
HAL Id: hal-02023922
https://hal.science/hal-02023922v1

Submitted on 18 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Migration velocity of red blood cells in microchannels
Sylvain Losserand, Gwennou Coupier, Thomas Podgorski

To cite this version:
Sylvain Losserand, Gwennou Coupier, Thomas Podgorski. Migration velocity of red blood cells
in microchannels. Microvascular Research, 2019, 124, pp.30-36. �10.1016/j.mvr.2019.02.003�. �hal-
02023922�

https://hal.science/hal-02023922v1
https://hal.archives-ouvertes.fr


Migration velocity of red blood cells in microchannels
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Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France

(Dated: February 18, 2019)

The lateral migration of red blood cells (RBCs) in confined channel flows is an important ingre-
dient of microcirculatory hydrodynamics and is involved in the development of a cell free layer near
vessel walls and influences the distribution of RBCs in networks. It is also relevant to a number
of lab-on-chip applications. This migration is a consequence of their deformability and is due to
the combined effects of hydrodynamic wall repulsion and the curvature of the fluid velocity profile.
We performed microfluidic experiments with dilute suspensions of RBCs in which the trajectories
and migration away from the channel wall are analyzed to extract the mean behavior, from which
we propose a generic scaling law for the transverse migration velocity valid in a whole range of pa-
rameters relevant to microcirculatory and practical situations. Experiments with RBCs of different
mechanical properties (separated by density gradient sedimentation or fixed with glutaraldehyde)
show the influence of this parameter which can induce significant dispersion of the trajectories.

INTRODUCTION

Blood is a dense suspension of essentially RBCs within
plasma, which is a Newtonian fluid. RBCs have the par-
ticularity to be highly deformable in physiological condi-
tions, which leads to complex flow patterns in confined
environment due to several mechanisms.

One of the most famous features, first observed by
Poiseuille [1], is the presence of a cell-free plasma layer
(CFL) near vessels walls [2–6] inducing a decrease of the
apparent viscosity referred to as F̊ahræus-Lindquist ef-
fect [7] as well as a decrease of the hematocrit in small
vessels compared to large ones [8, 9]. Several phenom-
ena can be invoked to explain this cell free layer, one
being geometrical: the presence of a capillary wall im-
plies that the centers of RBCs must lie at least one RBC
half-thickness away from the wall. This means that, on
average, there will be more RBCs near the center of the
capillary than very near the wall. The second one is
hydrodynamical: at low-Reynolds number the deforma-
bility of RBCs allows a symmetry breaking that leads to
transverse migration from the wall to the center of the
channel [10, 11]. This symmetry breaking can also be ob-
tained through the elastic deformation of the glycocalyx
brush covering the endothelium [12]. Finally, RBC aggre-
gation can have an influence on the CFL [5]. Transverse
migration also plays a role in the so-called margination
effect: contrary to RBCs which are concentrated around
the centerline, other blood elements like white cells or
platelets are marginated against the wall [13–19], which
helps them to accomplish their function (e.g. in immune
response, inflammation...). The centering of RBCs also
influences the repartition of RBCs at bifurcations: due
to the heterogeneity of the RBC concentration in ves-
sels and the existence of a cell free layer, a heterogeneous
distribution of the hematocrit takes place in the micro-
circulation [20–27].

The importance of understanding this migration is not
limited to in vivo microcirculation but also has impor-

tant possible applications in the design of Lab-on-Chip
devices for particle separation. Geislinger et al. [28] pre-
sented a device capable to separate a dilute suspension
of RBCs and platelets: the less deformable platelets mi-
grate less than RBC and by controlling the position of
the two outlets it is possible to separate the two popula-
tions. Important works are also done on a device named
deterministic lateral displacement (DLD), which is made
of a dense network of small pillars. The trajectory of
particles inside this network is highly dependent on their
properties, resulting in the possibility to separate differ-
ent entities like RBCs [29], or different types of white
cells [30].

In confined situations where the channel size is equal
to a few cell radius, the effect of shape changes is strong
and non-monotonous time variation of position can be
observed. Numerical simulations explored the migration
dynamics and the asymptotic position of simplified mod-
els of cells like 2D capsules [31] and 2D vesicles [32, 33]
that can only qualitatively be compared to experiments.
To date, although results are available on the shape and
the position of RBCs in very confined channels [34, 35],
there exist no experimental measurement and no quan-
tification of migration dynamics of RBCs in confined
Poiseuille flow (but in the pioneering work of Goldsmith
[10]). The main objective of this paper is therefore to de-
scribe the migration of isolated RBCs for different con-
finements by using a simple general scaling law which
could be used to validate numerical simulations, design
future microfluidic devices or apply to some physiologi-
cal situations where the hematocrit is low due to strongly
heterogeneous distribution of cells at bifurcations in the
microcirculation [20–27].

Transverse migration in simple shear flow

Among biomimetic models, giant vesicles are closed
lipid membranes exhibiting in certain conditions, dynam-
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ical properties that are similar to those RBCs, though
they do not have cytoskeleton providing in plane shear
elasticity. Their migration dynamics was theoretically
described by Olla in [11]. For a vesicle with a fixed ellip-
soidal shape, the drift velocity when the distance to the
wall is large compared to vesicle size reads

ẏ = Uγ̇
R3

0

y2
, (1)

where y is the distance of the center of mass to the wall,
γ̇ the shear rate of the unperturbed flow, R0 the typical
size of the vesicle and U a dimensionless parameter that
depends on vesicle properties: the viscosity contrast λ
between the inner and outer fluids and the reduced vol-
ume ν = 6

√
πV/S3/2 where V is the vesicle volume and

S its surface area. In the following, R0 will be taken as
the radius of the sphere of the same volume V as the con-
sidered particle: R0 = (3V/4π)1/3. For RBCs of typical
volume 90 µm3 [36], this leads to R0 = 2.8 µm.

This law has been confirmed later by 2D [37] or by 3D
[38–40] numerical simulations and by theoretical analy-
sis [40]. In the past years, several experiments in micro-
gravity condition were conducted to measure this drift
velocity [41, 42]. The overall scaling for the drift velocity
as well as the value of the prefactor U are in agreement
with simulations and theory (even though Olla assumes a
fixed shape), for λ = 1 [39, 40] or higher values of λ [42].
Note that in Ref. [39] the y−α scaling with α = 2 seems
to be valid for y/R0 & 2 and that for 1 . y/R0 . 2,
α is smaller than 2, in agreement with the experimental
near-wall study of Ref. [43] where α = 1 is suggested.

Finally, similar y−2 scalings for the lift velocity were
found for elastic capsules through numerical simulations
[44, 45].

In physiological conditions, in terms of external fluid
(plasma) viscosity and shear rates, isolated RBCs are far
from a tank-treading regime [46–50] where they would
adopt a fixed orientation relative to the flow. It was
recently shown, however, that the scaling proposed for
vesicles is still valid and a mean drift velocity (which
corresponds to a drift velocity averaged over one body
rotation period) characterized by UR3

0 = 0.36 µm 3 was
measured [51]. We are aware of no direct theoretical or
numerical validation of this measurement.

Transverse migration in a channel

In a channel, the shear rate of the unperturbed flow
is not uniform. This sole symmetry breaking is sufficient
to induce migration of lipid vesicles even in the absence
of walls [40, 52, 53]. In a realistic channel, wall lift and
shear rate gradient contribute to migration in a complex
way, in particular near the centerline where cell shape or
dynamic depends a lot on its position close to this zero

shear rate centerline. Over a wide range of confinement
degree(2 < w/R0 < 10, where w is the half width of the
channel), reduced volumes and viscosity ratios, it was
shown experimentally in Ref. [54] that for lipid vesicles
the migration velocity may be written as

ẏ = ξ
Rδ+1

0 γ̇(y)

(y − yw)δ
, (2)

where δ is close to 1 and ξ a dimensionless parame-
ter that depends on the vesicle properties, similar to U
for the drift under simple shear rate and yw is the posi-
tion of the center of mass when the particle is as close as
possible to the wall. For the quasispherical vesicles con-
sidered in [54], yw ∼ R0 but in general, it may depend
on particle deformability. This scaling was confirmed by
2D numerical simulations [54].

The alternative empirical law that we propose in this
paper,

ẏ = ξ
Rδ+1

0 γ̇(y)

yδ
, (3)

is formally simpler and allows for comparison between
different situations with no need to take into account the
detail of the near-wall interactions. This formulation is
the one generally used in the literature [11, 17, 55] and
we shall consider it in the following. Indeed, RBCs are so
deformable that y0 can be very small and discussing its
very precise value is not relevant from an experimental
point of view, due to the dispersion in cell properties,
initial cell orientation and the precision we can reach in
its determination.

We show here that scaling law such as Eq. 3 can ap-
propriately describe RBC migration in a confined channel
and provide values for δ and ξ that are valid in a wide
range of parameters.

EXPERIMENTAL SET-UP AND METHODS

The considered microfluidic channels are straight and
of rectangular cross section. The width and the height of
the section are respectively denoted 2w and 2h, the use-
ful length of the channel is 2.7 cm. RBCs flow along the
Ox direction and migrate laterally along Oy. The walls
are located at y=0 and y = 2w in the Oy direction and
at z = −h and z = h in the Oz direction (Fig. 1). Before
the channel of interest, the flow is established over a long
time resulting in a preliminary centering of the RBCs in
the Oz direction (z = 0), depending on the width of the
channel the preliminary centering in Ox is not necessarily
complete. The suspension then reaches a T intersection:
the control of the flow rate in the daughter branches per-
mit to move the separation line, thus allowing to direct
slightly more than the CFL of the incoming branch in
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FIG. 1. (a) Sketch of the experimental channel. The separation line of the incoming flow is indicated by the violet dashed
line. (b) Trajectory of a RBC migrating at high confinement (one single window). (c) Position of different RBCs in successive
windows for a smaller confinement. RBCs are chosen to represent the median trajectory (see bottom middle panel in Fig. 4).

the outlet of interest and creating an initial condition
where the incoming RBCs are near the wall (y = 0) in
this outlet (Fig 1).

The channel is produced by soft lithography in poly-
dimethylsiloxane (PDMS) bonded to a glass slide by
plasma treatment. Channels with different sizes are used:
w = 3.9, 6.2, 10.6, 12.5, 17.4, 27 µm with respective h
= 4.8, 4.8, 6.5, 10, 10, 10 µm. The ratio between the
characteristic channel size and the characteristic radius
of the RBC (w/R0) varies between 1.5 to 10. The flow
is controlled thanks to a pressure controller (Elveflow™

Mk3).

Blood is supplied by the Etablissement Français du
Sang (EFS) and is taken from healthy volunteers. Blood
samples are first washed 3 times in a solution of
phosphate-buffered saline (PBS tablet Sigma™: 10 m
phosphate buffer, 2.7 m potassium chloride and 137 m
with pH 7.4). Then samples are suspended at a low vol-
ume fraction (0.1%) so that RBC/RBC interactions be-
come negligible in an isodense solution made of 70mL of
Optiprep™ (iodixanol aqueous solution), 130mL of ultra-
pure water and a PBS tablet [56]. The buffer has a den-
sity of 1.112 ± 0.001 which prevents the sedimentation
of the RBCs and a viscosity of ηe = 1.9× 10−3 Pa s at
20◦C which is a little higher than plasma viscosity (1.54
mPa s at 25◦C [57]).

Furthermore, for one experiment, density-fractionated

RBCs were prepared using discontinuous gradients with
Optiprep. The gradient was built up in four layers
of 2 mL, containing ultra pure water and respectively
40% (1.128 g mL−1), 37% (1.118 g mL−1), 33% (1.106
g mL−1), 31% (1.099 g mL−1) of Optiprep, buffered with
a PBS tablet. 2 mL of blood sample initially washed
using the method explained above are layered on the
top of the gradient solution following a centrifugation
at 3,000 rpm for 30 minutes at room temperature. After
the centrifugation, two subpopulations are extracted and
suspended in a density matched solution. The first pop-
ulation corresponds to RBCs having a density between
1.099 and 1.106 and represent the first ' 5% of the total
population, the second population has a density included
between 1.118 and 1.128 representing the last ' 10% of
the total population.

Images are acquired with a 32X objective mounted on
an inverted microscope ( Olympus™ IX71) using a CMOS
camera (ImagingSource™, DMK UX174) at a rate of 30
frames/s. RBCs are not followed directly, measurements
are made on windows of size L=350 µm at different po-
sitions x; about 200 RBCs are observed by windows (see
Fig. 1). A custom Python software using the library
OpenCV™ [58] determines the center of mass of the pro-
jected shapes of RBCs. Using the trajectories of the
RBCs obtained in each window, velocities vp(y, 0) are
computed using a simple tracking program. Depending
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on the confinement, the probability density function of
the position y of the RBCs is calculated on a part or on
the entire window. To reduce the influence of the out-
liers the median trajectory y(x) is chosen to describe the
trajectory of the RBCs. The dispersion yd is defined as
the mean between the position of the 33 rd and 66 th per-
centile. All lengths dimension are rescaled by w and are
denoted with a ∼.

RESULTS

Longitudinal velocity — Fig. 2 shows the measured
velocity vp of RBCs as a function of their position ỹ (grey
point). The maximum velocity is at ỹ = 1 as for the
fluid but the experimental plots show that vp converges
to 0 before ỹ = 0. A straightforward explanation is the
influence of the finite size of a particle compared to the
size of the channel. There is no simple solution for this
complex flow due to the presence of walls. Furthermore,
the deformability and the complex shape of the RBC
eliminate the possibility of a simple analytical solution.

A description of vp is necessary in the continuation of
this paper to translate the migration velocity (Eq. 3) into
a description of the trajectory (Eq. 9). By considering
RBCs as solid spheres, an analytical solution was pro-
posed in 2D Poiseuille [59] flow but this approach cannot
be easily extended to 3D flow. We approximated vp by
the mean velocity of the flow without RBC averaged on
a square area of size (2r)2 and of center of mass y and
z = 0.

The mean velocity is thus written as an integral:

vp(y, z) =
1

4r2

z+r∫
z−r

y+r∫
y−r

vx(Y, Z)dY dZ, (4)

with vx the velocity of the fluid without RBCs in a
rectangular channel [60]:

vx(y, z) = v0

∞∑
n=1,3...

an

1−
cosh

(
bn(y − w)

)
cosh (bnw)

 cos (bnz),

(5)
where

v0 =
vmax∑∞

n=1,3... an

(
1− 1

cosh (bnw)

) , (6)

with vmax = vx(w, 0) the maximal velocity of the fluid
and

an =
(−1)

n−1
2

n3
, bn =

nπ

2h
. (7)

This yields:

vp(y, z) = v0
h

πr2

∞∑
n=1,3...

an
n

sin (bnr)r − sinh (bnr) cosh
(
bn(y − w)

)
bn cosh (bnw)

 . (8)

Despite our rough assumption, the fit using Eq. 8 with
vmax as a free parameter and r = R0, gives a correct ap-
proximation of the experimental values (see Fig. 2). The
model brings to light the effect of the confinement on the
difference between vp and vx: an increase of the channel
width induces a reduction of the difference between the
two velocities. Discrepancies with the model appear near
the wall and come from the fact that the model does not
take into account the non negligible influence of the RBC
on the flow. This influence being stronger near walls, the
discrepancies should be stronger near walls as shown by
Goldman [61]. vmax obtained from the fit using Eq. (8) is
between 0.5 and 3 mm s−1 which is in the range of typical
values observed in microcirculation. A capillary number
Ca = ηeγ̇eR0/µs can be introduced, with γ̇e = vmax/w
a characteristic shear stress and µs = 3 µN m−1 for the
RBC shear elasticity [62]. Ca is found to be between 1
and 7.
Transversal velocity — Fig. 3 shows an experimental

result for w = 10.6 µm. RBCs move away from the wall
and migrate towards the center. Eq. 3 describes the
migration velocity and from this equation the theoretical
trajectory yth(x) obeys the differential equation:

∂yth
∂x

= ξ
Rδ+1

0 γ̇(yth, 0)

yδ vp(yth, 0)
. (9)

γ̇ and vp are respectively obtained from Eq. 5 and Eq.
8. Both expressions are proportional to vmax, therefore
the trajectory does not explicitly depend on v0. Conse-
quently, the potential inaccuracies in its determination
through the cell velocity will not affect the determina-
tion of the lift parameters. The data are fitted using Eq.
9. A first step consists in integrating it numerically and
in a second step the residual of a cost function is com-
puted. The problem has three free parameters ξ, δ and
the initial value of y denoted y0. The minimization of
< |(ỹ − ỹth/ỹd| > is based on a global method named
differential-evolution [63]. In Fig. 3 different fits of the
same dataset are shown, all of them giving reasonable re-
sults. The value of y0 found from minimization is pretty
constant and appears to be independent of the two other
parameters. In contrast, δ and ξ seem correlated as an
increase of one induces the increase of the other one.

By fixing ỹ0 = ỹ(0), the residual can be explored in
the (δ, ξ) parameter space, as shown in the insert of Fig.
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FIG. 2. Grey points: measured velocity of RBCs, rescaled by vmax from Eq. (6) which is obtained from the fitting of
experimental data using Eq. (8). The dashed line represents the velocity of the fluid vx without RBC at z = 0 using Eq. (5)
and the full line represents the fitted velocity using Eq. (8).

FIG. 3. Trajectory of RBCs in a channel with w = 10.6 µm
(red). Fitting curves (black) using different couples of param-
eters (δ, ξ, y0), in 1○ all parameters are free, giving at the end
(0.14, 4.1× 10−3, 0.38), 2○, 3○, 4○ are fits using a fixed δ giv-
ing respectively (0, 3.7× 10−3, 0.38), (1, 7.7× 10−3, 0.37), (2,
1.6× 10−2, 0.36). The surface plot in insert shows the resid-
ual

∑
|(ỹ − ỹth)/ỹd| in the (δ, ξ) parameter space. Dark blue

color represents the minimal residual.

3. The blue zone corresponds to < |(ỹ − ỹth/ỹd| >≤ 0.5.
Thus parameter values (δ, ξ) present in this zone give an
error inferior to yd. This zone varies from confinement
to confinement and no clear law relating the 2 parame-
ters can be extracted. In more simple geometry [51] or
with simpler objects [41, 42, 54], these two parameters
were instead shown to be independent of each other. We
consider here that the apparent correlation for a given

confinement is the result of the specific migration func-
tion combined with the noise in the data that prevents
a more accurate fit. Aiming at finding a (δ, ξ) couple of
values that gives the best fit over a wide range of parame-
ters, we thus take into account the whole set of results in
different channels. For each experiment, for a fixed value
of y0 = y(0) and δ ranging from 0 to 2 with a step of 0.05,
the value of ξ minimizing the residual is determined. By
considering all the channels a mean < ξ > and a normal-
ized mean square error ∆ξ =

√
< (ξ− < ξ >)2 >/ < ξ >

as a function of δ can be computed. From the minimum
of the mean square error (see Fig. 4, top left) we extract
the most probable value for δ and ξ: δs = 1.30 ± 0.05
and ξs = 1.1× 10−2 ± 0.2× 10−2.

The RBC trajectories ỹ(x̃) are shown in Fig. 4 for five
different confinements. In our range of parameters, RBCs
move from the wall towards the center of the channel
in agreement with the results of [34] and the migration
velocity decreases as RBCs approach the centerline. The
fit obtained from (3) with δ = δs, ξ = ξs and y0 free give
good results even at high confinement where the lateral
migration is mainly the result of the deformation of the
RBC.

We also investigatde the influence of RBC mechani-
cal properties by isolating the most and less dense frac-
tions of RBCs in a density gradient (see Experimental
Set up and Methods). Fig. 5 shows that less dense
RBCs migrate faster than denser RBCs, the compari-
son of their respective ξ obtained from the fit of Eq. (9)
when δ = δs is fixed show a clear difference: 1.4× 10−2

for the less dense and 6.5× 10−3 for the denser ones.
Denser RBCs are usually considered more aged than less
dense RBCs [64]. Different interpretations can be found
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FIG. 4. Top left: mean square error ∆ξ as a function of δ. Other plots represent the median trajectory ỹ(x̃) of RBCs for 5
different confinements (red) and their respective fitting curves (black) found from Eq. (9) using fixed δs and fixed ξs with ỹ0 a
fitting parameter.
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FIG. 5. Fit of experimental data for the lift in Poiseuille flow
(channel size of 25µm) of two different populations of RBCs.
The red color represents the median trajectory of the less
dense RBCs (points) and its fitting curve using Eq. (9) with
a fixed δs, free ξ and ỹ0 (dashed line). The blue color denotes
the trajectory and its respective fit for the denser RBCs. The
black curve is the general trajectory found previously using
δs and ξs and ỹ0 the mean between ỹ(0) of the two experi-
mental curves. The insert represents the median trajectory
of rigidified RBCs in red and the general trajectory in black.

in the literature about the effect aging on RBCs, either
through a dehydration of RBCs that leads to an increase
of hemoglobin viscosity, or to modification of membrane
properties [65, 66]. Netherless, there are strong indica-
tions that older cells have a higher density and lower de-
formability [67] (eventually leading to their elimination
in the spleen [68]). Our study also indirectly suggests

that denser cells are less deformable.

For comparison, the insert in Fig. 5 shows that
artificially hardened RBCs using glutaraldehyde (at a
concentration > 0.1% so that proteins are completely
crosslinked and RBCs become rigid [69]) lose their ca-
pability to migrate and behave like rigid particles. The
deformability is thus an important parameter in the mi-
gration dynamics.

DISCUSSION

An exponent different from δ = 2 may be interpreted
in several ways. Except when the vesicle is close to the
center, its migration velocity in an unbounded Poiseuille
flow is constant (δ = 0). An exponent between 0 and
2 might be seen as a kind of average between the con-
tributions of wall-induced lift and migration due to non-
constant shear rate. Still, the weight of these contribu-
tions is not the same depending on the position of the
particle [70, 71], so it is not clear whether such a scaling
with a δ exponent independent from the cell radius to
channel size ratio would hold.

In Ref. [17], 3D RBCs were simulated in a 2D
Poiseuille flow; the cells’ membrane have the same prop-
erties as that of red blood cells but the viscosity of the in-
ner fluid is taken to be equal to that of the external fluid.
In addition, the capillary number is quite large such that
the dynamics of the cells resembles that of vesicles, with
tank-treading like motion accompanied by some small os-
cillations. They find that for a channel width of 12 and
18 cell radius, a scaling law such as Eq. 3 is found with
δ in the range 1.2-1.3 on average, with ξ in the range
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0.04-0.07. We thus find a similar range for δ, but smaller
values for ξ. This may be explained by the value of the
viscosity contrast, which is not 1 in reality. Increasing
the viscosity contrast generally leads to a decrease of ξ
in Poiseuille flow [54] or of U in simple shear flow [11, 42].
In Ref. [51], we found a factor 9 for the U values between
the physiological case and a viscosity contrast close to 1.
The similarity in the range for δ shows that the found
values well describe the interplay between wall and shear
gradient effects, in that range of confinement. To the
contrary, our results are in contradiction with the model
proposed in [18]: it is proposed that because of shape
change with the shear rate, therefore with the y posi-
tion, ξ may also depend on y [18]. This may somehow be
transcripted into a different exponent δ, as long as the
migration velocity is confronted to numerical or exper-
imental data that spans on a limited range and/or are
associated with noise. In Ref. [18], δ is set to 2 and the
proposed modeling implies that ξ is a decreasing func-
tion of y, which implies that the velocity decreases much
more strongly with y then in Eq. 3 with ξ constant and
δ ∼ 1.3.

The structure of a RBC suspension is the result of
two counterbalancing effects, lift and multiple collisions
between cells, that lead to transverse diffusion [51]. This
controls in particular the width of the cell free layer near
the walls.

In Ref. [18], a good agreement with the literature is
found for the gap size for a suspension simply sheared
between two walls, using two approaches: direct numer-
ical simulations of cells, or a theoretical approach solv-
ing the lift+diffusion equation. The simulations are run
with elastic capsules whose mechanical properties are
such that they are essentially in a tank-treading regime.
Agreement with the theory is obtained by considering a
fitting parameter U/f of order 0.5, where U is the di-
mensionless prefactor of Eq. 1 and f that of the diffusive
flux written as −fR2

0γ̇Φ∂Φ
∂y . This makes sense, since this

value of the parameter is quite close to that obtained for
lipid vesicles in tank-treading regime: in [41] we found
U to be of order 0.1 and in [42] f is shown to be of or-
der 0.06, which makes U/f ∼ 1.7. It was also argued in
[18] that the crowded environment in which these inter-
actions take place justify to consider an effective viscosity
of the carrying fluid higher than that of the plasma. In-
deed, from [51], one can see that for RBCs in plasma,
U/f2 ' 0.016/2.8 ' 0.006, which would certainly not
be sufficient to create a cell free layer. Of course, it is
clear that a cell lifting in a crowded environment will not
lift the same way as an isolated cell, because the neigh-
bors may modify its dynamics and response to flow, and
will screen the wall. Considering tank-treading capsules
for mimicking the collective behavior of red blood cells
as in [18] or [17] appears thus as relevant for obtaining
accurate predictions, though the choice of the effective
viscosity contrast must be debated, as in Ref. [3]. Still,

it hides the subtle modification of lift mechanisms by
cell-cell interaction processes.

By dimension analysis in a 2D Poiseuille flow, it is
possible to estimate a typical time describing the time
needed for RBC to migrate frome the wall (y = 0) to the
distance corresponding to the CFL (y = d) :

τL =
wdδs+1

vmaxξsR
δs+1
0

. (10)

Shear-induced diffusion also contributes to equilibration,
with an equilibration time deduced from the expression
of the diffusive flux below,

τD =
w3

fvmaxΦ0R2
0

, (11)

where Φ0 is a typical volume fraction in cells.
Using results from Fedosov [2], for a channel of typical

size w = 5 µm, with Φ0 = 30% and a CFL of size d = 2
µm, the distance needed for all RBC to pass through
the CFL is τLvmax = 200 µm and the one to obtain an
equilibration is τDvmax = 150 µm. The found typical
distances are of the same scale and indicate that, in the
microcapillary network, except in the smalles capillaries,
equilibration is not likely to happen between two suc-
cessive bifurcations, which are often very close to each
other. [1, 26, 72, 73]. Non stationary dynamics must,
therefore, be considered when looking at network flow.
The factor 2 that we found in the ξ values for the denser
(less deformable) and less dense (more deformable) cells
also indicates that uneven distribution of cells depending
on their age may also occur in the microvasculature.
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