International Colloquium on Automata, Languages and Programming (ICALP 2019), Jul 2019, Patras,
Greece. �10.4230/LIPIcs.ICALP.2019.123�. �hal-02024152v3�

https://hal.science/hal-02024152v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

From normal functors to logarithmic space queries
Lê Thành Dũng (Tito) Nguyễn
LIPN, UMR 7030 CNRS, Université Paris 13, Sorbonne Paris Cité, France
https://nguyentito.eu/
nltd@nguyentito.eu

Cécilia Pradic
ENS de Lyon, Université de Lyon, LIP, France
University of Warsaw, Faculty of Mathematics, Informatics and Mechanics, Poland

Abstract
We introduce a new approach to implicit complexity in linear logic, inspired by functional database
query languages and using recent developments in effective denotational semantics of polymorphism.
We give the first sub-polynomial upper bound in a type system with impredicative polymorphism;
adding restrictions on quantifiers yields a characterization of logarithmic space, for which extensional
completeness is established via descriptive complexity.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Complexity theory and logic; Theory of computation → Finite Model Theory

Keywords and phrases coherence spaces, elementary linear logic, semantic evaluation

Related Version ICALP’19 proceedings: doi:10.4230/LIPIcs.ICALP.2019.123

Funding Lê Thành Dũng (Tito) Nguyễn: Partially supported by the Elica project (ANR-14-CE25-
0005).
Cécilia Pradic: Partially supported by the the RAPIDO project (ANR-14-CE25-0007).

Acknowledgements L. T. D. Nguyễn wishes to thank Damiano Mazza, Thomas Seiller and Kazushige
Terui for highly instructive discussions. C. Pradic thanks Alexis Ghyselen for his valuable feedback
on a first draft of this paper.

Warning

There are some issues with rigor in this paper (which perhaps should not have been published
in this state?):

on the syntactic side, our arguments massaging ELL proofs into “equivalent” one (comput-
ing the same function) are quite sketchy – actually, we are not aware of any fully rigorous
treatment of inversion or permutations of inference rules in sequent calculi for classical
linear logics that takes computational content into account and not just provability;
on the semantic side, the prequel paper [32] that is supposed to deal with the prerequisites
is still unfinished (due in part again to a general gap in the literature concerning categorical
models of MALL2).

However, all the arguments are still “morally” correct to our knowledge.
Since mid-2019, both authors have been busy pursuing a research programme on “implicit

automata in typed λ-calculi”, inspired by Theorem 2. This line of work being much more
promising than the one carried out here, we have deprioritized “repairing” the present paper
for now, even though it serves as good advertising for the usefulness of some variant of
polynomial functors (a recently trendy topic). Read at your own risk.

https://orcid.org/0000-0002-6900-5577
https://nguyentito.eu/
mailto:nltd@nguyentito.eu
https://orcid.org/0000-0002-1600-8846
https://doi.org/10.4230/LIPIcs.ICALP.2019.123

2 From normal functors to logarithmic space queries

1 Introduction

Machine-free complexity We pursue here a research theme advocated by Leivant [26]:
using type systems and the proofs-as-programs correspondence to define functional languages
whose expressible functions are exactly those of a given complexity. This usually consists
of two independent parts: soundness – all those functions admit such complexity bounds
– and extensional completeness – for every algorithm with this complexity, there is an
expressible program computing the same function. This is part of the general area of implicit
computational complexity (ICC), whose goal is to obtain characterizations of complexity
classes by programming languages, without explicit resource bounds on a machine model
(other methods in ICC include, for instance, recursive function algebras).

On the other hand, descriptive complexity is closer to a declarative programming paradigm:
it consists in characterizing complexity classes as sets of queries – predicates over finite
first-order relational structures – written in some logic. (Such structures often go by the
name of finite models; see Definition 3.) The field was launched by Fagin’s result that NP
queries correspond to existential second-order logic [11]. For our purposes, an useful example
is Immerman’s characterization of deterministic logarithmic space (L) (Theorem 13).

This idea of representing inputs as finite first-order structures also appeared in the early
history of ICC: Gurevich [17] showed in 1983 that in this setting, a form of primitive recursion
captures L. But unlike in descriptive complexity, Gurevich considers endofunctions instead
of relations and queries.

Queries in the λ-calculus Hillebrand’s PhD thesis [18] is a junction point between implicit
and descriptive complexity. The idea was to represent finite models inside the simply typed
λ-calculus (STλ), using them to represent the inputs to programs. By doing so, Hillebrand
et al. managed to characterize P [19], PSPACE [1] and k-EXPTIME/k-EXPSPACE1 [20] – the
extensional completeness for the first two being established through descriptive complexity.

Keeping in mind the connections between finite model theory and relational databases,
this can also be seen as using STλ as a functional language for database queries, expressive
enough to admit translations from other languages such as Datalog, as is done in [21].

The present paper could then be motivated as looking for a sub-polynomial2 functional
query language, filling a gap in the aforementioned work.

Linear logic for ICC Here it is natural to turn to linear logic, a constructive logic born from
the proofs-as-programs correspondence, in which several characterizations of sub-polynomial
complexity classes have already been devised [38, 36, 7, 28, 29]. From its inception, linear
logic has indeed had the ambition to “help us improve the efficiency of programs” [13, p. 3],
and a landmark result in that direction was characterizing P through Light Linear Logic [16].

In this paper, we will use Elementary Linear Logic (ELL) [16, 8], which was originally
introduced to capture the class ELEMENTARY3. A recent line of work by Baillot et al. [2, 3, 4]
shows that one can define, inside variants of ELL, types of programs which compute smaller

1 k-EXPTIME(resp. k-EXPSPACE) is the class of functions which can be computed in time (resp. space)
2 ↑k (p(n)), where p is a polynomial and n is the size of the input. (We use Knuth’s up-arrow
notation [24] for iterated exponentials: 2 ↑k+1 (n) = 22↑k(n), and 2 ↑0 (n) = n.)

2 That is, capturing a complexity class below P. To be fair, Hillebrand’s thesis does define a characterization
of the sub-polynomial class of first-order queries (FO) in STλ, but this class has very little expressivity,
and our work captures a class still well above FO.

3 This is the class of elementary recursive functions, i.e. the union over k ∈ N of the classes k-EXPTIME.

L. T. D. Nguyễn and C. Pradic 3

complexity classes, such as P. We follow this approach, by introducing a type Inp which is
essentially an abstract data type4 for finite models. Our main result is (writing Bool = 1⊕1):

I Theorem 1. The class of queries computed by the proofs of Inp(!!Bool in second-order
Elementary Linear Logic (ELL2) is between L and NL. Furthermore, a suitable restriction
on the existential witnesses in the proof gives an exact characterization of L.

Here NL stands for non-deterministic logarithmic space. Actually, we obtain a better upper
bound than NL in the unrestricted case, namely the class LUL which will be defined later.
But we believe that this is still not optimal:

B Conjecture 1. Even without the restriction, the class of queries obtained is exactly L.

Our characterization has a few distinctive features with respect to the previous variants
of linear logic capturing logarithmic space [36, 7, 28]: it takes place in a simple pre-existing
logical system, which contains only usual logical connectives, and no primitive datatypes5; at
the price of a more involved encoding of inputs, the Inp type. But a main novelty, in our
opinion, is the unrestricted case: to our knowledge, it is the first6 sub-polynomial bound in a
type system with impredicative polymorphism.

This forces our approach to be significantly different to these previous works: they all
exploit some form of the Geometry of Interaction (GoI) [14, 9] as a space-efficient evaluator,
whereas in our case this does not work7 because of impredicative quantication. In the
predicative case, there is still an obstruction to the GoI: the additive connectives of linear
logic. Instead, our tool of choice will be denotational semantics.

Semantic evaluation and polymorphism This is indeed the sequel to a previous paper [32]
which studied the semantics of second-order Multiplicative-Additive Linear Logic (MALL2)
with applications in mind; in particular it proved that Girard’s model of MALL2 in coherence
spaces [12, 13] is finite and effective. In order to establish our upper complexity bounds, we
will compute the denotation of a program applied to its input in the coherence space model.

This semantic evaluation technique has been very successful before for establishing
complexity bounds in STλ: it is how soundness is established in the aforementioned works
of Hillebrand et al., and also underlies Terui’s more recent result on the complexity of
β-reduction in STλ at fixed order [39]. Beyond STλ, it has been applied to System T and
PCF, see [25] and references therein. However, these applications had been confined to
monomorphic type systems8 until the prequel showed:

I Theorem 2 ([32]). The languages decided by proofs of !Str(!!Bool in ELL2, where Str
is the type of ELL Church encodings of strings, are exactly the regular languages.

4 This term is the programming language counterpart of existential formulas in logic, cf. infra.
5 Given the special status granted to unary Church integers by the “skewed iteration” rule in Schöpp’s
SBAL [36], it is fair to consider them to be primitive datatypes.

6 Excluding the characterization of regular languages in ELL2, cf. infra, but regular languages do not
form a well-behaved complexity class (for instance they are not closed under uniform AC0 reductions).

7 We will not enter into details here, but essentially, the GoI works by “following paths” inside a proof,
and in our case, the length of these paths would be super-polynomial.

8 That said, there have been some uses of rather different semantic techniques for implicit complexity in
presence of polymorphism, e.g. realizability [6].

4 From normal functors to logarithmic space queries

An analysis of the proof also suggested that to increase the expressivity9 while keeping !!Bool
as output, one should replace Str by an existential input type. Hence the Inp type.

To perform semantic evaluation in a polymorphic language, one needs an effective model
of polymorphism, and such models are not easy to build. First, one must first restrict to a
purely linear language10 such as MALL2 to make a non-trivial finitary semantics possible.
Even then, obstacles remain: for instance, the prequel [32] proved that no degenerate model
of MALL2 (in which ⊗ and ` are identified) can satisfy a desirable “constancy property”,
so this excludes the Scott model of linear logic used by [39]. Girard managed to build a
semantics for System F [12] which later turned out to be finite and effective for MALL2 by
representing types depending on type parameters as normal functors11. Although we will not
have to study the properties of normal functors here – the semantic groundwork has been
laid in the prequel – we consider that this ingredient is crucial enough to deserve inclusion in
the title.

New complexity phenomena in MALL The bottleneck for this LUL bound is the complexity
of an iterated composition problem: given a MALL2 type A and k proofs f1, . . . , fk of A ` A,
compute their composition f1◦ . . .◦fk. To illustrate the kind of complexity constraint induced
by the linearity of the fi, consider the types Bool⊗ . . .⊗Bool (n times) and Bool& . . .&Bool
(n times). A non-linear function does not distinguish them, whereas for linear functions:

an iteration over Bool⊗ . . .⊗ Bool can simulate a Turing machine running in space n
(minus O(1) bits for the control state);
an iteration over Bool & . . .& Bool can be computed in space O(log(nk)).

This kind of phenomenon surfaced when we tried to obtain bounds on our ELL2 queries;
we are not aware of a previous mention in the literature. Coherence spaces are sensitive to
this (e.g. the interpretation of ⊗ and & bit vectors have respective sizes 2n and 2n) and thus
manage to give a systematic sub-polynomial (but not L) bound on iterations.

For now, we have only managed to find a logarithmic space algorithm for those iterations
in very specific cases of A, subsuming the above example. These cases still leave enough
room for an extensional completeness result, leading to our exact characterization of L. But
even in propositional MALL, the complexity of iterations remains mysterious.

Plan of the paper In Section 2 we introduce the necessary definitions and state the main
theorems. The lower bound on expressivity is established using descriptive complexity in
Section 3, while our upper bounds are both proved in Section 4 via semantic evaluation.

9 This was also a major motivation in the work of Hillebrand et al.: they wanted to overcome limits in
STλ such as Statman’s classical result that equality cannot be defined on STλ Church integers (see
the introduction to [21]). Hillebrand and Kanellakis [20] later proved that the languages decided by
STλ predicates over Church-encoded strings are regular (this inspired the analogous result on ELL2).
Such restrictions seem drastic since the β-equivalence problem for STλ is not in ELEMENTARY [37, 27],
hinting that its computational power should be much greater. By using finite models as inputs,
Hillebrand, Kanellakis and Mairson [21] manage to express all ELEMENTARY queries.

10The type ∀X. X → (X → X)→ X of polymorphic Church integers – more generally, any infinite data
type whose destructors are definable – has an inifinite denotation in any semantics of System F.

11A remark: the fact that our LUL upper bound involves unambiguous nondeterminism, as we shall see,
is related to the stability of linear maps in coherence spaces; stable maps are the “lower-dimensional
analogue” of normal functors, and interestingly, it seems that stability is required for the construction
of models of polymorphism based on normal functors.

L. T. D. Nguyễn and C. Pradic 5

(functorial promotion) ` Γ, A
` ?Γ, !A (weakening) ` Γ

` Γ, ?A (contraction)` Γ, ?A, ?A
` Γ, ?A

Figure 1 Exponential rules for the ELL2 sequent calculus. In the functorial promotion rule, when
Γ = B1, . . . , Bk, ?Γ stands for ?B1, . . . , ?Bk.

2 Elementary Linear Logic as a query language

2.1 Linear Logic
In this paper, we assume some familiarity with the basic ideas of the proofs-as-programs
paradigm and more specifically of linear logic. The formulas and the sequent calculus of
second-order Multiplicative-Additive Linear Logic (MALL2) are recalled in Appendix A.
Recall that MALL2 forbids using the structural rules of contraction and weakening, enforcing
linearity whose computational meaning is that data cannot be duplicated or erased.

In order to allow the use of the structural rules in a controlled manner, the grammar of
full Linear Logic extends the syntax of MALL2 with exponential modalities !F and ?F which
allow to tag duplicable assumptions and conclusions. (Second-order) Elementary Linear Logic
(ELL2) corresponds to the subsystem whose rules governing the exponential connectives are
given in Figure 1; this makes the principles of digging (!A(!!A) and dereliction (!A(A)
invalid in ELL2 while they are provable in full Linear Logic.

ELL2 thus satisfies a stratification property: the depth of a given connective – i.e. the
number of !/? modalities it is in the scope of – does not change during cut-elimination (key
cut-elimination rules are also recalled in Appendix A). As a consequence, this notion of depth
is of the utmost relevance for the computational complexity properties of ELL2.

LL notations When π and ρ have respective conclusions ` Γ, A and ` A⊥,∆, we write
cut(π, ρ) for the proof of ` Γ,∆ consisting of a cut-rule with premises π and ρ. Given a
proof π : A, !π denotes the proof of !A obtained by applying the promotion rule to π. As we
formally use one-sided sequents, A1, . . . , An ` B is a notation for ` A⊥1 , . . . , A⊥n , B.

2.2 Finite models
I Definition 3. Let Σ be a first-order relational signature, i.e. a list of relation symbols
{R0, . . . ,Rk} with their respective arities r0, . . . , rk.

A finite model D over Σ consists of a finite set D and an interpretation RD
i ⊆ Dri for

each relation symbol. It is totally ordered when R0 = ≤, r0 = 2 and RD
0 is a total order.

We write FinMod(Σ) for the set of totally ordered finite models over Σ.

As an example, a possible signature for binary strings is {≤, S} with arities 2 and 1.
Finite models consist of a totally ordered set (D,≤D) with a unary predicate SD; we interpret
(D,≤D) as the indices of the string, and SD(d) as “the dth bit is set to 1”.

I Remark 4. The “totally ordered” assumption is common in descriptive complexity (see e.g.
Theorem 13) and will be often kept implicit in the paper. Indeed, there are order-independent
queries requiring a total order to be expressed.

To use finite models as inputs for ELL2 programs, we represent the elements of FinMod(Σ)
as proofs of an ELL2 formula InpΣ.

6 From normal functors to logarithmic space queries

I Definition 5. We define the types with a free variable δ:

List[δ] = ∀X. !(δ(X (X)(!(X (X) C[δ] = δ(δ ⊗ δ W[δ] = δ(1

Ctx[δ] = !List[δ]⊗ !!C[δ]⊗ !!W[δ] Bool = 1⊕ 1 Relr[δ] = δr (Bool

Given a signature Σ = {≤,R1, . . . ,Rk} with arities r0 = 2, r1, . . . , rk, we also define:

InpΣ[δ] = Ctx[δ]⊗
⊗

0≤i≤k
!!Relri [δ] InpΣ = ∃δ. InpΣ[δ]

We now define the encoding D of any totally ordered finite model D over Σ as a proof of
InpΣ[Fin(n)], where Fin(n) = 1⊕ . . .⊕ 1 with n summands, n being the domain size.

Let D = (D,≤D,RD
1 , . . . ,RD

k) ∈ FinMod(Σ) with Card(D) = n. Choose a bijection
between D and the n proofs of Fin(n).

We represent D as a Church-encoded list of type List[Fin(n)] enumerating the n elements
of Fin(n).
Each relation RD

i can be represented by an element of Relri
[Fin(n)].

Finally, since Fin(n) is a positive type, there are canonical elements of type C[Fin(n)]
and W[Fin(n)] implementing the structural rules.

I Definition 6. A proof π of InpΣ (!!Bool defines the query which evaluates to true on
D ∈ FinMod(Σ) iff the application of π to the encoding D reduces to !!true (where true is
the proof of Bool = 1⊕ 1 proving the left occurrence of 1).

2.3 Complexity classes and the main theorems
For the rest of the paper, we fix a signature Σ = {R0 = ≤,R1, . . . ,RN} with arities
r0 = 2, r1 . . . , rN .

As we said in the introduction, we write L (resp. NL) for the class of decision problems
solvable in deterministic (resp. non-deterministic) logarithmic space. The unambiguous
logarithmic space class UL [33] consists of the problems which can be solved by a NL Turing
machine whose accepting runs are guaranteed to be unique: for each input, if the machine
accepts, there is a single sequence of non-deterministic choices leading to the accepting state.
(So UL ⊆ NL.) LUL denotes L with an UL oracle; as usual we use the Ruzzo–Simon–Tompa
definition12 of space-bounded oracle machines [35, §4].

We can now state our result in the unrestricted case.

I Theorem 7. The class of queries computed by the proofs of InpΣ (!!Bool in ELL2 is
between L and LUL.

It is known that NLNL = NL (as noted in [23, Corollary 2], it follows from NL = coNL),
so LUL ⊆ NL, hence the statement in the introduction. Furthermore, while NL ⊂ P, it is
commonly believed that NL 6= P, so our class of queries is presumably strictly sub-polynomial.

To state the second main theorem, we now introduce a fragment of ELL2 with an ad-hoc
restriction on existential witnesses.

12A remark on notation: they would write L〈UL〉 instead of LUL and use the latter to denote a naive notion
of oracle machine. See [35, Example 1] for an example of the subtleties involved: without a careful
definition, NLNL would include NP.

L. T. D. Nguyễn and C. Pradic 7

I Definition 8. The set of positive polynomial formulas PP is the subset of MALL2 formulas
generated by the grammar P,Q, . . . ::= 0 | 1 | X | P ⊗Q | P ⊕Q.

We define PP3 to be the set of formulas of the form P ⊗ (Q(R), where P,Q,R ∈ PP.
The logic ELLPP3

2 is defined by the same rules as ELL2 except that we exclude the cut
rule, and restrict the ∃-rule as follows: the witness (i.e. B in Figure 2) must belong to PP3.

The “cut-free” part is necessary because a cut between two ELLPP3
2 proofs does not

necessarily normalize into a ELLPP3
2 proof. However, we do have:

I Proposition 9. Let π and ρ be ELLPP3
2 proofs with respective conclusions ` Γ, A and

` A⊥,∆. If A is quantifier-free, then cut(π, ρ) is in ELLPP3
2 .

With ELLPP3
2 , we obtain an exact characterization of L:

I Theorem 10. The class of queries computed by proofs of InpΣ (!!Bool in ELLPP3
2 is L.

3 The lower bound: encoding logarithmic space queries

In this section, we use descriptive complexity to get the lower bound in both theorems above
(so, for the second one, this is an extensional completeness proof).

3.1 Reminder: Immerman’s characterization of L
Descriptive complexity considers queries given by formulas in extensions of classical first-
order logic. The first-order formulas over Σ are generated by the grammar φ, ψ, . . . ::=
Ri(x1, . . . , xri

) | ¬φ | φ ∨ ψ | ∃x.φ, where the xj are variables.
As usual, the semantics of these formulas is specified by a “satisfaction” relation D |= φ[σ]

for D ∈ FinMod(Σ), defined by induction over φ, where σ assigns elements of the domain D
of D to the free variables of φ: e.g. D |= (∃x.φ)[σ] iff D |= φ[σ + (x 7→ d)] for some d ∈ D.
Thus, when such a formula φ is closed, it defines the query D 7→ (D |= φ).

To express all logarithmic space queries, we need to extend our language of formulas with
a deterministic transitive closure operator.

I Definition 11. The formulas of first-order logic with deterministic transitive closure
(FO+DTC) are generated by the above grammar extended with a new clause:

φ, ψ, . . . ::= . . . | DTC~x,~y(φ) (~x and ~y are lists of variables of same length)

The definition of the satisfaction relation is extended with the following induction case:
D |= DTC~x,~y(φ)[σ] ⇐⇒ σ(~x) R∗ σ(~y) where

R∗ is the reflexive transitive closure of the binary relation R ⊆ Dk ×Dk;
D is the domain of D and ~x, ~y have length k;
~a R ~b ⇐⇒ D |= φd[σ+ (~x 7→ ~a) + (~y 7→ ~b)]13 with φd defined as φ∧ (∀~z. φ[~z/~y]⇒ ~z = ~y).

I Remark 12. In the above definition, the relation R defined by φd is deterministic, i.e. it is
the graph of a partial function Dk ⇀ Dk, hence the name. Indeed, it is a “determinization”
of the relation defined by φ.

I Theorem 13 (Immerman [22]). The L queries over totally ordered finite models are exactly
those expressible in FO+DTC.

13The new assignments for ~x and ~y override the pre-existing ones in σ.

8 From normal functors to logarithmic space queries

3.2 An encoding of FO+DTC
Thus, it suffices to compile FO+DTC formulas, by induction, to ELLPP3

2 proofs. For this
purpose, it is convenient to interpret formulas with free variables as relation-valued queries:

I Theorem 14. Let φ(~x) be an FO+DTC formula with k free variables. Then there exists
an ELLPP3

2 proof πφ of Inp[δ] ` !!Relk[δ] such that, for all D ∈ FinMod(Σ) with a domain D
of size n, cut(D, πφ[Fin(n)/δ]) reduces to the encoding of {~a ∈ Dk | D |= φ[~x 7→ ~a]}.

I Corollary 15 (Lower bound for Theorem 7 and Theorem 10). All FO+DTC queries – and
therefore all L queries – over FinMod(Σ) can be computed by ELLPP3

2 proofs of InpΣ (Bool.

Proof. Note that Rel0[δ] ∼= Bool, and apply a `-rule and a ∀-rule to the ELLPP3
2 proof

given by the previous theorem. J

The detailed proof of Theorem 14 is given in Appendix B. As stated before, it works by
induction on the FO+DTC formula, the bulk of the work for the induction being the case
φ = DTC~x,~y(ψ). The remainder of the section gives a rough summary of the ideas involved.

Let R ⊆ Dk ×Dk, and define ψR : Q 7→ {(x, z) | x = z ∨ (∃y : xR y ∧ y Q z)}. Then ψR
is a monotone function over P(Dk ×Dk), a lattice of height n2k + 1 (n = Card(D)). Its least
fixpoint ψn

2k+1
R (∅) is exactly the reflexive transitive closure of R. To compute ψn

2k+1
R , we

use an iterator of type Nat = ∀X. !(X (X)(!(X (X) derived from the List[δ].
But this only allows us to iterate linear functions. This is where we use the assumption

that R is deterministic: if fR : Dk ⇀ Dk is the partial function associated to R, then
ψR(Q) = {(x, z) | x = z ∨ (fR(x) defined ∧ fR(x)Qz)}. In this reformulation, the existential
quantifier, which was a source of non-linearity, has disappeared: now, for each (x, z), the
evaluation of (x, z) ∈ ψR(Q) uses Q at most once, on (fR(x), z). In the end, we manage to
write a function of type Rel2k[δ](Rel2k[δ] representing ψR, which we feed to the Nat.

A not-quite-trivial step is to define a proof of Ctx[δ], !!Rel2k[δ] ` !!(δk (1⊕δk) sending a
relation φ to the partial function associated to its determinization φd. To do so, at one point,
we need to instantiate the input List[δ] at the type δk−1 ⊗ (δk (1⊕ δk ⊕ 1); this is our
most complicated existential witness, and it is in PP3. We refer the reader to Appendix B
again for details.

4 The upper bounds: semantic evaluation

We now give space-efficient algorithms for queries defined by proofs of InpΣ (!!Bool in
ELL2 (resp. ELLPP3

2). First, we analyse the shape of such a proof, to obtain alternative
definitions of the same predicates involving only MALL2 types and proofs. This puts us in
a position to evaluate our queries in a finite, effective semantics of MALL2: the model of
coherence spaces and normal functors which we recall next. Then, we quickly derive the
unrestricted LUL bound for Theorem 7, and finally prove L soundness for Theorem 10 thanks
to a tricky combinatorial algorithm on coherence spaces.

4.1 Syntactic analysis
Purely syntactic arguments suffice to show that our ELL2 queries can be captured by a
kind of function algebra, defined below. Though it bears some similarities with Gurevich’s
characterization of L [17] by primitive recursion on finite models, a major difference is that
our functions may take arguments which are not just domain elements (that can be coded on
O(logn) bits) but also higher-order data of polynomial size in n, such as relations. Indeed,

L. T. D. Nguyễn and C. Pradic 9

linearity serves mainly to tame the complexity in presence of higher-order features, while it
is mostly meaningless on first-order data.

I Definition 16. We define inductively, simultaneously for all (k + 1)-tuples (A1, . . . , Ak, B)
of MALL2 types with at most one free type variable δ, the classes of functions C(A1, . . . , Ak;B)
taking as input:

a closed MALL2 type T (i.e. without free variables)
a list L = [τ1, . . . , τn] of proofs of T
a k-tuple of proofs (ρ1, . . . , ρk) with ρi : Ai[T/δ]

and returning a proof of B[T/δ] as follows:
if π is a proof of A1, . . . , Ak ` B, then
[(T ;L; ρ1, . . . , ρk) 7→ cut(ρ1, . . . cut(ρk, π[T/δ]) . . .)] ∈ C(A1, . . . , Ak;B)
(projection) Πk

i = [(T ;L; ρ1, . . . , ρk) 7→ ρi] ∈ C(A1, . . . , Ak;Ai)
(composition) if fi ∈ C(A1, . . . , Ak;Bi) for i ∈ {1, . . . , l} and g ∈ C(B1, . . . , Bl;C), then
[(T ;L; ~ρ) 7→ g(T ;L; f1(T ;L; ~ρ), . . . , fl(T ;L; ~ρ))] ∈ C(A1, . . . , Ak;C)
(iteration) if f ∈ C(A1, . . . , Ak; δ(B(B), then
[(T ;L = [τ1, . . . , τn]; ~ρ) 7→ f(T ;L; ~ρ)〈τ1〉 ◦ . . . ◦ f(T ;L; ~ρ)〈τn〉] ∈ C(A1, . . . , Ak;B (B)
where
π〈τ〉 is the partial application of π : T (B[T/δ] (B[T/δ] to τ : T , to produce a
proof of B[T/δ](B[T/δ];
◦ is the composition of proofs of B[T/δ](B[T/δ] seen as endomorphisms of B[T/δ].

I Proposition 17. Let (A1, . . . , Ak, B) be a (k + 1)-tuple of MALL2 types and π be an
ELL2 proof of ∀δ.((!List[δ] ⊗ !!A1 ⊗ . . . ⊗ !!Ak) (!!B). Then there exists a function
f ∈ C(A1, . . . , Ak;B) such that for all ρi : Ai[T/δ] (i ∈ {1, . . . ,m}) and τ1, . . . , τn : T ,
cut(![τ1, . . . , τn]⊗ !!ρ1 ⊗ . . .⊗ !!ρk, π) = !!f(T ; [τ1, . . . , τn]; ρ1, . . . , ρk) (where the [τ1, . . . , τn]
on the left is a Church-encoded list in ELL2 of type List[T]).

Moreover, if π is in ELLPP3
2 , then there is an inductive derivation for f in which all

instances of the iteration scheme use a type of accumulators in PP3: that is, they are applied
to functions in C(. . . ; δ(P (P) with P ∈ PP3.

Though the proof of this proposition presents no conceptual difficulty, it is cumbersome
and so is relegated to Appendix C. Importantly, it is thanks to the stratification property of
ELL2 that the types involved in the function algebra can be taken in MALL2: the argument
uses the “truncation at depth 2” operation introduced in the prequel to prove Theorem 2.
Note that they may still contain impredicative quantifications, making its finite interpretation
essential to our approach.

I Remark 18. The converse also holds: one can map functions in our algebra to ELL2 proofs.

This can now be specialized to the case π : InpΣ (!!Bool; indeed,

InpΣ (!!Bool ∼= ∀δ. !List[δ]⊗ !!C[δ]⊗ !!W[δ]⊗
⊗

0≤i≤N
!!Relri

[δ](!!Bool

Our ELL2-definable (resp. ELLPP3
2 -definable) queries can therefore be specified, equival-

ently, by functions in C(C[δ], W[δ], Relr0 [δ], . . . , RelrN
[δ]; Bool). The next step is to evaluate

these functions in the coherence space model.

10 From normal functors to logarithmic space queries

4.2 The finite semantics of second-order MALL in coherence spaces
We recall key facts about the denotational model of MALL2 in which we will carry out our
semantic evaluation. A comprehensive introduction to this model for propositional MALL
may be found in [15], and the extension to MALL2 is taken from the prequel [32].

In this semantics, a formula/type is interpreted as a coherence space: an undirected
reflexive graph, i.e. a pair X = (|X|,¨X) of a set |X| – customarily called the web of X –
and a symmetric and reflexive relation ¨X ⊆ |X| × |X| – its coherence relation. Elements
x, y ∈ |X| are called coherent when x ¨X y. A clique is a subset of pairwise coherent elements
of |X|; we write c @ X when c is a clique of X. The denotation of a closed type A is a
coherence space, and a proof/program π : A is interpreted as a clique JπK @ JAK.

JAK is defined by induction on A, the connectives ⊗,`,&,⊕, (−)⊥ being mapped to
operations on coherence spaces. The base case depends on an assignment of type variables.
So, if A has n type variables, JAK is actually a map from n-tuples of coherence spaces
to coherence spaces. Similarly, JπK also depends on such an assignment, and one should
write JπK(X1, . . . , Xn) @ JAK(X1, . . . , Xn). To extend the semantics to MALL2, we interpret
quantifiers as sending such “(n+1)-parameter spaces” to “n-parameter spaces”. The following
proposition sums up the properties that will be necessary for our purposes.

I Proposition 19 ([32]). Let A be a MALL2 type with a single free type variable.
JAK(X) is finite, with size polynomial in the size of X when A is fixed.
JπK(X) can be computed in logarithmic space when π : A is fixed.

Finally, we need to recall the semantic counterpart of cut-elimination, that is, composition
of morphisms. A first remark is that |X (Y | = |X| × |Y |. So a clique c @ X (Y can in
fact be seen as a binary relation c ⊆ |X| × |Y |. The composition of c with some c′ @ Y (Z,
seen as morphisms of coherence spaces, is then none other than their relational composition.
Additionally, the coherence relation ensures the well-known fact that:

I Proposition 20. Let c @ X (Y , c′ @ Y (Z, x ∈ |X| and z ∈ |Z|. Then there exists at
most one y ∈ |Y | such that (x, y) ∈ c and (y, z) ∈ c′.

4.3 The unrestricted case: an unambiguous logarithmic space bound
In this subsection and in the next one, we abbreviate for convenience JFin(n)K, i.e. the
n-vertex coherence space with no edges, as Fin(n). So, if A is a MALL2 type with a single
variable δ, then JA[Fin(n)/δ]K = JAK(Fin(n)). Our main theorem here is:

I Theorem 21. Let f ∈ C(A1, . . . , Ak;B). Then Jf(T ;L; ρ1, . . . , ρk)K is determined by JT K,
JLK = [Jτ1K, . . . , JτnK] (where L = [τ1, . . . , τn]) and Jρ1K, . . . , JρkK. Furthermore, when f is
fixed, Jf(T ;L; ρ1, . . . , ρk)K can be computed from these denotations in LUL.

Proof. By structural induction on Definition 16; the first part is an immediate consequence of
the functoriality/compositionality of J−K, so we focus on the complexity. We take care of the
base case, where the function comes from a proof π : (A1, . . . , Ak ` B), with Proposition 19
and the fact that relational composition is in L. For the composition scheme, we use the
closure of14 LUL under composition. The iteration scheme is handled by Lemma 22 below. J

14Strictly speaking, LUL denotes a class of decision problems, and it is the associated class of function
problems FLUL which is closed under composition (the usual proof for FL relativizes).

L. T. D. Nguyễn and C. Pradic 11

I Lemma 22. Let A be a MALL2 type with a single type variable. Given n, k ∈ N,
f1, . . . , fk @ JA (AK(Fin(n)) and (u, v) ∈ |JAK(Fin(n))|2, whether (u, v) ∈ (fk ◦ . . . ◦ f1)
can be decided in UL (in the size of the input, which is polynomial15 in n and k).

Proof. Thanks to Proposition 20, if v ∈ (fk ◦ . . . ◦ f1)({u}) then there is a unique sequence
u0 = u, u1, . . . uk = v such that ui+1 ∈ f({ui}). We successively guess the ui; at each
point, we need only store (ui, ui+1) to check its presence in fi. This can be done by a UL
Turing machine because each ui can be stored in space O(logn): indeed, |JAK(Fin(n))| has
cardinality polynomial in n (Proposition 19) and there is a natural representation of its
points of using O(1) variables in |Fin(n)| = {1, . . . , n}, see [32, Section IV.D]. (Notice that
we do not even make use of the coherence relation of JAK(Fin(n)); its mere existence ensures
that the naive NL algorithm is actually UL.) J

The upper bound of Theorem 7 follows immediately from Theorem 21 together with:

I Lemma 23. Let D ∈ FinMod(Σ). Its ELL2 encoding D : InpΣ[Fin(n)] (n is the domain
size of D) contains MALL2 proofs of C[Fin(n)], W[Fin(n)] and Relri [Fin(n)] (i ∈ {1, . . . , N}).

The denotations of these proofs in the coherence space model can all be computed in L.

4.4 Iterations in deterministic log space for low-complexity types
As can be seen in the proof of Theorem 21, the single crucial point where the complexity
of evaluating a query does not seem to fall squarely in L is Lemma 22. By putting the
complexity of this iterated composition problem in L when A ∈ PP3, we will get the L
soundness result for Theorem 10.

A first remark is that for A ∈ PP3, A[Fin(n)/δ] ∼= Fin(P (n))⊗(Fin(Q(n))(Fin(R(n)))
where P,Q,R are polynomials with integer coefficients. The goal becomes to show:

I Theorem 24. Let A ∼= Fin(m) ⊗ (Fin(n) (Fin(p)) for some m,n, p ∈ N. Given
f1, . . . , fk @ JA(AK and (u, v) ∈ |JAK|2, whether (u, v) ∈ (fk ◦ . . . ◦ f1) can be decided in L.

At this point, the proofs start to involve tricky combinatorics on coherence spaces, so
this final section of the paper is written for readers familiar with the coherence space model
of MALL (but not necessarily its extension to MALL2). For instance we will often identify
cliques f @ A(B with linear maps from the cliques of A to the cliques of B.

We start with a lemma solving the case m = 1, generalizing the example given at the end
of the introduction.

I Lemma 25. Let A = Fin(n) (Fin(p), f1, . . . , fk @ A (A, ν, ν′ ∈ |Fin(n)| and
π ∈ |Fin(p)|. There exists at most one π′ such that (ν′, π′) ∈ (fk ◦ . . . ◦ f1)({(ν, π)}).

Furthermore, there is a logarithmic space algorithm taking n, p, f1, . . . , fk, ν, ν
′, π as inputs

which decides whether π′ exists and, if so, finds it.

Proof. Consider the adjoint maps f⊥i @ (Fin(n) ⊗ Fin(p)⊥ (Fin(n) ⊗ Fin(p)⊥). The
graph Fin(n)⊗ Fin(p)⊥ has n connected components, which are all cliques (of size p). These
f⊥i send cliques to (possibly empty) cliques, so for j ∈ |Fin(n)|, f⊥i ({j} × |Fin(p)|) is either
(1) empty or (2) included in some {l}× |Fin(p)|, for l uniquely determined by j. This defines
partial maps f̂⊥i : |Fin(n)|⇀ |Fin(n)|: in case (1) f̂⊥i (j) is undefined, in case (2) f̂⊥i (j) = l.

15The fi are cliques in the graph JA(AK(Fin(n)), which has a polynomial size in n by virtue of Propos-
ition 19. Note that we always have k ≥ 1.

12 From normal functors to logarithmic space queries

This allows us to perform a backwards iteration: we define νk = ν′ and, for i = k, . . . , 1,
νi−1 = f̂⊥i (νi); ν0 can be computed in logarithmic space. If ν0 is undefined or ν0 6= ν, then
π′ does not exist: we return false.

Otherwise, let us restrict each i-th intermediate Fin(n) (Fin(p) to the connected
component corresponding to νi, and take the corresponding sub-cliques: for i = 1, . . . , k,
f ′i = fi ∩ (({νi−1} × |Fin(p)|)× ({νi} × |Fin(p)|)). Then either (f ′k ◦ . . . ◦ f ′1)({π}) is empty,
and π′ does not exist; or it contains a single element, which is then π′.

Each νi is computable in logarithmic space, so (f ′1, . . . , f ′k) also is; additionally, the
computation of (f ′k ◦ . . . ◦ f ′1)({π}) from (f ′1, . . . , f ′k) and π only needs to store a single point
of Fin(p) in working memory, because the cliques of the latter are subsingletons. Since L is
closed under L-reductions, we are done. (Making the interactive composition explicit results
in a quadratic time algorithm.) J

We would like to L-reduce the problem to the case m = 1, by determining the projection
to |Fin(m)| of the unique “path” of k + 1 points corresponding to a point of the clique
fk ◦ . . . ◦ f1. This would involve an iteration analogous to the previous proof, but forwards
instead of backwards.

But the image fi({j} × |Fin(n)(Fin(p)|) is not necessarily connected, because {j} ×
|Fin(n)(Fin(p)| is not a clique (though Fin(n)(Fin(p) is a connected graph, it is not
complete). So one cannot guarantee that this image is included in some {l} × |Fin(n)(
Fin(p)|. An explicit counter-example is the interpretation of the term λ(x⊗ g). ((g x)⊗ . . .)
when m = n: in some sense, the first component of the output depends on both x and g
being known, not only x. However, knowing x is enough to determine what argument will be
fed to g (x itself, in this example). The intuitive idea is to propagate this backwards.

The following lemma ensures that we can always either carry on with the forwards
iteration or start the backwards propagation (Π1 (resp. Π2) is the projection on the first
(resp. second) component):

I Lemma 26. Let c @ A`B be a non-empty clique. Then Π1(c) is included in a connected
component of A, or (non-exclusively) Π2(c) is included in a connected component of B.

Proof sketch. If Π1(u) and Π1(v) are in different connected components for u, v ∈ c, then
Π2(u) and Π2(v) are coherent or equal, and all other Π2(w) are coherent or equal to at least
one of them: Π2(c) is connected with diameter ≤ 3. J

Proof of Theorem 24. We write A = Fin(m) ⊗ B and B = Fin(n) (Fin(p). If n = 0,
A ∼= 0 and the problem is trivial and if n = 1, A ∼= Fin(m) ⊗ Fin(p), so a simple forward
propagation solves the problem. From now on, we thus assume that n > 1, which makes B
connected. Let f1, . . . , fk @ A(A, (µ, (ν, π)) ∈ |A| and (µ′, (ν′, π′)) ∈ |A|. The goal is to
decide, in logarithmic space, whether (µ′, (ν′, π′)) ∈ (fk ◦ . . . ◦ f1)({(µ, (ν, π))}).

Let µ0 = µ. If the clique f1({(µ, (ν, π))}) is empty, then the answer is negative; else, let
{µ1} × |B| be the connected component containing it. For 1 ≤ i < k, assuming that µi is
defined, then fi+1({µi} × |B|) is either:

empty, and the answer is negative;
non-empty and contained in some {µi+1} × |B| – this defines µi+1 ∈ |Fin(m)| uniquely;
non-empty and disconnected.

Let f‡i = fi ∩ (({µi−1} × |B|) × ({µi} × |B|)) for all i ≥ 1 for which µi is defined. If the
iteration reaches i = k, this means that (f‡1 , . . . , f

‡
k) can be computed in logarithmic space,

and as in Lemma 25 we can use this to L-reduce the problem to the case m = 1, so we are
done. If it aborts because of emptiness, then the algorithm can immediately return false.

L. T. D. Nguyễn and C. Pradic 13

The remaining case is the last item above. Suppose that µi+1 is undefined because
of disconnectedness. Let f†i+1 = fi+1 ∩ (({µi} × |B|) × |A|); it can be seen as a clique
f†i+1 @ B(A = B⊥ `A, with B⊥ = Fin(n)⊗ Fin(p)⊥. The assumption that Π2(f†i+1) =
fi+1({µi} × |B|) is non-empty and disconnected entails, by Lemma 26, that Π1(f†i+1) is
connected. In other words Π1(f†i+1) ⊆ {ν′′} × |Fin(p)| for some ν′′.

Let us apply the algorithm of Lemma 25 to the inputs n, p, f‡1 , . . . , f
‡
i , ν, ν

′′, π. This
can be done in logarithmic space, and the subroutine either raises a failure or gives us
some π′′ ∈ |Fin(p)|. In the former case, we can return false; in the latter, we know that
(fk ◦ . . . ◦ f1)({(µ, (ν, π))}) = (fk ◦ . . . ◦ fi+1)({(µi, (ν′′, π′′))}). So all we have to do is to
tail-recurse on a suffix of the original input; to implement this in L, it suffices to keep a
counter indicating what the current suffix is. This is a strict suffix, because µ1 is always
defined by construction (see above); therefore, our algorithm terminates, while maintaining a
logarithmic working space. J

I Remark 27. Fin(m)⊗ (Fin(n)(Fin(p)) ∼=
⊕m

i=1
˘n
j=1

⊕p
k=1 1, and such a bicartesian

MALL formula can be seen as a game where Player and Opponents alternate choices of
branches. Linear implication consists in playing two games in parallel. Morally, Lemma 26
says: if it is your turn to play on both boards, then you must make a choice; and our L
algorithm is mostly about scheduling a set of strategies interacting together.

5 Perspective: unrestricted L upper bound through game semantics?

In the extensional completeness proof, strikingly, the determinism of a relation corresponds
exactly to the linearity of its pre-composition operator. This is one reason for which we believe
that our class of queries in ELL2 is exactly L (Conjecture 1) – or at least, that it is strictly
containted in NL which corresponds to first-order logic with general transitive closure [22].
Thus, our LUL bound is likely not optimal: it is widely believed that UL = NL [34, 33].

To bring down the complexity of the bottleneck – namely the iterated composition – from
UL to L, bridging the intuitions of Remark 27 with a proper game semantics of full MALL2
might be key. In this direction, it is known that the points of the web of a (hyper)coherence
space can be seen as external positions of a game [10, 5, 30, 31]. With this point of view, the
uniqueness of the intermediate points in the iteration of Lemma 22 reflects the determinism
of an underlying interaction which reaches those final positions.

References
1 Serge Abiteboul and Gerd Hillebrand. Space usage in functional query languages. In Gerhard

Goos, Juris Hartmanis, Jan Leeuwen, Georg Gottlob, and Moshe Y. Vardi, editors, Database
Theory — ICDT ’95, volume 893, pages 439–454. Springer Berlin Heidelberg, Berlin, Heidelberg,
1995. doi:10.1007/3-540-58907-4_33.

2 Patrick Baillot. On the expressivity of elementary linear logic: Characterizing Ptime and
an exponential time hierarchy. Information and Computation, 241:3–31, April 2015. doi:
10.1016/j.ic.2014.10.005.

3 Patrick Baillot, Erika De Benedetti, and Simona Ronchi Della Rocca. Characterizing poly-
nomial and exponential complexity classes in elementary lambda-calculus. Information and
Computation, 261:55–77, August 2018. doi:10.1016/j.ic.2018.05.005.

4 Patrick Baillot and Alexis Ghyselen. Combining Linear Logic and Size Types for Implicit
Complexity. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018),
pages 9:1–9:21, 2018. doi:10.4230/LIPIcs.CSL.2018.9.

http://dx.doi.org/10.1007/3-540-58907-4_33
http://dx.doi.org/10.1016/j.ic.2014.10.005
http://dx.doi.org/10.1016/j.ic.2014.10.005
http://dx.doi.org/10.1016/j.ic.2018.05.005
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.9

14 From normal functors to logarithmic space queries

5 Pierre Boudes. Projecting Games on Hypercoherences. In Automata, Languages and Pro-
gramming, volume 3142, pages 257–268. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
doi:10.1007/978-3-540-27836-8_24.

6 Ugo Dal Lago and Martin Hofmann. Realizability models and implicit complexity. Theoretical
Computer Science, 412(20):2029–2047, April 2011. doi:10.1016/j.tcs.2010.12.025.

7 Ugo Dal Lago and Ulrich Schöpp. Computation by interaction for space-bounded functional
programming. Information and Computation, 248:150–194, June 2016. doi:10.1016/j.ic.
2015.04.006.

8 Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Information and
Computation, 183(1):123–137, May 2003. doi:10.1016/S0890-5401(03)00010-5.

9 Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal λ-machines. Theoret-
ical Computer Science, 227(1):79–97, September 1999. doi:10.1016/S0304-3975(99)00049-3.

10 Thomas Ehrhard. Parallel and serial hypercoherences. Theoretical Computer Science, 247(1):39–
81, September 2000. doi:10.1016/S0304-3975(00)00173-0.

11 Ronald Fagin. Contributions to the model theory of finite structures. PhD thesis, University of
California, Berkeley, 1973.

12 Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer
Science, 45:159–192, January 1986. doi:10.1016/0304-3975(86)90044-7.

13 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, January 1987.
doi:10.1016/0304-3975(87)90045-4.

14 Jean-Yves Girard. Geometry of Interaction 1: Interpretation of System F. In R. Ferro,
C. Bonotto, S. Valentini, and A. Zanardo, editors, Studies in Logic and the Foundations of
Mathematics, volume 127 of Logic Colloquium ’88, pages 221–260. Elsevier, January 1989.

15 Jean-Yves Girard. Linear logic: its syntax and semantics. In Jean-Yves Girard, Yves Lafont,
and Laurent Regnier, editors, Advances in Linear Logic, volume 222 of London Mathematical
Society Lecture Notes. Cambridge University Press, 1995.

16 Jean-Yves Girard. Light Linear Logic. Information and Computation, 143(2):175–204, June
1998. doi:10.1006/inco.1998.2700.

17 Yuri Gurevich. Algebras of feasible functions. In 24th Annual Symposium on Foundations
of Computer Science (FOCS 1983), pages 210–214, Tucson, AZ, USA, November 1983. doi:
10.1109/SFCS.1983.5.

18 Gerd G. Hillebrand. Finite Model Theory in the Simply Typed Lambda Calculus. PhD thesis,
Brown University, Providence, RI, USA, 1994.

19 Gerd G. Hillebrand and Paris C. Kanellakis. Functional Database Query Languages As Typed
Lambda Calculi of Fixed Order (Extended Abstract). In Proceedings of the Thirteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’94, pages
222–231, New York, NY, USA, 1994. ACM. doi:10.1145/182591.182615.

20 Gerd G. Hillebrand and Paris C. Kanellakis. On the Expressive Power of Simply Typed and
Let-Polymorphic Lambda Calculi. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 253–263. IEEE
Computer Society, 1996. doi:10.1109/LICS.1996.561337.

21 Gerd G. Hillebrand, Paris C. Kanellakis, and Harry G. Mairson. Database Query Languages
Embedded in the Typed Lambda Calculus. Information and Computation, 127(2):117–144,
June 1996. doi:10.1006/inco.1996.0055.

22 Neil Immerman. Languages that Capture Complexity Classes. SIAM Journal on Computing,
16(4):760–778, August 1987. doi:10.1137/0216051.

23 Neil Immerman. Nondeterministic Space is Closed under Complementation. SIAM Journal
on Computing, 17(5):935–938, October 1988. doi:10.1137/0217058.

24 Donald E. Knuth. Mathematics and computer science: Coping with finiteness. Science,
194(4271):1235–1242, 1976. doi:10.1126/science.194.4271.1235.

25 Lars Kristiansen. Higher Types, Finite Domains and Resource-bounded Turing Machines.
Journal of Logic and Computation, 22(2):281–304, April 2012. doi:10.1093/logcom/exq009.

http://dx.doi.org/10.1007/978-3-540-27836-8_24
http://dx.doi.org/10.1016/j.tcs.2010.12.025
http://dx.doi.org/10.1016/j.ic.2015.04.006
http://dx.doi.org/10.1016/j.ic.2015.04.006
http://dx.doi.org/10.1016/S0890-5401(03)00010-5
http://dx.doi.org/10.1016/S0304-3975(99)00049-3
http://dx.doi.org/10.1016/S0304-3975(00)00173-0
http://dx.doi.org/10.1016/0304-3975(86)90044-7
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1006/inco.1998.2700
http://dx.doi.org/10.1109/SFCS.1983.5
http://dx.doi.org/10.1109/SFCS.1983.5
http://dx.doi.org/10.1145/182591.182615
http://dx.doi.org/10.1109/LICS.1996.561337
http://dx.doi.org/10.1006/inco.1996.0055
http://dx.doi.org/10.1137/0216051
http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1126/science.194.4271.1235
http://dx.doi.org/10.1093/logcom/exq009

L. T. D. Nguyễn and C. Pradic 15

26 Daniel Leivant. Reasoning about functional programs and complexity classes associated with
type disciplines. In 24th Annual Symposium on Foundations of Computer Science (FOCS
1983), pages 460–469, Tucson, AZ, USA, November 1983. doi:10.1109/SFCS.1983.50.

27 Harry G. Mairson. A simple proof of a theorem of Statman. Theoretical Computer Science,
103(2):387–394, September 1992. doi:10.1016/0304-3975(92)90020-G.

28 Damiano Mazza. Simple Parsimonious Types and Logarithmic Space. In 24th EACSL Annual
Conference on Computer Science Logic (CSL 2015), pages 24–40, 2015. doi:10.4230/LIPIcs.
CSL.2015.24.

29 Damiano Mazza and Kazushige Terui. Parsimonious Types and Non-uniform Computation. In
Automata, Languages, and Programming, Lecture Notes in Computer Science, pages 350–361.
Springer, Berlin, Heidelberg, July 2015. doi:10.1007/978-3-662-47666-6_28.

30 Paul-André Melliès. Sequential algorithms and strongly stable functions. Theoretical Computer
Science, 343(1):237–281, October 2005. doi:10.1016/j.tcs.2005.05.015.

31 Paul-André Melliès. On dialogue games and coherent strategies. In Simona Ronchi Della
Rocca, editor, Computer Science Logic 2013 (CSL 2013), pages 540–562, 2013. doi:10.4230/
LIPIcs.CSL.2013.540.

32 Lê Thành Dũng Nguyễn. Around finite second-order coherence spaces. CoRR, abs/1902.00196,
2019. arXiv:1902.00196.

33 A. Pavan, Raghunath Tewari, and N. V. Vinodchandran. On the power of unambigu-
ity in log-space. computational complexity, 21(4):643–670, December 2012. doi:10.1007/
s00037-012-0047-3.

34 K. Reinhardt and E. Allender. Making Nondeterminism Unambiguous. SIAM Journal on
Computing, 29(4):1118–1131, January 2000. doi:10.1137/S0097539798339041.

35 Walter L. Ruzzo, Janos Simon, and Martin Tompa. Space-bounded hierarchies and probabilistic
computations. Journal of Computer and System Sciences, 28(2):216–230, April 1984. doi:
10.1016/0022-0000(84)90066-7.

36 Ulrich Schöpp. Stratified Bounded Affine Logic for Logarithmic Space. In 22nd Annual
IEEE Symposium on Logic in Computer Science (LICS 2007), pages 411–420, July 2007.
doi:10.1109/LICS.2007.45.

37 Richard Statman. The typed λ-calculus is not elementary recursive. Theoretical Computer
Science, 9(1):73–81, July 1979. doi:10.1016/0304-3975(79)90007-0.

38 Kazushige Terui. Proof nets and boolean circuits. In 19th IEEE Symposium on Logic in
Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 182–191,
2004. doi:10.1109/LICS.2004.1319612.

39 Kazushige Terui. Semantic Evaluation, Intersection Types and Complexity of Simply Typed
Lambda Calculus. In 23rd International Conference on Rewriting Techniques and Applications
(RTA’12), pages 323–338, 2012. doi:10.4230/LIPIcs.RTA.2012.323.

A The sequent calculus of Linear Logic

The formulas of MALL2 are given by the grammar

A,B := X | X⊥ | 1 | ⊥ | A⊗B | A`B | 0 | > | A⊕B | A&B | ∀X.A | ∃X.B

where X belongs to a fixed countable set of variables. ELL2 formulas are given by an
extension of the previous grammar with the exponential modalities !/?.

A,B := · · · | !A | ?A

Customary notations for duality and linear implication are recalled in Figure 3 and the
deduction rules for MALL2 one-sided sequents are given in Figure 2. ELL2 proofs additionally
allow for the rules recalled in Figure 1 (in Section 2).

http://dx.doi.org/10.1109/SFCS.1983.50
http://dx.doi.org/10.1016/0304-3975(92)90020-G
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.24
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.24
http://dx.doi.org/10.1007/978-3-662-47666-6_28
http://dx.doi.org/10.1016/j.tcs.2005.05.015
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.540
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.540
http://arxiv.org/abs/1902.00196
http://dx.doi.org/10.1007/s00037-012-0047-3
http://dx.doi.org/10.1007/s00037-012-0047-3
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1016/0022-0000(84)90066-7
http://dx.doi.org/10.1016/0022-0000(84)90066-7
http://dx.doi.org/10.1109/LICS.2007.45
http://dx.doi.org/10.1016/0304-3975(79)90007-0
http://dx.doi.org/10.1109/LICS.2004.1319612
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.323

16 From normal functors to logarithmic space queries

(ax-rule)
` A,A⊥

(cut rule)` Γ, A ` A⊥,∆
` Γ,∆ (exchange rule)` Γ, A,B,∆

` Γ, B,A,∆

(⊗-rule)` Γ, A ` B,∆
` Γ, A⊗B,∆ (`-rule) ` Γ, A,B

` Γ, A`B
(⊥-rule) ` Γ

` Γ,⊥ (1-rule)
` 1

(⊕-rule) ` Γ, Ai
` Γ, A1 ⊕A2

for i ∈ {1, 2} (&-rule)` Γ, A ` Γ, B
` Γ, A&B

(>-rule)
` Γ,>

(∃-rule)` Γ, A[B/X]
` Γ,∃X.A (∀-rule) ` Γ, A

` Γ,∀X.A for X not free in Γ

Figure 2 Rules for the MALL2 sequent calculus (there is no rule for 0).

1⊥ := ⊥ ⊥⊥ := 1 (∃X.A)⊥ := ∀X.A⊥
(A⊗B)⊥ := A⊥ `B⊥ (A`B)⊥ := A⊥ ⊗B⊥ (∀X.A)⊥ := ∃X.A⊥
0⊥ := > >⊥ := 0 (!A)⊥ := ?A⊥
(A⊕B)⊥ := A⊥ &B⊥ (A&B)⊥ := A⊥ ⊕B⊥ (?A)⊥ := !A⊥

A(B := A⊥ `B

Figure 3 Duality for formulas and linear arrow.

A proof is called cut-free if there is no occurence of the cut rule. Cut-free proofs of
propositional formulas satisfy the subformula property. Therefore, from a quick syntactic
analysis, it follows that there are exactly two cut-free proofs ` Bool.

There is a standard rewriting system for eliminating the cut rules for both MALL2 and
ELL2, which can be shown to be terminating and confluent up to some natural commutating
conversions. The process of computing a normal form is called cut-elimination. We recall
in Figure 4 the key reductions involved.

B Proof of Theorem 14 (encoding queries in ELL2)

We sketch the compilation scheme behind Theorem 14, which enables to go from FO+DTC
formulas to ELLPP3

2 proofs. The construction is done by recursing on the formula ϕ of
interest; assuming k free variables, we map ϕ to a proof πϕ : InpΣ[δ](!!Relk[δ]. Thus, we
have the following cases:

ϕ might be a relation Ri(~x) (i ∈ {0, . . . , N}), in which case the πRi
is the composition

of the projections InpΣ[δ](!!Relri
[δ] and δk (δri (recall that Relri

[δ] = δri (Bool)
corresponding respectively to fetching the relation from the finite structure and feeding
the appropriate arguments.
ϕ can arise from a FO connective (∃,∨ or ¬), in which case, we may cut the proofs
corresponding to subformulas with the liftings to relations of or : Bool⊗ Bool(Bool,
not : Bool(Bool or exists : List[δ]⊗ !(δ(Bool)(!Bool. Explicit derivations for
these proofs in ELLPP3

2 are given in Figure 7.

L. T. D. Nguyễn and C. Pradic 17

A,A⊥
π

A,∆
A,∆

π

A,∆

π1
` Γ, A

π2
` Γ′, B

` Γ,Γ′, A⊗B

π3

` A⊥, B⊥,∆
` A⊥ `B⊥,∆

` Γ,Γ′,∆

π1
` Γ, A

π2
` Γ′, B

π3

` B⊥, A⊥,∆
` A⊥,Γ′,∆

` Γ,Γ′,∆

π1
` Γ, A

` Γ, A⊕B

π2

` A⊥,∆
π3

` B⊥,∆
` A⊥ &B⊥,∆

` Γ,∆

π1
` Γ, A

π2

` A⊥,∆
` Γ,∆

π1
` Γ, A
` ?Γ, !A

π2

` A⊥,∆, B
` ?A⊥, ?∆, !B

` ?Γ, ?∆, !B

π1
` Γ, A

π2

` A⊥,∆, B
` Γ,∆, B
` ?Γ, ?∆, !B

π1
` ?Γ, !A

π2
` ∆

` ?A⊥,∆
` ?Γ,∆

π2
` ∆
` ?Γ,∆

π1
` ?Γ, !A

π2

` ?A⊥, ?A⊥,∆
` ?A⊥,∆

` ?Γ,∆

π1

` ?Γ, !A

π1
` ?Γ, !A

π2

` ?A⊥, ?A⊥,∆
` ?A⊥, ?Γ,∆

` ?Γ, ?Γ,∆
` ?Γ,∆

π1
` Γ, A
` Γ,∀X.A

π2

` A⊥[B/X],∆
` ∃X.A⊥,∆

` Γ,∆

π1[B/X]
` Γ, A[B/X]

π2

` A⊥[B/X],∆
` Γ,∆

Figure 4 Key reductions of ELL2 cut-elimination.

18 From normal functors to logarithmic space queries

Finally ϕ could be a DTC operator; this is the most complex case, which we handle
separately in Lemma 30.

In the above discussion, save for cuts, all operators syntactically belong to ELLPP3
2 . We

can conclude by noticing that cuts along propositional formulas are admissible in ELLPP3
2

(Proposition 9).
Before turning to the missing link, i.e., the proof of Lemma 30, let us briefly reflect on

the computational power available in ELLPP3
2 proofs of List[δ] (A. The impredicative

List[δ] type allows for a straightforward iteration over the list akin to the fold operation
of functional programming languages or a single for loop. It is easy to show that the
exponential modality allow to chain such loops, but it is slightly more subtle to check that
one can nest them. We require such nesting to implement dtc, and we thus show, writing
ctx(D) for the Ctx[δ] appearing in the ELL2 encoding D of a finite model:

I Lemma 28. For all k ∈ N, there is a proof ιk : Ctx[δ] ` !List[δk] such that for all
D ∈ FinMod(Σ), cut(ctx(D), ιk[Fin(n)/δ]) reduces to the Church encoding of the list of all
elements of Dk, where D is the domain of D.

Furthermore, if it is cut with a ELLPP3
2 proof, !List[δk] being the cut formula, then the

resulting proof reduces to a cut-free proof in ELLPP3
2 .

Proof. Recall that Ctx[δ] = !!W[δ]⊗ !!C[δ]⊗ !List[δ]. So, equivalently, we are looking for a
proof of !!W[δ], !!C[δ], !List[δ] ` !List[δk].

The idea is to start from a proof combine : !W[δ], !C[δ], List[δ], List[ε] ` List[δ ⊗ ε]
implementing a function taking lists π : List[δ] and π′ : List[ε] returning, after cut-
elimination, a list enumerating all pairs of elements from π and π′. We spell out the definition
of combine in Figure 5 and we leave the checking that it satisfies the above specification to
the interested reader. Intuitively, it works as follows: to iterate a !(δ ⊗ ε(Z (Z) and
obtain a !(Z (Z),

first convert it into a !(δ ⊗ ε(Z (δ ⊗ Z) by using !C[δ] to copy the input
this being isomorphic to !(ε(δ ⊗ Z (δ ⊗ Z), feed it to List[ε] to realize an “inner
iteration” and get !(δ ⊗ Z (δ ⊗ Z)
erase the δ on the right-hand side of(via !W[δ], and pass the result to List[δ].

Clearly, combine belongs to ELLPP3
2 and is cut-free. Furthermore, if it is cut against

a ELLPP3
2 proof, then cut-elimination yields a ELLPP3

2 proof. To see this, notice that the
existential witness of List[δ]⊥ and List[ε]⊥ (corresponding to the hypotheses List[δ] and
List[ε] on the left of the turnstile) are taken to be the eigenvariable Z of List[δ ⊗ ε] and
δ ⊗ Z respectively. Therefore, when cut against a ELLPP3

2 proof π : ?List[δ ⊗ ε]⊥,Γ, during
cut-elimination, these witnesses may only change when List[δ ⊗ ε] is pitted against a ∃ rule
whose witness A is in PP3. In this case, the witnesses in the ∃ rule of combine become A
and δ ⊗A, which are both still in PP3.

At this stage, it is thus natural to define ιk for k ≥ 1 as the proof obtained by normalizing
the ι̃k in Figure 6 and adding `-rules to turn ??C[δ]⊥, ??W[δ]⊥, ?List[δ]⊥ into Ctx[δ]⊥.
Formally showing that the cutting with an arbitrary proof π : ?List[δk]⊥,Γ and performing
cut-elimination still yields an ELLPP3

2 proof can be done straightforwardly by induction over
k by exploiting confluence of cut-elimination and ι̃k. J

I Remark 29. If we replaced PP3 with the class PP2 of formulas P (R with P,R ∈ PP,
then the statement would no longer be true as δ ⊗ (P (R) would not be necessarily PP2.
So while the definition of dtc that we give next seems to use only iteration at PP2 types, we
are actually forced to go to PP3 to iterate over tuples of arity k > 1.

L. T. D. Nguyễn and C. Pradic 19

!combine_inner

` ?C[δ]⊥, ?(δ ⊗ ε(Z (Z)⊥, !(ε(δ ⊗ Z (δ ⊗ Z)
!combine_outer

` ?W[δ]⊥, ?(δ ⊗ Z (δ ⊗ Z)⊥, !(δ(Z (Z)

` ?W[δ]⊥, ?C[δ]⊥, !(ε(δ ⊗ Z (δ ⊗ Z)⊗ ?(δ ⊗ Z (δ ⊗ Z)⊥, ?(δ ⊗ ε(Z (Z)⊥, !(δ(Z (Z)

` ?W[δ]⊥, ?C[δ]⊥, List[ε]⊥, ?(δ ⊗ ε(Z (Z)⊥, !(δ(Z (Z) !idZ(Z

` ?W[δ]⊥, ?C[δ]⊥, !(δ(Z (Z)⊗ ?(Z (Z)⊥, List[ε]⊥, ?(δ ⊗ ε(Z (Z)⊥, !(Z (Z)

` ?W[δ]⊥, ?C[δ]⊥, List[δ]⊥, List[ε]⊥, ?(δ ⊗ ε(Z (Z)⊥, !(Z (Z)

` combine : ?W[δ]⊥, ?C[δ]⊥, List[δ]⊥, List[ε]⊥, List[δ ⊗ ε]

` δ, δ⊥

` δ, δ⊥ ` ε, ε⊥

` δ ⊗ ε, ε⊥, δ⊥
` Z,Z⊥

` δ⊥, δ ` Z⊥, Z
` Z⊥, δ⊥, δ ⊗ Z

` Z ⊗ Z⊥, δ⊥, Z⊥, δ ⊗ Z
` (δ ⊗ ε)⊗ (Z ⊗ Z⊥), ε⊥, δ⊥, δ⊥, Z⊥, δ ⊗ Z

` combine_inner : δ ⊗ (δ⊥ ` δ⊥), (δ ⊗ ε(Z (Z)⊥, ε⊥, δ⊥, Z⊥, δ ⊗ Z

` δ, δ⊥ ` Z,Z⊥

` δ ⊗ Z, δ⊥, Z⊥

` δ, δ⊥
` Z⊥, Z
` ⊥, Z⊥, Z

` δ ⊗⊥, δ⊥, Z⊥, Z
` W[δ]⊥, δ⊥ ` Z⊥, Z

` combine_outer : W[δ]⊥, (δ ⊗ Z)⊗ (δ⊥ ` Z⊥), δ⊥, Z⊥, Z

` idZ(Z : Z ⊗ Z⊥, Z⊥ ` Z

Figure 5 A proof derivation of combine (invertible and exchange rules are systematically omitted).

` (!List[δ])⊥, !List[δ]
` ι̃1 : ??C[δ]⊥, ??W[δ]⊥, (!List[δ])⊥, !List[δ]

ι̃k

` ??C[δ]⊥, ??W[δ]⊥, ?List[δ]⊥, !List[δk ⊗ δ]
!combine

` ?List[δk]⊥, ??C[δ]⊥, ??W[δ]⊥, ?List[δ]⊥, !List[δk ⊗ δ]
` ??C[δ]⊥, ??W[δ]⊥, ??C[δ]⊥, ??W[δ]⊥, ?List[δ]⊥, ?List[δ]⊥!List[δk ⊗ δ]

` ι̃k+1 : ??C[δ]⊥, ??W[δ]⊥, ?List[δ]⊥, !List[δk ⊗ δ]

Figure 6 Derivations of ι̃k.

20 From normal functors to logarithmic space queries

` 1l
` true : 1l ⊕ 1r

` 1r
` false : 1l ⊕ 1r

false
` Bool
` ⊥l, Bool

true
` Bool
` ⊥r, Bool

` neg : ⊥l &⊥r, Bool

true
` Bool

` ⊥l1 ,⊥l2 , Bool

true
` Bool

` ⊥l1 ,⊥r2 , Bool
` ⊥l1 ,⊥l2 &⊥r2 , Bool

true
` Bool

` ⊥r1 ,⊥l2 , Bool

false
` Bool

` ⊥r1 ,⊥r2 , Bool
` ⊥r1 ,⊥l2 &⊥r2 , Bool

` or : ⊥l1 &⊥r1 ,⊥l2 &⊥r2 , Bool

` δ, δ⊥
or

` Bool⊥, Bool⊥, Bool

` δ ⊗ Bool⊥, δ⊥, Bool⊥, Bool

` ?(δ(Bool)⊥, !(δ(Bool(Bool)

false
` Bool ` Bool⊥, Bool

` Bool⊗ Bool⊥, Bool

` ?(Bool(Bool)⊥, !Bool

` !(δ(Bool(Bool)⊗ ?(Bool(Bool)⊥, ?(δ(Bool)⊥, !Bool

` exists : List[δ]⊥, ?(δ(Bool)⊥, !Bool

Figure 7 Encoding of FO connectives as ELLPP3
2 proofs.

We now turn to sketching the implementation of the DTC operator in ELLPP3
2 .

I Lemma 30. For all k, l there exists an ELLPP3
2 proof dtck,l of

Ctx[δ], !!Rel2[δ], !!Rel2k+l[δ] ` !!Rel2k+l[δ]

such that, if φ(~x, ~y, ~z) is a FO+DTC formula with 2k+ l free variables (|~x| = |~y| = k, |~z| = l),
and the relation it defines over D ∈ FinMod(Σ) is encoded as φ : Rel2k+l[Fin(n)], then
cut(ctx(D)⊗ !!φ⊗ !!≤D, dtck,l[Fin(n)/δ]) reduces to !!ρ where ρ encodes the relation defined
by DTC~x,~y(φ) over D. (So the !!Rel2[δ] is the total order.)

Proof sketch. First, we define an ELL2 proof dtk,l of Ctx[δ], !!Rel2k+l[δ] ` !!(δl⊗δk (1⊕δk)
whose role is to compute the partial function associated to the determinization φd of the
input relation φ.

In fact we will first output the type !(δl ⊗ δk (M(δk)) where M(A) = 1⊕A⊕ 1 should
be thought of as the algebraic data type M(A) := None | UniqueA | Multiple; then we
post-compose with 1⊕ δk ⊕ 1(1⊕ δk which sends both None and Multiple to inl(1).

dtk,l is built by iterating a function of type δk ((δl⊗δk (M(δk))((δl⊗δk (M(δk))
over all possible k-tuples of domain elements as first argument, starting from the constant
function λ(_ : δl ⊗ δk).None (which can be defined thanks to W[δ]), using Lemma 28. The
iterated function is described by the following functional pseudocode, where r : Rel2k+l[δ] =
δk ⊗ δk ⊗ δl(Bool is one of the arguments of dtk,l:

λ~a.λf.λ(~p⊗~b : δl ⊗ δk). if r (~b⊗ ~a⊗ ~p)
then case f (~p⊗~b) of
∗ None→ Unique~a
∗ Unique~c→ Multiple
∗ Multiple→ Multiple
else f (~p⊗~b)

(using if/then/else to destruct Bool). Note that ~a, ~b, ~c and ~p are used non-linearly; this
means we have to insert the appropriate calls to C[δ] and W[δ] to get a proper ELL2 proof.

L. T. D. Nguyễn and C. Pradic 21

After that, as sketched before, we need to compute a least fixpoint by iterating n2k + 1
times some functional which uses the partial function produced by dtk,l. To do so, we first
cast List[δ] into Nat = ∀X. !(X (X)(!(X (X) thanks to W[δ]; then the polynomial
P (n) = n2k + 1 can be defined as a proof !Nat ` !Nat (see [8]). The function to be iterated
n2k + 1 times is of type Rel2k+l[δ] (Rel2k+l[δ] and is defined as follows, where f is the
output of dtk,l:

λq.λ(~a⊗~b⊗ ~p : δk ⊗ δk ⊗ δl). case f (~p⊗ ~a) of
inl(1)→ if q (~a⊗~b⊗ ~p) then ~a = ~b else ~a = ~b

inr(~c)→ ~a = ~b || q (~c⊗~b⊗ ~p)
This uses an equality predicate =, which is derived easily from the total order relation (this
is why we need Rel2[δ] in the input), and the disjunction || on the booleans Bool which is
given by the proof or in Figure 7. Note also that in the inl(1) branch, the if/then/else is only
used to throw away the result of q, because the function has to be linear in q.

Thus we get a function Rel2k+l[δ] (Rel2k+l[δ] corresponding to the ψn
2k+1

R earlier;
applying this to the argument λ(_ : δ2k+l). false, which represents the empty relation ∅,
yields the deterministic transitive closure of the input. J

C Proof of Proposition 17 (syntactic analysis)

We start by an analysis mirroring that of [32], using:
the reversibility of the rules for ∀ and `,
the commutation of ∃-intro with all rules but ∀-intro,
the fact that functorial promotion is the only way to introduce !,

to ensure that a proof π : ∀δ.((!List[δ] ⊗ !!A1 ⊗ . . . ⊗ !!Ak) (!!B) must be, modulo
commutative conversions, of the form (where a double horizontal line indicates a sequence of
inference rules)

π̂

` List[δ][U1]⊥, . . . , List[δ][Um]⊥, ?Γ, !B
C/W

` List[δ][U1]⊥, . . . , List[δ][Um]⊥, ?∆, !B
` ?List[δ][U1]⊥, . . . , ?List[δ][Um]⊥, ??∆, !!B

∃
` ?List[δ]⊥, . . . , ?List[δ]⊥, ??∆, !!B

C/W
` ?List[δ]⊥, ??A⊥1 , . . . , ??A⊥k , !!B

` ∀δ.((!List[δ]⊗ !!A1 ⊗ . . .⊗ !!Ak)(!!B)

where
List[δ][U] = !(δ(U (U)(!(U (U) so that List[δ] = ∀X. List[δ][X]
Γ and ∆ are multisets whose supports are included in {A1, . . . , Ak}
the double lines labeled C/W consist in sequences of contractions and weakenings.

We may further assume that we have commuted all contractions/weakenings on ?Γ
downwards in π (this is always possible in the absence of &-rules, and this absence is
guaranteed by the subformula property). So we also require that π̂ does not contain
structural rules applied on ?Γ – equivalently, all the formulas of !Γ are introduced by
functorial promotion.

Without loss of generality, we can also consider that U1, . . . , Um are MALL2 types, by
the same “truncation at depth 2” argument used in the prequel [32, Lemma III.6].

22 From normal functors to logarithmic space queries

Finally, we have reduced the proposition we wanted to prove to the following lemma.
(When Γ = A1, . . . , Ak, we write ?Γ for ?A1, . . . , ?Ak (as in Figure 1) and C(Γ;B) for
C(A1, . . . , Ak;B) (cf. Definition 16).)

I Lemma 31. Let π̂ be a proof of ` ?Γ, List[δ][U1]⊥, . . . , List[δ][Um]⊥, !B (m ≥ 0) where
U1, . . . , Um and the formulas in Γ are in MALL2 and have at most one type variable δ.
Suppose that π̂ does not contain structural rules applied to ?Γ.

Then there exists fπ̂ ∈ C(Γ;B) such that, for all MALL2 types T , lists L of proofs of T
and proofs ρi : Ai where Γ = A1, . . . , Ak, we have16

cut(!ρ1 ⊗ . . .⊗ !ρk ⊗ LU1 ⊗ . . .⊗ LUm , π̂[T/δ]) = !fπ̂(T ;L; ρ1, . . . , ρk)

where LU : !(T (U (U) (!(U (U) is the instantiation at U of the ELL2 Church
encoding of the list L.

Proof. By strong induction on m.
In the case m = 0, since we assumed that no structural rule are performed, the last rule

of π̂ must introduce !B, so π̂ must come from a functorial promotion applied to a MALL2
proof π̃ of ` Γ, B. Then we obtain fπ̂ by the base case of Definition 16 applied to π̃.

If m ≥ 1, the last rule cannot introduce !B because the context is not of the form ?∆,
so it must introduce one of the List[δ][Ui]⊥ = !(T (Ui (Ui)⊗ ?(Ui ⊗ U⊥i) whose head
connective is ⊗. This means that up to commuting contraction downwards, π̂ must have the
shape

π̂′

` ?Γ′,∆′, !(T (V (V)

π̂′′

` ?(V ⊗ V ⊥), . . . , ?(V ⊗ V ⊥), ?Γ′′,∆′′, !B
` ?(V ⊗ V ⊥), ?Γ′′,∆′′, !B

` ?Γ, List[δ][U1]⊥, . . . , List[δ][Um]⊥, !B

where Γ = Γ′ ∪ Γ′′, ∆′ = List[δ][U ′1], . . . , List[δ][U ′m′], ∆′′ = List[δ][U ′1], . . . , List[δ][U ′′m′′],
{U1, . . . , Um} \ {V } = {U ′1, . . . , U ′m′} ∪ {U ′′1 , . . . , U ′′m′′} and π̂′, π̂′′ do not use structural rules
on either ?Γ′ or ?(V ⊗ V ⊥), . . . , ?(V ⊗ V ⊥), ?Γ′′.

So m′,m′′ < m and we may apply the induction hypothesis to obtain the functions
f ′ = fπ̂′ ∈ C(Γ′;T (V (V) and f ′′ = fπ̂′′ ∈ C(V (V, . . . , V (V,Γ′′;B). We apply the
iteration scheme to f ′ to obtain g ∈ C(Γ′;V (V). The function we are looking for is then

fπ̂(T ;L; ρ1, . . . , ρk) = f ′′(T ;L; g(ρi1 , . . . , ρim′), . . . , g(ρi1 , . . . , ρim′), ρj1 , . . . , ρjm′′)

which is in C(Γ;B) thanks to the composition scheme and the projections. J

16With a slight abuse of notation: we write cut(x1 ⊗ . . .⊗ xl, y) instead of cut(x1, . . . cut(xl, y) . . .).

	Introduction
	Elementary Linear Logic as a query language
	Linear Logic
	Finite models
	Complexity classes and the main theorems

	The lower bound: encoding logarithmic space queries
	Reminder: Immerman's characterization of L
	An encoding of FO+DTC

	The upper bounds: semantic evaluation
	Syntactic analysis
	The finite semantics of second-order MALL in coherence spaces
	The unrestricted case: an unambiguous logarithmic space bound
	Iterations in deterministic log space for low-complexity types

	Perspective: unrestricted L upper bound through game semantics?
	The sequent calculus of Linear Logic
	Proof of thm:ext-completeness (encoding queries in [2]ELL)
	Proof of syntactic-analysis (syntactic analysis)

