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Prediction-based control with delay estimation of LTI systems with
input-output delays

Yang Deng, Vincent Léchappé, Emmanuel Moulay and Franck Plestan

Abstract— The aim of this article is to propose a prediction-
based controller combined with a new time-delay estimation
method for LTI systems with unknown input and output
delays. The global asymptotic stability of the time-delay
system is ensured. The proposed control scheme includes
a delay estimator which estimates the unknown round-trip
delay (the sum of input and output delays), a Luenberger
observer and a prediction-based controller. Among the main
results of this article, the delay estimator is firstly introduced;
secondly, a Lyapunov-Razumikhin analysis is given to prove
the stability of the closed-loop system; finally, several examples
are given to illustrate the performances of the proposed method.

Keywords: Time-delay systems; Delay estimation; Lyapunov-
Razumikhin theorem

I. INTRODUCTION

Time-delay system (TDS) is a wide research domain in
the control community since time-delays are very common
in real systems. For example, time-delays can arise from
communication protocol, remote control and sensor measure-
ment [1]. Input and output delays are important to consider
because they can degrade performances or even destabilize
systems [2]. This article deals with the system with unknown
constant input and output delays which appear for instance
in networked control systems [3]. In real systems, it is very
difficult to directly measure the unknown input and output
delays or separately estimate them, then a round-trip delay
estimation is proposed in this article.

A vast literature is available on the control of input-delay
systems. Finite spectrum assignment (FSA) [4] and reduction
method [5] are standard methods to deal with known input-
delays. Prediction-based control is also an efficient way to
stabilize the TDS with known input-delays, it is used in
[6] for linear systems and in [7] for nonlinear systems. For
the systems with unknown input-delays, the works in [8],
[9], [10] present a backstepping partial differential equation
(PDE) transformation method. The new system is a combi-
nation of an ordinary differential equation (ODE) and a PDE
transport equation. Therefore, the adaptive controller design
and Lyapunov-Krasovskii analysis are proposed to stabilize
the ODE-PDE system. Besides, a large number of works
without PDE transformation have been done to deal with
the unknown input-delay. Several approaches among them
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are based on the time-delay estimation (TDE) algorithm. A
modified Smith predictor with transfer function based TDE
algorithm is provided in [11]. The authors of [12] propose a
memory-free controller combined with a piecewise-constant
input delay identifier for LTI systems with an input-delay.
The exponential stability of the closed-loop system is ob-
tained but the delay identifiability of the closed-loop system
must be ensured. The works in [13] provide an open-loop
TDE algorithm and a robust predictive controller with an
application to a DC motor, the TDS is stabilized in practice.

However, the systems with input and output delays are not
as widely studied as input-delay systems. The works in [14]
present an advanced reduction method which stabilizes the
linear systems with known constant input, output and state
delays. A predictor-based controller for nonlinear systems
with zero-order-hold input and sampled measurement is
proposed in [15], this work is extended to output feedback
controller in [16]. In [17], a truncated predictor feedback
approach is proposed to stabilize the systems with known
input and output time-varying delays, but this technique only
deals with the systems with particular poles. An adaptive
controller for hyper–minimum–phase systems with uncertain
input and output delays is proposed in [18], but the drawback
is that the controller only ensures the local stability and it
cannot deal with arbitrarily long delays.

In this article, a real-time round-trip delay estimation
method is combined with a Luenberger observer and a
prediction-based controller. It is shown that if the initial
condition of the delay estimator is close enough to the
round-trip delay value, then the asymptotic stability of the
TDS can be obtained. The stability condition is obtained by
using Lyapunov-Razumikhin1 method. Thus, one obtains the
stabilization of the system and the convergence of the state
estimation.

The article is organized as follows. The problem statement
is presented in Section II. Then, the main results are provided
in Section III and illustrated by simulation results in Section
IV. Finally, a conclusion is given in Section V.

II. PROBLEM STATEMENT

In this article, the following notations are used. Let ‖x‖
denote the euclidean norm of a vector x ∈Rn. The matrix In
represents the identity matrix of size n×n. The matrix norm
of a matrix A reads as ‖A‖. The maximum and minimum
eigenvalues of the matrix A are respectively defined as λ̄ (A)

1The details of the Lyapunov-Razumikhin theorem are presented in [2,
Subsection 3.1.3] and [19, Subsection 5.4].



and λ (A). Let C =C ([σ −h,σ + r],Rn) for any t ∈ [σ ,σ +
r], then xt(θ) can be defined as xt(θ) = x(t + θ) ∈ C with
−h ≤ θ ≤ 0. The other notations of the Lyapunov stability
are given in [19].

Consider a LTI system with input and output delays{
ẋ(t) = Ax(t)+Bu(t−hi)

y(t) =Cx(t−ho)
(1)

where x(t) ∈Rn, A ∈Rn×n, B ∈Rn×p, C ∈Rm×n, u(t) ∈Rp

and hi, ho are unknown constant time-delays. Therefore, the
round-trip delay reads as

hio = hi +ho (2)

which is bounded in [hmin,hmax]. The boundedness hmax >
hmin > 0 are assumed to be known. The initial condition
of system (1) is defined as x(θ) = x0(θ) ∈ C and u(θ) =
u0(θ) ∈ C for all θ ∈ [−2hmax,0].

A Luenberger observer presented in [6, p.61] is proposed
to estimate the output-delayed state x(t−ho):

˙̂x(t) = Ax̂(t)+Bu(t−hio)+L[y(t)−Cx̂(t)] (3)

with initial condition x̂(θ) = x̂0(θ) ∈ C for all θ ∈
[−2hmax,0]. The estimation error is defined as

e(t) = x̂(t)− x(t−ho). (4)

An approximated prediction2 z(t) based on ĥ(t) and x̂(t) used
in [10] is proposed in this article

z(t) = eAĥx̂(t)+
∫ t

t−ĥ
eA(t−s)Bu(s)ds (5)

with initial condition z(θ) = z0(θ) ∈ C for all θ ∈
[−2hmax,0].

The problem to solve is to design the dynamics of ˙̂h(t)
and a controller u(z(t)), in order to obtain the asymptotic
stability of the closed-loop system.

In the sequel the following assumptions are made.

Assumption 1. The pair (A,B) is stabilizable and the pair
(A,C) is observable.

Assumption 1 ensures that the controller and observer can
be designed. It follows that there exists feedback matrices
K, L with appropriate dimensions such that A+BK, A−LC
are Hurwitz, and for all positive constants cu, cl , there exists
symmetric positive definite matrices P ∈ Rn×n, Q ∈ Rn×n

that are the solutions of the following Lyapunov equations

(A+BK)T P+P(A+BK) =−cuIn (6)

(A−LC)T Q+Q(A−LC) =−clIn. (7)

Assumption 2. The delayed input value u(t−hio) is known.

In practical application, it is possible to save the delayed
input value u(t−hi) and send it to the controller along with

2The predictor-based controller contains infinite dimensional term which
may cause implementation issues. To well implement this controller, a
trapezoid discretization method and a periodic reset of the update law when
convergence is achieved are proposed in [10].

the system’s output. Therefore, as a result of the transport
delay ho, one obtains u(t − hi − ho). The structure of the
closed-loop system is shown in Figure 1. The information
sent from the controller to the system and from the system
to the controller are subject to the unknown input and
output delays. The blue dashed rectangle represents the
control scheme that includes the observer, the predictor-
based controller and the delay estimator. The violet dashed
rectangle represents the communication delays introduced by
the communication channels.
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Fig. 1. Closed-loop scheme of the prediction-based controller with TDE
algorithm.

III. DELAY ESTIMATION AND STABILIZATION OF THE
INPUT-OUTPUT DELAY SYSTEM

The main result of this paper is given by Theorem 1.

Theorem 1. Consider that the system (1) satisfies Assump-
tions 1 and 2, the observer (3) and the predictor (5) . The
control law satisfies

u(t) = Kz(t), t > 0
u(θ) = u0(θ) = Kz0(θ), θ ∈ [−2hmax,0]

(8)

where K is the linear feedback matrix referred in Assumption
1. Suppose that the control input u(t) given in (8) is contin-
uously differentiable at t = 0. Define the delay estimator{

˙̂h(t) = min{γ‖u(t−hio)−u(t− ĥ(t))‖, δ̂}, t > 0
ĥ(θ) = ĥ0, θ ∈ [−2hmax,0]

(9)
where γ , δ̂ are positive constants and the initial condition
ĥ0 satisfies hmin ≤ ĥ0 ≤ hio. If ĥ0 is sufficiently close to hio,
then there exists a constant δ̂ ∗ > 0, such that for all δ̂ < δ̂ ∗,
the z-system is uniformly globally asymptotically stable, then
one gets

lim
t→+∞

‖x(t)‖= 0; (10)

lim
t→+∞

‖e(t)‖= 0. (11)

Proof: The proof is divided into 3 parts. The first part
studies the properties of delay estimator (9); the second part
proves the stability of the closed-loop z-system; the last part
demonstrates the convergence of x(t) to zero by using the
stability of the z-system and the convergence of e(t).



Step 1. In this step, the properties of the delay estimator
ĥ(t) are studied. The delay estimation satisfies the following
inequalities

ĥ0 ≤ ĥ(t)≤ hio (12)

for all t ≥ 0. Inequalities (12) are hereafter proven by
contradiction. Assume that there exists t0 > 0 such that
ĥ(t0)> hio. From equation (9), it follows that ˙̂h(t)≥ 0 for all
t ≥−2hmax. Therefore, ĥ(t) is continuous, monotonically in-
creasing with initial condition ĥ0≤ hio for all θ ∈ [−2hmax,0].
The intermediate value theorem given in [20, p.105] implies
that there exists t1 ∈ (0, t0) such that ĥ(t1)= hio and ˙̂h(t1)> 0.
However, if ĥ(t1) = hio, then one has

˙̂h(t1)≤ γ‖u(t−hio)−u(t− ĥ(t1))‖= 0. (13)

Therefore, inequality (13) contradicts the fact ˙̂h(t1)> 0 and
the existence of t0. Then, inequalities (12) are proven by
contradiction.
This step ensures that if the initial condition of the delay
estimator satisfies

hio− ĥ0 ≤ D (14)

with D > 0, then the delay estimator ĥ(t) satisfies

0≤ hio− ĥ(t)≤ hio− ĥ0 ≤ D (15)

for all t ≥ 0 due to the monotonicity and the boundedness
of ĥ(t).

Step 2. Differentiating equation (5) for all t > 0 and
substituting ˙̂x(t) by equation (3), one obtains

ż(t) =(A+BK)z(t)+ ˙̂h(t)Az(t)+ ˙̂h(t)eAĥ(t)Bu(t− ĥ(t))

− ˙̂h(t)A
∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds− eAĥ(t)LCe(t)

+ eAĥ(t)B[u(t−hio)−u(t− ĥ(t))]. (16)

Developing system (1) at t−ho yields that

ẋ(t−ho) = Ax(t−ho)+Bu(t−ho−hi). (17)

Noticing that ho is constant, it implies that

d
dt

x(t−ho) = ẋ(t−ho). (18)

Differentiating the estimation error e(t) by using equations
(3), (17) and (18), it leads to

ė(t) = ˙̂x(t)− d
dt

x(t−ho)

= Ax̂(t)+Bu(t−hio)−LCe(t)

−Ax(t−ho)−Bu(t−ho−hi)

= (A−LC)e(t). (19)

Define V1(z(t)) = z(t)T Pz(t), V2(e(t)) = e(t)T Qe(t). From
equation (9), it yields that | ˙̂h(t)| is upper bounded by δ̂ for
all t ≥−2hmax. Differentiating V1(z(t)) along the trajectories
of (16), it leads to

V̇1(z(t))≤− cu‖z(t)‖2 +2δ̂‖PA‖‖z(t)‖2

+2δ̂e‖A‖hmax‖B‖‖P‖‖z(t)‖‖u(t− ĥ(t))‖
+2δ̂e‖A‖hmax‖PA‖‖B‖‖z(t)‖‖v(t)‖
+2e‖A‖hmax‖P‖‖LC‖‖z(t)‖‖e(t)‖
+2e‖A‖hmax‖P‖‖B‖‖z(t)‖‖w(t)‖ (20)

where ‖v(t)‖ =
∫ t

t−ĥ(t) ‖u(s)‖ds and ‖w(t)‖ =∫ t−ĥ(t)
t−hio

‖u̇(s)‖ds. Differentiating V2(e(t)) along the
trajectories of (19), one obtains

V̇2(e(t)) =−cl‖e(t)‖2. (21)

The following Lyapunov-Razumikhin candidate function is
defined by

V (z(t),e(t)) =V1(z(t))+αV2(e(t)) (22)

where α is a positive constant. Defining c1 = 2‖PA‖,
c2 = 2e‖A‖hmax‖B‖‖P‖, c3 = 2e‖A‖hmax‖PA‖‖B‖ and c4 =
2e‖A‖hmax‖P‖‖LC‖, the time-derivative of V (z(t),e(t)) satis-
fies

V̇ (z(t),e(t))≤− (cu− δ̂c1)‖z(t)‖2 + δ̂c2‖z(t)‖‖u(t− ĥ(t))‖
+ δ̂c3‖z(t)‖‖v(t)‖+ c4‖z(t)‖‖e(t)‖
+ c2‖z(t)‖‖w(t)‖−αcl‖e(t)‖2. (23)

Therefore, one can use Lyapunov-Razumikhin condition as
follows: for a given κ > 1, suppose that one has

V (z(t−s),e(t−s))≤ κV (z(t),e(t)), s∈ [0,2hmax] (24)

and therefore one has

‖z(t− s)‖ ≤ c5(‖z(t)‖+
√

α‖e(t)‖), s ∈ [0,2hmax]

‖e(t− s)‖ ≤ c∗5(‖z(t)‖/
√

α +‖e(t)‖), s ∈ [0,2hmax]
(25)

where c5 =
√

κ max(λ̄ (P), λ̄ (Q))/λ (P) and c∗5 =√
κ max(λ̄ (P), λ̄ (Q))/λ (Q). Thus, one can simplify

the second and third terms of inequality (23) as follows:

δ̂c2‖z(t)‖‖u(t− ĥ(t))‖ ≤δ̂c2c5‖K‖‖z(t)‖(‖z(t)‖+
√

α‖e(t)‖)
≤ δ̂c6‖z(t)‖(‖z(t)‖+

√
α‖e(t)‖)

(26)



δ̂c3‖z(t)‖‖v(t)‖ ≤δ̂c3c5‖K‖hmax‖z(t)‖(‖z(t)‖+
√

α‖e(t)‖)
≤ δ̂c7‖z(t)‖(‖z(t)‖+

√
α‖e(t)‖) (27)

where c6 = c2c5‖K‖ and c7 = c3c5‖K‖hmax. To simplify the
term c2‖z(t)‖‖w(t)‖ of inequality (23), one uses

‖w(t)‖ ≤ D(t)‖K‖ sup
s∈[t−hio,t−ĥ(t)]

‖ż(s)‖ (28)

with D(t) = hio− ĥ(t). For all s1 ∈ [ĥ(t),hio], one can develop
the expression of ż(t− s1) by using equation (16):

ż(t− s1) =(A+BK)z(t− s1)+
˙̂h(t− s1)Az(t− s1)

− ˙̂h(t− s1)A
∫ t−s1

t−s1−ĥ(t−s1)
eA(t−s1−s)Bu(s)ds

+ ˙̂h(t− s1)eAĥ(t−s1)Bu(t− s1− ĥ(t− s1))

+ eAĥ(t−s1)B[u(t− s1−hio)−u(t− s1− ĥ(t− s1))]

− eAĥ(t−s1)LCe(t− s1). (29)

Taking norm of equation (29), by using the Razumikhin
condition (25) and the triangle inequality, it leads to

‖ż(t− s1)‖ ≤ ‖A+BK‖c5(‖z(t)‖+
√

α‖e(t)‖)
+ δ̂‖A‖c5(‖z(t)‖+

√
α‖e(t)‖)

+ δ̂‖A‖e‖A‖hmax‖BK‖hmaxc5(‖z(t)‖+
√

α‖e(t)‖)
+ δ̂e‖A‖hmax‖BK‖c5(‖z(t)‖+

√
α‖e(t)‖)

+2e‖A‖hmax‖BK‖c5(‖z(t)‖+
√

α‖e(t)‖)
+ e‖A‖hmax‖LC‖c∗5(‖z(t)‖/

√
α +‖e(t)‖) (30)

for all s1 ∈ [ĥ(t),hio]. Inequality (30) is equivalent to

sup
s∈[t−hio,t−ĥ(t)]

‖ż(s)‖ ≤(c8(δ̂ )+ c9/
√

α)‖z(t)‖

+(c8(δ̂ )
√

α + c9)‖e(t)‖ (31)

with parameters c8(δ̂ ) and c9 defined by

c8(δ̂ ) =‖A+BK‖c5 + δ̂‖A‖c5

+ e‖A‖hmax‖BK‖(2+ δ̂ + δ̂‖A‖hmax)c5,

c9 =e‖A‖hmax‖LC‖c∗5. (32)

Substituting inequality (31) into inequality (28), and using
inequality (15) one maximizes c2‖z(t)‖‖w(t)‖ as:

c2‖z(t)‖‖w(t)‖ ≤D(t)(c10(δ̂ )+ c11/
√

α)‖z(t)‖2

+D(t)(c10(δ̂ )
√

α + c11)‖z(t)‖‖e(t)‖
≤ D(c10(δ̂ )+ c11/

√
α)‖z(t)‖2

+D(c10(δ̂ )
√

α + c11)‖z(t)‖‖e(t)‖ (33)

with c10(δ̂ ) = c2c8(δ̂ )‖K‖, c11 = c2c9‖K‖ and D = hio− ĥ0.
Therefore, inequality (23) can be simplified as

V̇ (z(t),e(t))≤−(cu− δ̂c12−Dc10(δ̂ )−
Dc11√

α
)‖z(t)‖2

+(δ̂c13
√

α + c4 +Dc10(δ̂ )
√

α

+Dc11)‖z(t)‖‖e(t)‖−αcl‖e(t)‖2 (34)

with c12 = c1+c6+c7 and c13 = c6+c7. Finally, one obtains
the following inequality by completing the squares:

V̇ (z(t),e(t))≤− (cu− δ̂c12−Dc10(δ̂ )−
Dc11√

α
− δ̂c13

√
α

2

− Dc10(δ̂ )
√

α

2
− Dc11

2
− c2

4
2αcl

)‖z(t)‖2

−α(
cl

2
− Dc10(δ̂ )

2
√

α
− Dc11

2α
− δ̂c13

2
√

α
)‖e(t)‖2.

(35)

Choosing α sufficiently large so that c2
4

2αcl
can be ignored

by comparing with cu, then there exists sufficiently small
constants δ̂ ∗ and D∗ such that

cu− δ̂
∗c12−D∗c10(δ̂

∗)− D∗c11√
α
− δ̂ ∗c13

√
α

2

− D∗c10(δ̂
∗)
√

α

2
− D∗c11

2
≥ 0,

cl

2
− D∗c10(δ̂

∗)
2
√

α
− D∗c11

2α
− δ̂ ∗c13

2
√

α
≥ 0. (36)

If the initial condition of the delay estimator is sufficiently
close to hio such that hio− ĥ0 = D < D∗ is ensured. Then,
for all δ̂ < δ̂ ∗, there exists two constants c14,c15 > 0 such
that

V̇ (z(t),e(t))≤−c14‖z(t)‖2− c15‖e(t)‖2 (37)

which implies that there exists a nondecreasing continuous
function w(s) :R+→R+ such that

V̇ (z(t),e(t))≤−w(z(t),e(t)). (38)

The Lyapunov-Razumikhin theorem referred in [19, Subsec-
tion 5.4, Theorem 4.2] ensures that the closed-loop z-system
is uniformly globally asymptotically stable. Therefore, the
convergence results lim

t→∞
‖z(t)‖ = 0 and lim

t→∞
‖e(t)‖ = 0 are

also ensured.
Step 3. As proven in Step 2, one obtains lim

t→∞
‖z(t)‖ = 0

and lim
t→∞
‖e(t)‖= 0. Reminding that equation (5) equals to

x̂(t) = e−Aĥ(t)z(t)−
∫ t

t−ĥ(t)
eA(t−ĥ(t)−s)Bu(s)ds. (39)



Reminding the definition of e(t), equation (39) can be
developed as

x(t−ho) = e−Aĥ(t)z(t)− e(t)−
∫ t

t−ĥ(t)
eA(t−ĥ(t)−s)Bu(s)ds.

(40)
As known that 0 < ĥ(t) ≤ hmax, by using the mean value
theorem referred in [20, p. 101], one bounds the integral
term of equation (40) as follows:∥∥∥∥∫ t

t−ĥ(t)
eA(t−ĥ(t)−s)Bu(s)ds

∥∥∥∥≤ e‖A‖hmax‖B‖
∫ t

t−ĥ(t)
‖u(s)‖ds

≤ e‖A‖hmax‖B‖
∫ t

t−hio

‖u(s)‖ds

≤ e‖A‖hmax‖B‖‖K‖hmax sup
s∈[t−hio,t]

‖z(s)‖

(41)

for all t ≥ hio. Taking the norm of equation (40) and using
the triangle inequality, it leads to

‖x(t−ho)‖ ≤ e‖A‖hmax‖z(t)‖+‖e(t)‖
+ e‖A‖hmax‖B‖‖K‖hmax sup

s∈[t−hio,t]
‖z(s)‖. (42)

Noticing that the limit of the right-hand side of inequality
(42) is zero as t tends towards infinity because of the
convergences lim

t→∞
‖z(t)‖ = 0 and lim

t→∞
‖e(t)‖ = 0, then one

obtains lim
t→∞
‖x(t)‖= 0.

Remark 1. Delay estimator (9) is the key point of the
stabilization of system (1). It is not necessary for the delay
estimator to converge to the nominal round-trip delay since
the system can be stabilized with delay mismatch [12], [21].
However, in applications, the unknown round-trip delay can
be estimated by delay estimator (9) as it will be shown in
simulations.

Remark 2. In theory, it is necessary to set δ̂ sufficiently
small to ensure that the stability condition (36) always holds.
Indeed, Theorem 1 presents only a sufficient condition for the
stability of the closed-loop system. Although condition (36)
is not satisfied with larger δ̂ , the convergence lim

t→∞
‖z(t)‖= 0

ultimately holds with higher convergence speed of the TDE
algorithm in applications.

Remark 3. Delay estimator (9) is always increasing, if the
initial condition ĥ0 is not carefully chosen such that ĥ0 ≥ hio,
then the delay estimation and the system will diverge. In
practice, it is possible to set ĥ0 = hmin in order to avoid the
divergence.

Remark 4. Theorem 1 also shows that the predictor-based
controller is robust with respect to the slight delay mismatch.

If one uses a constant estimation h̄ that is sufficiently close
to h instead of ĥ(t) to calculate the control law given in (5)
and (8). Then the same proof as Theorem 1 can be given
to guarantee that the closed-loop system is asymptotically
stable. This result is very similar to the one given in [21].

Remark 5. The proposed TDE method is robust with respect
to the model uncertainties and the external disturbances. The
reason is that the control input u(t) is memorized and the
delayed input value u(t − hio) is measured, then the delay
estimator will not be influenced by the model uncertainties
and the external disturbances.

IV. SIMULATIONS

Two simulations of a second-order system are made
to evaluate the results provided in Theorem 1. Moreover,
the delay estimator converges to the round-trip delay in
simulations.

A. Simulation results with ĥ0 close to hio

Consider the second-order system{
ẋ(t) = Ax(t)+Bu(t−hi)

y(t) =Cx(t−ho)
(43)

with A =

[
0.5 1
2.5 −1

]
, B =

[
0
1

]
, C =

[
1 0

]
, x(θ) =[

0.4 1
]T for all θ ∈ [−2hmax,0] and z(θ) = x̂(θ) =

[
0 0

]T
for all θ ∈ [−2hmax,0]. The unknown time-delays are set
to hi = 0.5s, ho = 0.3s, the initial condition of the delay
estimator is set to ĥ0 = 0.7s, the gain γ = 5 and the derivative
of delay estimator (9) is bounded by δ̂ = 0.1. The parameters
of the controller are defined as K =

[
−7.7 −3.35

]
and

L =
[
4.5 2.5

]T .

Fig. 2. Evolution of ‖x(t)‖, ‖e(t)‖ and ĥ(t) versus time for system (43)
with ĥ0 = 0.7s.



The simulation results are presented in Figure 2. The
unknown round-trip delay is well estimated and one gets
lim
t→∞
‖e(t)‖= 0, lim

t→∞
‖x(t)‖= 0.

Figure 2 also verifies the discussions in Remark 2, i.e.
the fact that the theoretical stability condition (36) can
only be satisfied with sufficiently small δ̂ because of the
conservatism. Indeed, the convergence of system (43) holds
when δ ∗ = 0.1 whereas the theoretical bound is around
10−4 in order that condition (36) can be ensured.

B. Simulation results with ĥ0 far from hio

Another simulation is done for the same system (43), ex-
cept ĥ0 that has been redefined as ĥ0 = 0.2s. The simulation

Fig. 3. Evolution of ‖x(t)‖, ‖e(t)‖ and ĥ(t) versus time for system (43)
with ĥ0 = 0.2s.

results are presented in Figure 3. The unknown round-trip
delay is also well estimated, and one has the convergences
lim
t→∞
‖e(t)‖= 0, lim

t→∞
‖x(t)‖= 0. Since the initial condition of

ĥ(t) is far from hio, there exists a transient for the delay
estimator to be sufficiently close to the round-trip delay.
As the delay estimation ĥ(t) gets sufficiently close to hio
after t = 6s, the convergences of ‖x(t)‖ and ‖e(t)‖ to zero
ultimately hold. This simulation shows that the constraints
on the initial condition of ĥ(t) can be relaxed in practice.

V. CONCLUSION

In this article, a new round-trip delay estimation method
for constant input and output delays is proposed. The sta-
bility of the closed-loop system is guaranteed by Lyapunov-
Razumikhin theorem. The practical implementation of this
approach is discussed, and the theoretical results are illus-
trated by simulations. The extension of this method to non-
linear systems and to time-varying delays will be considered
for future works.
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