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Abstract

This note addresses the overall viscoelastic behaviour of composite materials made of elastic and viscous phases. By
considering different microstructures, it is shown that classical or fractional viscoelasticity can be achieved. Hierarchical
checkerboard microstructures are proposed to build fractional viscoelastic materials.

1. Introduction

Fractional calculus has proven to be very efficient to model
the viscoelastic constitutive response of several materials.
For a creep loading, for instance, it allows to describe a
nonlinear time dependence of the strain which is observed,
inter alia, in polymers, rocks and ice polycrystals

ε(t) ∝
(
t

τ

)α
, 0 < α < 1. (1)

Such experimental evidence dates back to the beginning
of the twentieth century [13, 5]. An overview of empirical
fractional viscoelastic models can be found in [8, 9].
The first attempt to relate the fractional behaviour to the
material’s composition is the study of Bagley and Torvik
[1] who showed that the molecular theory describing the
polymer chain dynamics (Rouse model) was in fact a frac-
tional viscoelastic model of order 1/2. Rheological models
with a fractal arrangement of classical elastic and dashpot
elements have also been proposed to obtain fractional re-
sponse without reference to a real material microstructure
[15, 7]. Deseri et al. [3] have proposed to relate explicitly
the fractional response to the fractal scaling of bone mate-
rial microstructure. This question has also been recently
addressed in the context of continuum micromechanics by
a numerical study on a 2D viscoelastic material made of
an elastic constituent and a Zener constituent [14]. How-
ever, the possible emergence of a fractional viscoelastic
behaviour resulting from microstructural features of the
material remains an open question. To tackle this problem,
we consider two-phase 2D composite materials with purely
elastic and viscous phases. This is the simplest assump-
tion on the local constitutive behaviours to get an overall
viscoelastic response. The purpose of this short note is to
provide examples of microstructures leading to classical or
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fractional viscoelasticity. It makes a contribution towards
the determination of the yet unknown set of achievable
viscoelastic behaviours.

2. Problem studied

We consider the steady-state response of 2D two-phase
composite materials (i.e columnar microstructure) with
overall transverse isotropy which are subjected to a sinu-
soidal strain loading. The phases are assumed isotropic and
incompressible. One of the two is purely elastic (phase 1)
while the other is purely viscous (phase 2). The local har-
monic response is thus characterized by real and imaginary
shear moduli, that is

µ1 = µe and µ2 = ıωµv (2)

with ı2 = −1 and ω the angular frequency. Besides, we
define the time τ = µv/µe. The volume fraction of phase
(i) is denoted ci. In the following, attention is restricted
to the estimate of the effective transverse shear modulus
µ̃(ıω) in the steady-state harmonic regime.

3. Hashin-Shtrikman and self-consistent estimates
of transverse shear modulus

Let us consider the Hashin-Shtrikman estimates of the
overall shear modulus by choosing respectively phase (1)
or (2) as reference material

µ̃HS1 = µ1 + c2
µ2 − µ1

1 + c1
µ2 − µ1

2µ1

,

µ̃HS2 = µ1 + c2
µ2 − µ1

1 + c1
µ2 − µ1

µ2 + µ1

.

(3)

It is noted that these expressions provide well-known bounds
in the context of elasticity. This is not the case here since
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the overall shear modulus has complex value1. However,
the estimates (3) remain achievable by a specific class of
particulate microstructures obtained by sequential lamina-
tion [4, 12].
With the local shear moduli (2), we get, on one hand,
∀ c1 6= 0,

µ̃HS1(ıω) = µe
f(c1) + ıω τ1

1 + ıωτ1
µe

(
f(c1)− 1

f(c1)

)

with τ1 = τ

f(c1) and f(c) = 2− c
c

. (4)

This estimate defines an overall Zener behaviour whose
storage and loss moduli read

µ̃′HS1
(ω) = µe

f(c1)
1 + ω2 τ2

1 f(c1)2

1 + ω2 τ2
1

,

µ̃′′HS1
(ω) = µe

f(c1)
ω τ1(f(c1)2 − 1)

1 + ω2 τ2
1

.

(5)

The purely elastic asymptotic regimes are defined by

lim
ω→0

µ̃′′HS1
(ω) = lim

ω→+∞
µ̃′′HS1

(ω) = 0,

lim
ω→0

µ̃′HS1
(ω) = µe

f(c1) , lim
ω→+∞

µ̃′HS1
(ω) = µef(c1).

(6)

Note that the condition lim
ω→0

µ̃′HS1
(ω) ≤ lim

ω→+∞
µ̃′HS1

(ω),
which stems from the Clausius Duhem inequality, is met
since f(c1) ≥ 1. Besides, the viscous moduli η̃v charac-
terizing the transient regime of the Zener model is given
by

η̃v = µeτ

(
1− 1

f(c1)2

)
. (7)

On the other hand, we have, ∀ c2 6= 0,

µ̃HS2(ıω) = ıω
µeτ

f(c2) + ıω τ2

1 + ıωτ2
µe

(
1− 1

f(c2)2

)
with τ2 = τf(c2). (8)

Conversely, this estimate thus defines an anti-Zener effective
behaviour [10] with storage and loss moduli

µ̃′HS2
(ω) = µe

(
1− 1

f(c2)2

)
ω2 τ2

2
1 + ω2 τ2

2
,

µ̃′′HS2
(ω) = µe ω τ2

f(c2)2

(
f(c2)2 + ω2 τ2

2
1 + ω2 τ2

2

)
.

(9)

1For a comprehensive study on bounds in this context, the reader
is referred to [6] which makes use of a variational principle for complex
viscoelasticity derived in [2].

The purely viscous asymptotic regimes are defined by
lim
ω→0

1
ω
µ̃′HS2

(ω) = lim
ω→+∞

1
ω
µ̃′HS2

(ω) = 0,

lim
ω→0

1
ω
µ̃′′HS2

(ω) = µe τ f(c2), lim
ω→+∞

1
ω
µ̃′′HS2

(ω) = µe τ

f(c2) .

(10)
Also, the condition lim

ω→0
(1/ω)µ̃′′HS2

(ω) ≥ lim
ω→+∞

(1/ω)µ̃′′HS2
(ω)

is verified since f(c2) ≥ 1. The elastic moduli η̃e specifying
the transient state of the anti-Zener model reads

η̃e = µe

(
1− 1

f(c2)2

)
. (11)

Two types of viscoelastic overall behaviour are thus realiz-
able by hierarchical laminate microstructures with purely
elastic and viscous phases, namely Zener and anti-Zener
models. For a given Hashin-Shtrikman estimate, the type
of effective viscoelasticity is independent of the (non-null)
volume fractions of the phase.
Another realizable homogenization scheme is the self-consistent
estimate (aka. effective medium or coherent potential ap-
proximation). The corresponding 2D microstructure con-
sists of circular grains with an infinite range of length scales
[11]. It reads

µ̃SC = 1
2

[
∆c∆µ+

√
(∆c∆µ)2 + 4µ1µ2

]
with ∆c = c1 − c2 and ∆µ = µ1 − µ2. (12)

This model presents a percolation threshold at ∆c = 0.
With (2), we get an effective complex viscoelastic shear
moduli

µ̃SC(ıω) = 1
2

[
µe ∆c (1− ıωτ)+√

(µe ∆c)2 (1− ω2τ2) + ıωτµ2
e(4− 2(∆c)2)

]
. (13)

The corresponding storage and loss moduli take the form

µ̃′SC(ω) = µe
2

[
∆c+ 1√

2√√
(∆c)4(1 + ω2τ2)2 + 16ω2τ2(1− (∆c)2)+

(∆c)2(1− ω2τ2)
]
,

µ̃′′SC(ω) = µe
2

[
− ωτ∆c+ 1√

2√√
(∆c)4(1 + ω2τ2)2 + 16ω2τ2(1− (∆c)2)−

(∆c)2(1− ω2τ2)
]
. (14)

By contrast with the Hashin-Shtrikman estimates (4) and
(8), the type of viscoelasticity described by the self-consistent
model depends on the volume fraction of the phases:
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• ∆c > 0
When the elastic phase is predominant, the asymptotic
regimes are purely elastic with

lim
ω→0

µ̃′′SC(ω) = lim
ω→+∞

µ̃′′SC(ω) = 0,

lim
ω→0

µ̃′SC(ω) = µe∆c, lim
ω→+∞

µ̃′SC(ω) = µe
∆c .

(15)

which fulfill the requirement lim
ω→0

µ̃′HS1
(ω) ≤ lim

ω→+∞
µ̃′HS1

(ω).
Note that the overall transient regime between the two elas-
tic states is not described by a Zener model contrary to
the Hashin-Shtrikman estimates (4).
• ∆c < 0
In this case, the viscous phase is predominant and the
asymptotic regimes are purely viscous

lim
ω→0

1
ω
µ̃′SC(ω) = lim

ω→+∞

1
ω
µ̃′SC(ω) = 0,

lim
ω→0

1
ω
µ̃′′SC(ω) = µe τ

∆c , lim
ω→+∞

1
ω
µ̃′′SC(ω) = µe τ ∆c.

(16)
with lim

ω→0
(1/ω)µ̃′′SC(ω) ≥ lim

ω→+∞
(1/ω)µ̃′′SC(ω). As for the

transient regime, it is remarked that it also differs from the
Hashin-Shtrikman estimate (8) in that it does not follow
an anti-Zener model.
• ∆c = 0
In the case of equal volume fractions, the composite mate-
rial exhibits a particular overall response with asymptotic
regimes which are neither elastic nor viscous. Indeed, the
self-consistent estimate reads

µ̃SC(ıω) = √µ1 µ2 = µe
√
ıωτ . (17)

This defines a fractional viscoelastic behaviour (Scott-Blair
model) of order α = 1/2 (Appendix A). In this specific
case, we thus have

µ̃′SC(ω) = µ̃′′SC(ω), ∀ω > 0, (18)

that is, the loss factor of the composite is equal to unity at
any angular frequency.
At this point, it can thus be observed that different types
of effective viscoelastic behaviours are obtained from the
blend of elastic and viscous phases depending on the mi-
crostructure. Especially, in the case of equal volume frac-
tions (∆c = 0), the Hashin-Shtrikman estimates (4) and (8)
define, respectively, Zener and anti-Zener models while the
self-consistent estimate (17) leads to a Scott-Blair model
(fractional viscoelasticity). In other words, depending on
the microstructure, classical or fractional viscoelasticity can
be obtained. This simple example shows that fractional vis-
coelasticity can indeed emerged from the homogenization
process with non-fractional viscoelastic phases.

Figure 1: An example of hierarchical checkerboard at step (2)

4. Hierarchical checkerboard microstructures

The self-consistent estimate for a two-phase mixture with
equal volume fractions (17) coincides with the exact result
for a particular class of 2D microstructures, which remain
unchanged or are rotated by 90◦ under the interchange
of the two phases [12]. This offers a way to investigate
the link between a macroscopic fractional response and
the underlying microstructure. To do so, we consider a
square checkerboard microstructure which results from an
iterative process: the checkerboard at step (n) is made
of the checkerboard at step (n − 1) and one of the two
constituents. The volume fraction of phase (i) at step (n)
is ci(n) and a large length scale separation is assumed at
each step of the process.

4.1. General case

With the exact result for a checkerboard microstructure
[12] and the definition of the hierarchical microstructure,
the effective transvere shear moduli at step (n) reads

µ̃(n) =
√
µ̃(n−1)µi with i = 1 or 2, ∀n > 1,

and µ̃(1) = µe
√
ıωτ . (19)

As noted above, the checkerboard at step (1) is thus a
fractional element (i.e Scott-Blair model) of order 1/2. By
noting that the order of the fractional response at step (1)
is also the volume fraction of the viscous phase, that is

µ̃(1) = µe (ıωτ)c2(1)
, (20)

it can be deduced from the definition (19) that the macro-
scopic shear moduli at step (n) reads

µ̃(n) = µe (ıωτ)c2(n)
. (21)

Note that this fractional behaviour corresponds to the
asymptotic response of the fractional Maxwell and Kelvin-
Voigt models respectively at low (ω → 0+) and high (ω →
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+∞) frequencies (Appendix A). A given hierarchical
checkerboard where the viscous phase is replaced by a
Maxwell or Kelvin-Voigt phase thus presents the same
fractional overall response (21), respectively at low and
high frequencies. Besides, the iterative building process
of the checkerboards implies that any obtained fractional
order α is inversely proportional to 2p, ∀p ∈ N.

4.2. Illustrative examples

Starting from the checkerboard with effective shear µ̃(1) =
µe
√
ıωτ , a new checkerboard is built at each step by adding

the elastic phase. The effective complex shear moduli at
step (n) thus simply reads

µ̃(n) = µe(ıωτ) 1
2n , n ≥ 1. (22)

The overall shear moduli thus corresponds to a single frac-
tional element (i.e Scott-Blair model) of order α = 1/2n.
In the limit n→ +∞, the homogeneous elastic material is
evidently obtained.
Similarly, starting from the checkerboard with effective
shear µ̃(1) = µe

√
ıωτ , a new checkerboard can be built

at each step by adding the viscous phase. The effective
complex shear moduli at step (n) is then given by

µ̃(n) = µe(ıωτ)1− 1
2n , n ≥ 1. (23)

The overall shear moduli thus corresponds to a single frac-
tional element (i.e Scott-Blair model) of order α = 1−1/2n.
In the limit n→ +∞, the homogeneous viscous material
is obviously reached.
As another example, we consider hierarchical checkerboards
built by alternate addition of elastic and viscous phases,
starting from the initial checkerboard with equal volume
fractions: at even step (n), elastic phase is added while
viscous phase is added at odd step (n). This leads to the
following fractional orders α(n)

α(n) =
n/2∑
i=0

22i−n, ∀n odd,

α(n) =
(n/2)−1∑
i=0

22i−n, ∀n even.

(24)

Asymptotically (n → +∞), the obtained checkerboards
thus have fractional orders α+ and α−

α+ = lim
n→+∞

n/2∑
i=0

22i−n = 2
3 ,

α− = lim
n→+∞

(n/2)−1∑
i=0

22i−n = 1
3 .

(25)

Note that any infinite regular sequence leads to asymptotic
fractional orders.

5. Concluding remarks

By considering the Hashin-Shtrikman and self-consistent
estimates which are achievable by specific microstructures
[4, 11, 12], it has been shown that a 2D mixture of purely
elastic and viscous isotropic incompressible phases can
present a classical or fractional overall visoelastic shear
relaxation function. Besides, hierarchical checkerboard
microstructures have been proposed as a way to obtain
overall fractional viscoelasticity.
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Appendix A. Scott-Blair, fractional Maxwell and
Kelvin-Voigt models

The constitutive relation of the Scott-Blair model, which
corresponds to a single fractional rheological element (aka.
fractional dashpot or “spring-pot” [8]), is a linear relation
between the stress σ and the fractional derivative of the
strain Dαε with Dα ≡ dα/ dtα and 0 < α < 1 (The
classical Caputo definition is assumed for the operator Dα).
In the case of an incompressible and isotropic behaviour,
the Scott-Blair model thus reads

σ′(t) = µeτ
αDαε′(t) (A.1)

with σ′ and ε′ the deviatoric stress and strain tensors,
τα the fractional relaxation time and µe the shear elastic
moduli . By taking its Laplace-Carson transform with
purely imaginary transform variable p = ıω, we get the
complex constitutive relation

(σ′)∗(ıω) = µe(ıωτ)α (ε′)∗(ıω). (A.2)

Let us consider an isotropic incompressible Maxwellian
constituent with pure elastic and fractional viscous regimes.
Its constitutive differential equation thus reads

σ′(t) + ταDασ′(t) = µeτ
αDαε′(t) (A.3)

The corresponding complex shear moduli reads

µ∗(ıω) = µe(ıωτ)α

1 + (ıωτ)α . (A.4)

Besides, a fractional Kelvin-Voigt behaviour is defined by

σ′(t) = µeε
′(t) + µeτ

αDαε′(t) (A.5)

and its complex shear moduli is

µ∗(ıω) = µe(1 + (ıωτ)α). (A.6)

These two fractional extensions of Maxwell and Kelvin-
Voigt models are particular cases of generalized viscoelastic
models [8, 16].
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