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Abstract This article is devoted to the micromechanical modelling of the time harmonic response of viscoelastic

composites made of fractional Zener constituents. By extending previous results in classical viscoelasticity, new

exact relations on time integrals of the effective relaxation spectrum are obtained. They are related to the intraphase

second moments of the strain field in the asymptotic elastic regimes at low and high frequency. Based on these

relations, the effective relaxation spectrum is approximated by a sum of two weighted Dirac delta functions.

An attractive feature of this viscoelastic homogenization model is that it only involves the resolution of two

elastic homogenization problems. This model is applied to estimate the response of particle reinforced two-phase

composites. Its relevance is assessed by performing comparisons with FFT full-field simulations for distributions of

polydisperse spherical particles.

Keywords homogenization · particulate composite · fractional viscoelasticity · polymer material

1 Introduction

By contrast with elastic or viscous heterogeneous media, the coupling between conservative and dissipative

deformation mechanisms in viscoelastic composite materials leads generally to emerging effective properties (i.e not

present at the scale of the individual constituents). In particular, the mixture of elementary viscoelastic constituents
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(i.e. with a single relaxation time) presents in general at the macroscopic scale a long-memory effect which manifests

itself in the effective constitutive relation through an integral kernel [52,18,57]. It can be evidenced by making use

of the correspondence principle [38,26] which allows to transform a viscoelastic problem into symbolic elastic ones

in the Laplace-Carson domain (Appendix A). It thus gives access to the complex overall properties characterizing

the response of the composite media subjected to harmonic loadings [27]. The overall integral kernel can be derived

in closed-form only in specific cases [2,5,39]. In general, it can be approximated by a Prony serie [53,34] which

turns out to be exact only if the effective spectrum is a sum of weighted Dirac delta functions [2,5]. The well-known

collocation method relies on this series development of the effective spectrum [61,40,49].

The viscoelastic behaviour of many monophase viscoelastic materials (single constituents) does not reduce to

one of the four elementary classical viscoelastic models [7]. A possible, and widely used, approach is to resort to a

generalized Maxwell (Kelvin-Voigt) model with a finite number of relaxation (retardation) times to represent the

viscoelastic moduli of single viscoelastic constituents [60]. It does precisely correspond to a Prony series development

for the local integral kernel. An alternative approch consists in making use of fractional viscoelasticity [36,46]. In this

framework, the differential constitutive equation involves non-integer derivatives of the stress and strain. Fractional

calculus models have firstly been used as an empirical method to describe the properties of linear viscoelastic

materials due to its ability to model long-memory effects. Experimental observations covering a wide range of

materials [45,20,21] motivated Scott-Blair [3] to propose fractional derivative models to improve the description

of time-dependent responses of materials. It can be also noted that Bagley and Torvik [1] proposed a physical

interpretation of fractional viscoelasticity for polymer materials by establishing a link with the Rouse model. As

compared with classical viscoelasticity, the study of effective properties of fractional viscoelastic composites, based

on the corespondence principle, has received less attention (see, for instance, [50,12,56]).

Exact relations have been recently obtained on the asymptotic behaviour (in the time or frequency domains) of

viscoelastic composites made of classical elementary constituents [58,6,19]. They imply conditions which have to

be fulfilled by certain time integrals of the effective relaxation (retardation) spectrum. Besides, they have been

used to propose “minimal” approximate homogenization viscoelastic models, for mixtures of Maxwell constituents,

based on asymptotic decoupled elastic or viscous homogenization problems [58,6].
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Following this approach, the present study aims at proposing a micromechanical modelling of the time harmonic

response of viscoelastic polymer composite materials whose local constituve response is described by a fractional

Zener model. New asymptotic exact relations on the storage and loss viscoelastic moduli are derived in the

context of fractional viscoelasticity by making use of stationary principles for complex viscoelasticity [23]. They

lead to exact conditions on time integrals of the overall relaxation spectrum which are related to non-integer

derivative and integral of the effective complex viscoelastic moduli. These relations hold for any microstructure.

Approximate homogenization estimates over the whole frequency range are then built in a way similar to the

case of classical viscoelasticity. By contrast with the common use of the correspondence principle, the proposed

approximate viscoelastic model only requires the resolution of the relaxed and glassy elastic heterogeneous problems.

An application of this model is presented for the particular case of an isotropic viscoelastic polymer matrix, with

negligible bulk relaxation, containing randomly distributed spherical elastic particles. The relevance of the model is

assessed by comparison with fast Fourier transform (FFT) full-field computations [44,43] performed on polydisperse

microstructures.

2 Overall harmonic response of viscoelastic composites

2.1 Viscoelastic constitutive relations

2.1.1 Classical viscoelasticity

From the Boltzmann superposition principle, the stress response of a non-ageing linear viscoelastic material to

a given derivable strain loading path ε(u), u ∈ [0; t] with additional discontinuities [ε]i at times ti, and initial

conditions σ(t = 0) = 0, classically reads

σ(t) =
∫ t

0
L(t− u) : ε̇(u)du+

∑
i

L(t− ti) : [ε]i 1 (1)

with L(t) the viscoelastic stiffness tensor (i.e. relaxation function) or, with a concise notation,

σ(t) = d
dt (L ∗ ε) (x, t) = (L ~ ε) (x, t) (2)

1 Throughout the text, the tensors are indicated in bold notation. Double and quadruple-dot products between tensors a and

b are respectively denoted by a : b and a :: b.
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where ∗ and ~ denote respectively the usual and Stieltjes convolution products. In the sequel, attention will be

restricted to viscoelastic materials which present asymptotic elastic regimes at short and long times. The general

expression of the relaxation function thus reads

L(t) = Ler
+
∫ +∞

0
G(τ)e−t/τ dτ. (3)

Ler denotes the relaxed elastic stiffness tensor, by reference to polymer materials, while G and τ are the relaxation

spectrum and time.

2.1.2 Fractional viscoelasticity

Differential constitutive laws with non-integer derivatives (i.e. fractional calculus [46,47,13]) have been proposed to

describe the viscoelastic response of various materials such as polymers [1], polycrystalline ice [54] and rocks [64].

By contrast with the usual derivative, the non-integer derivative of a function f at a certain time t depends on the

function history on the range ]−∞, t] (Appendix B.2). The non-integer derivative order α is thus sometimes called

“memory parameter”. Such laws are required to describe creep compliances with a nonlinear time dependence.

They are also useful to describe viscoelastic transient regimes, between two elastic asymptotic states, with few

parameters as compared to generalized Maxwell (resp. Kelvin-Voigt) models.

The behaviour law of a fractional constituent (fractional dashpot or “spring-pot” [31]) is a linear relation

between the stress σ and the fractional derivative of the strain Dαε with Dα ≡ dα/ dtα and 0 < α < 1 (Appendix

B.4). Its relaxation function can be described as a sum of exponentials weighted with a power-law relaxation

spectrum [60,35]. In terms of rheological elements, a fractional dashpot can thus be described by a continuous

generalized Maxwell model. Conversely, it can be noted that hierarchical assemblages of simple rheological elements

(springs and dashpots) exhibit a fractional constitutive behaviour [55,29].

By extending generalized Maxwell and Kelvin-Voigt models to the fractional case, it can be shown that the

constitutive relation is still of the form (2) with a fractional relaxation function Lα(t) given by [31,32]

Lα(t) = Ler +
∫ +∞

0
G(τ)Eα [−(t/τ)α] dτ (4)

where Eα(t) is the Mittag-Leffler function (Appendix B.3). Obviously, when α = 1 the relaxation function Lα(t)

corresponds to the classical relaxation function L(t) (3). In the case of a relaxation spectrum G(τ) consisting of
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a single Dirac delta function, relation (4) is the relaxation function of a fractional Zener model (i.e. fractional

standard solid) [8]. Lion [35] has proved that this model fulfills Clausius-Duhem inequality (i.e. non-negativity of

dissipation). This led him to the conjecture that any fractional constitutive model with relaxation function (4) is

thermodynamically admissible.

2.2 Local problem for harmonic loadings

From the integral representation of the fractional viscoelastic constitutive relation, the correspondence principle

allows to transform the fractional viscoelastic problem into a symbolic elastic one [26,38]. For the particular case of

harmonic loadings, the problem is brought from time to spectral domain and enables the determination of storage

and loss moduli characterizing the dynamic response of the material.

Hereafter, we consider an heterogeneous medium occupying volume Ω which consists of N homogeneous phases

with characteristic function χ(s)(x) and volume Ω(s) (s ∈ [0;N ]). Moreover, it is assumed that Ω(s) � Ω and that

the phases are perfectly bonded. The fractional viscoelastic relaxation function of phase (s) is denoted L(s)
α (t). It

follows that the pointwise viscoelastic relaxation tensor Lα(x, t) reads

Lα(x, t) =
N∑
s=1

L(s)
α (t)χ(s)(x) (5)

with χ(s)(x) = 1 if x ∈ Ω(s) and 0 otherwise. The volume averages over Ω and Ω(s) are respectively denoted 〈•〉

and 〈•〉(s). By definition of the characteristic function, the volume fraction of phase (s) is cs = 〈χ(s)〉.

The response of a fractional viscoelastic heterogeneous media to a sinusoidal loading is classically studied in

the spectral domain by considering the Laplace-Carson transform (Appendix A) of the constitutive equation for a

purely imaginary transform variable p = iω (i2 = −1) [27]. By assuming an overall strain loading ε(t) = ε∗eiωt, the

local problem corresponding to the steady-state regime at angular frequency ω reads
σ∗(x, iω) = L∗α(x, iω) : ε∗(x, iω), ∀(x, ω) ∈ Ω × [0; +∞[,

divσ∗ = 0, curl(tcurl ε∗) = 0, ∀(x, ω) ∈ Ω × [0; +∞[,

〈ε∗〉 = ε∗,

(6)

with prescribed boundary conditions. The complex fields (σ∗, ε∗, L∗α) are the time LC transforms of the fields

(σ, ε, Lα).
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2.3 Viscoelastic composites with fractional Zener constituents

2.3.1 Local and effective viscoelastic properties

The fractional standard linear solid (fractional Zener model) [8] is defined, in a general three-dimensional context,

by the following homogeneous fractional differential equation

σ(t) + Lf : (Leg − Ler )−1 : Dασ(t) = Ler : ε(t) + Leg : Lf : (Leg − Ler )−1 : Dαε(t), 0 < α < 1, (7)

with I the fourth-order identity tensor. It exhibits asymptotic elastic behaviours with glassy moduli Leg at short

times (t→ 0) and relaxed moduli Ler
at long times (t→ +∞). Lf represents the constitutive fractional viscous

modulus. The viscoelastic relaxation tensor of phase (s), defined by relation (7), reads

L(s)
α (t) = L(s)

er
+ G(s)Eα

[
−(t/τ (s))α

]
with G(s) = L(s)

eg
− L(s)

er
. (8)

Also, it is worth noting that the eigenvalues of L(s)
f : (G(s))−1 correspond to the fractional relaxation times τα(s)

(units: sα) of the constituent. Following [31], it is assumed that, in the general case, the effective relaxation tensor

L̃(t) can be written in the form

L̃α(t) = L̃er +
∫ +∞

0
G̃(τ)Eα [−(t/τ)] dτ. (9)

As a consequence, the complex viscoelastic relaxation tensor L̃∗α, which characterizes the steady-state harmonic

regime at angular frequency ω, is given by

L̃∗α(iω) = LC
(
L̃α(t)

)
= L̃er +

∫ +∞

0

(iωτ)α

1 + (iωτ)α G̃(τ) dτ. (10)

The overall complex constitutive relation is

〈σ∗〉(iω) = L̃∗α(iω) : 〈ε∗〉(iω), ∀ω ∈ [0; +∞[, (11)

and the complex relaxation tensor admits the decomposition

L̃∗α(iω) = L̃
′

α(ωα) + iL̃
′′

α(ωα) (12)
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with
(
L̃′α, L̃′′α

)
the overall storage and loss moduli which are respectively proportional to the stored and dissipated

energies [60]. By noting that iα = eiπα/2, they read
L̃′α(ωα) = L̃er +

∫ +∞

0

1
q

[
(ωτ)α cos

(πα
2

)
+ (ωτ)2α

]
G̃(τ) dτ,

L̃′′α(ωα) =
∫ +∞

0

1
q

[
(ωτ)α sin

(πα
2

)]
G̃(τ)dτ,

(13)

with q = 1 + 2(ωτ)α cos
(πα

2

)
+ (ωτ)2α. The effective loss tensor η̃(ωα) which characterizes the damping is

classically defined by

η̃(ωα) = L̃
′′

α(ωα) :
[
L̃
′

α(ωα)
]−1

. (14)

Finally, it is important to note that as ω → +∞ or ω → 0 the local fields are asymptotically solutions of purely

elastic heterogeneous problems. The pointwise complex strain field ε∗(x, iω) thus satisfies

lim
ω→+∞

ε∗(x, iω) = εg(x) and lim
ω→0

ε∗(x, iω) = εr(x) (15)

with εg(x) and εr(x) the real strain fields which are solutions of the heterogeneous glassy and relaxed elastic

problems. The same asymptotic properties hold for the stress field σ∗(x, iω) with asymptotic fields σg(x) and

σr(x) respectively.

2.3.2 Saddle-point variational principles in complex viscoelasticity

Let us introduce the following forms of the complex constitutive relation (6)1 rewritten as systems of real equations σ′

−σ′′

 = LR :

ε′
ε′′

 , LR =

 L′α −L′′α

−L′′α −L′α

 and

σ′
σ′′

 = LI :

ε′′
ε′

 , LI =

−L′′α L′α

L′α L′′α

 (16)

where (σ′, ε′, L′α) and (σ′′, ε′′, L′′α) are real fields, that is

σ∗(iω) = σ′(ωα) + iσ′′(ωα), ε∗(iω) = ε′(ωα) + iε′′(ωα) and L∗α(iω) = L′α(ωα) + iL′′α(ωα) (17)

where the position vector x has been omitted for conciseness. By considering the frequency-dependent complex

“energy” φ∗

φ∗(ωα) = σ∗ : ε∗ = (σ′ : ε′ − σ′′ : ε′′) + i (σ′′ : ε′ + σ′ : ε′′) , (18)
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two saddle-point variational principles on the effective complex “energy” φ̃∗ can be established [9,19]

Re
[
φ̃∗(ωα, ε′, ε′′)

]
= min

ε′,〈ε′〉=ε′
max

ε′′,〈ε′′〉=ε′′
〈σ′ : ε′ − σ′′ : ε′′〉 = min

ε′,〈ε′〉=ε′
max

ε′′,〈ε′′〉=ε′′

〈ε′
ε′′

 : LR :

ε′
ε′′

〉
(19)

and

Im
[
φ̃∗(ωα, ε′, ε′′)

]
= min

ε′,〈ε′〉=ε′
max

ε′′,〈ε′′〉=ε′′
〈σ′′ : ε′ + σ′ : ε′′〉 = min

ε′,〈ε′〉=ε′
max

ε′′,〈ε′′〉=ε′′

〈ε′′
ε′

 : LI :

ε′′
ε′

〉 .
(20)

The solution fields are functions of ωα. It is stressed out that the functionals (19) and (20) do not have a physical

meaning by contrast with the minimal variational principle [9,23,41] which considers the average dissipated energy

over a period of oscillation, that is φ̃d = (ω/2) 〈σ′′ : ε′ − σ′ : ε′′〉. However, Re(φ̃∗) and Im(φ̃∗) are stationary with

respect to the strain fields ε′ and ε′′. Consequently, use can be made of a lemma on the derivative of the stationary

value of a function with respect to a parameter (see Appendix B. in [48]). Derivatives of (19) and (20) with respect

to parameter h thus read

∂

∂h
Re(φ̃∗) =

〈ε′
ε′′

 : ∂ LR

∂h
:

ε′
ε′′

〉 and ∂

∂h
Im(φ̃∗) =

〈ε′′
ε′

 : ∂ LI

∂h
:

ε′′
ε′

〉 . (21)

2.3.3 Exact relations on the overall complex storage and loss moduli

We can take advantage of the saddle-point variational principles (19) and (20) and their derivatives with respect to

a parameter (21) to obtain asymptotic properties on the overall storage and loss moduli at low and high frequencies.

By considering an overall strain such that 〈ε′〉 = ε and 〈ε′′〉 = 0, the stationary principle on the real part of φ̃∗

(19) leads to 
lim
ω→0

ε : L̃
′

α(ωα) : ε = lim
ω→0

ε : L̃er : ε =
∑
s

cs L(s)
er

:: 〈εr ⊗ εr〉(s)
,

lim
ω→+∞

ε : L̃
′

α(ω) : ε = lim
ω→+∞

ε : L̃eg : ε =
∑
s

cs L(s)
eg

:: 〈εg ⊗ εg〉(s)
.

(22)

On the other hand, the stationary principle on the imaginary part of φ̃∗ (20) implies that

lim
ω→0

L̃′′α(ωα) = lim
ω→+∞

L̃′′α(ωα) = 0. (23)
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Relations (22) and (23) correspond to a well-known result for mixtures of classical Zener constituents stating that

the asymptotic overall behaviours at low and high frequencies are purely elastic. This property still holds in the

fractional case since the fractional feature of the constitutive behaviour only affects the transient regime. The

determination of the asymptotic properties L̃er and L̃eg thus simply requires to solve the heterogeneous elastic

problems respectively in the relaxed (ω → 0) and glassy (ω → +∞) states. Besides, by choosing h = ωα, the

derivatives of the stationary principles (21) provide the results

lim
ω→0

ε : ∂L̃′′α
∂ωα

(ωα) : ε = tan
(πα

2

)
lim
ω→0

ε : ∂L̃′α
∂ωα

(ωα) : ε = sin
(πα

2

)∑
s

csL(s)
f :: 〈εr ⊗ εr〉(s)

lim
ω→+∞

(iω)2α ε : ∂L̃′′α
∂ωα

(ωα) : ε = tan
(πα

2

)
lim

ω→+∞
(iω)2α ε : ∂L̃′α

∂ωα
(ωα) : ε

= sin
(πα

2

)∑
s

cs

(
G(s) : L(s)

f

−1
: G(s)

)
:: 〈εg ⊗ εg〉(s)

.

(24)

It can be remarked that unlike classical viscoelasticity [19] the asymptotic values of the derivative of the effective

storage modulus L̃′α do not vanish since 0 < α < 1. These asymptotic values of the derivative of the real and

imaginary parts of the overall complex “energy” φ∗ are thus exactly determined with the local properties of the

constituents and the intraphase second moment of the strain solution fields of the purely elastic heterogeneous

problems at low (relaxed state) and high (glassy state) frequency.

2.3.4 Consequences on the overall relaxation spectrum and their physical meaning

With the general expression of the overall complex relaxation function L̃∗α(iω) (10), the asymptotic relations (22–

24) have implications on time integrals of the overall relaxation spectrum G̃(τ)

∫ +∞

0
G̃(τ)dτ = L̃eg − L̃er ,

ε :
∫ +∞

0
ταG̃(τ)dτ : ε =

∑
s

csL(s)
f :: 〈εr ⊗ εr〉(s)

,

ε :
∫ +∞

0
τ−αG̃(τ)dτ : ε =

∑
s

cs

(
G(s) : L(s)

f

−1
: G(s)

)
:: 〈εg ⊗ εg〉(s)

.

(25)

The first relation have a simple and well-known physical interpretation in the case of a relaxation loading test

(ε(t) = ε0). Indeed, we have

lim
t→0+

σ(t) =
[
L̃er +

∫ +∞

0
G̃(τ)dτ

]
: ε0. (26)
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The integral of the relaxation spectrum is thus directly related to the overall stress gap between short and long

times (see, for instance, [16]). Obviously, it does not depend on the fractional order α. For the integrals involving

time power functions of order ±α a distinction has to be made between fractional (0 < α < 1) and classical (α = 1)

viscoelasticity. In the fractional case, these time integrals are related to the asymptotic values of the fractional

derivative or integral of the overall relaxation function L̃(t) which have no geometric interpretation. On one hand,

the fractional derivative of the macroscopic relaxation function reads

Dα L̃(t) = −
∫ +∞

0
τ−αG̃(τ)Eα [(−t/τ)α] dτ (27)

where use has been made of the property (B13) on Mittag-Leffler functions. At short times, we thus obtain

lim
t→0+

Dα L̃(t) = −
∫ +∞

0
τ−αG̃(τ)dτ. (28)

In the case of a relaxation loading test with constant strain ε0, this implies, for a classical viscoelastic behaviour

(α = 1), that

lim
t→0+

σ̇(t) = −
∫ +∞

0
τ−1G̃(τ)dτ : ε0. (29)

On the other hand, the fractional integral of the effective relaxation function reads

Iα L̃(t) = L̃er

tα

Γ (α+ 1) +
∫ +∞

0
ταG̃(τ) (1− Eα [(−t/τ)α]) dτ (30)

which gives at long times

lim
t→+∞

Iα L̃(t) = L̃er

tα

Γ (α+ 1) +
∫ +∞

0
ταG̃(τ)dτ. (31)

For classical viscoelasticity, in the case of a loading test with a constant macroscopic strain rate ε̇0, it follows that

lim
t→+∞

σ(t) =
[
L̃er

t+
∫ +∞

0
τG̃(τ)dτ

]
: ε̇0. (32)

Relations (29) and (32) provide the physical meaning of the two time integrals of the relaxation spectrum∫ +∞
0 τ−1G̃(τ)dτ and

∫ +∞
0 τG̃(τ)dτ [19].
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3 Approximate viscoelastic homogenization model

3.1 Approximation of the effective relaxation spectrum G̃

To derive an estimate of the overall viscoelastic relaxation function, it is necessary to approximate the unknown

relaxation spectrum G̃(τ). The most usual approaches make use of box functions, wedge functions or a sum of

Dirac delta functions [60,14]. The latter case corresponds to a line spectrum

G̃(τ) =
K∑
k=1

Gk δ(τ − τk) (33)

which results in the relaxation function

L̃α(t) = L̃er +
K∑
k=1

GkEα [−(t/τk)α] . (34)

It corresponds to a generalized Maxwell fractional calculus model [31]. With the property of the Mittag-Leffler

functions E1(t) = et (Appendix B.3), the form (34) reduces to a usual Prony serie in the case of classical

viscoelasticity. As a side note, it must be mentioned that in particular cases the exact effective relaxation spectrum

obtained by homogenization is indeed constituted of discrete lines, see [2,51] for mixtures of Maxwell constituents.

Similar results hold if we consider instead Zener constituents. The storage and loss moduli tensors corresponding

to the fractional Prony approximation (34) are thus given by
L̃′α(ωα) = L̃er +

K∑
k=1

1
qk

[
(ωτk)α cos

(πα
2

)
+ (ωτk)2α

]
Gk,

L̃′′α(ωα) =
K∑
k=1

1
qk

[
(ωτk)α sin

(πα
2

)]
Gk,

(35)

with qk = 1 + 2(ωτk)α cos
(πα

2

)
+ (ωτk)2α. From the approximation (33) and the conditions on time integrals of

the effective relaxation spectrum (25), it follows that

K∑
k=1

Gk = L̃eg − L̃er ,

K∑
k=1

ταk ε : Gk : ε =
∑
s

c(s)L(s)
f :: 〈εr ⊗ εr〉(s)

,

K∑
k=1

1
ταk
ε : Gk : ε =

∑
s

cs

(
G(s) : L(s)

f

−1
: G(s)

)
:: 〈εg ⊗ εg〉(s)

.

(36)

This set of three relations can be used to construct a minimal approximation of the overall relaxation spectrum

(33) for mixtures of fractional Zener constituents.



12

3.2 Approximate model for isotropic composites

The previous tensorial conditions are now specified for composites with overall and local isotropy. In this particular

case, the effective relaxation spectrum can be written

G̃(τ) =
K∑
k=1

3κk δ(τ − τκk)J + 2µk δ(τ − τ
µ
k)K (37)

with J and K the isotropic projectors on hydrostatic and deviatoric symmetric second-order tensors. Moreover,

attention is further restricted to composite materials whose local bulk relaxation is negligible. It is thus assumed

that the viscoelastic constituents are purely elastic in dilatation and viscoelastic in shear. The relaxation function

of a phase (s) is thus given by

L(s)
α (t) = 3κ(s)

e J + 2
(
µ(s)
er

+ (µ(s)
eg
− µ(s)

er
)Eα

[
−(t/τ (s))α

])
K. (38)

As it is well-known, the overall response is in general viscoelastic both in dilatation and shear [26]. The overall bulk

viscoelastic response arises because of the contrast between the elastic bulk moduli of the phases which implies

a deviation of the local fields from a purely hydrostatic state (For porous plastic materials, the same argument

explains why plasticity occurs under a macroscopic pressure loading). However, the bulk viscoelasticity of the

composite remains rather small and will be neglected in the sequel (κk = 0), whence the approximate form of the

effective relaxation function

L̃α(t) ' 3κ̃e J + 2

(
µ̃er +

K∑
k=1

µkEα
[
−
(
t/τµk

)α])K. (39)

Since only shear relaxation times are now involved, we will skip the upper index µ and use the notation τk hereafter.

In elastic composites, the second moment per phase of the strain field is classically obtained from the partial

derivatives of the overall energy with respect to the phase elastic moduli [4,33,48]. In the particular case of local

and overall isotropy, its deviatoric and hydrostatic parts read

〈
ε2

eq
〉(s) = 1

cs

[
1
3
∂κ̃

∂µ(s) tr(ε)
2 + ∂µ̃

∂µ(s) ε
2
eq

]
and

〈
tr(ε)2

〉(s)
= 1
cs

[
∂κ̃

∂κ(s) tr(ε)
2 + 3 ∂µ̃

∂κ(s) ε
2
eq

]
(40)

with ε2
eq = 2

3K :: (ε⊗ε) and tr(ε)2 = 3 J :: (ε⊗ε). Given the assumptions made on the local and overall viscoelastic

moduli, only the relation on the phase average of the square of the equivalent strain (40)1 is useful for the present
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study. With (37) and (40), the tensorial relations (36) are reduced to



K∑
k=1

µk = µ̃eg − µ̃er ,

K∑
k=1

µkτ
α
k =

N∑
s=1

(µ(s)
eg
− µ(s)

er
)τ (s)α ∂µ̃er

∂µ
(s)
er

,

K∑
k=1

µk
ταk

=
N∑
s=1

(µ(s)
eg − µ

(s)
er )

τ (s)α
∂µ̃eg

∂µ
(s)
eg

.

(41)

The minimal number of terms required in the generalized Prony serie to fulfill the three relations (41) is thus

K = 2. To determine the four parameters µ1, µ2, τα1 and τα2 , an additional relation is necessary. Note that this is

not the case for mixtures of Maxwell constituents for which the number of terms in the serie can be chosen so that

the number of unknown parameters match the number of available equations [58,6]. This minimal approximation

is assessed in the sequel for particulate two-phase composites.

4 Applications to particle reinforced two-phase composites

4.1 Approximate viscoelastic model parameters

The composites considered are made of a viscoelastic matrix (phase 1) reinforced by spherical elastic inclusions

randomly distributed. The system of equations (41) becomes

µ1 + µ2 = A, µ1τ
α
1 + µ2τ

α
2 = B and µ1

τα1
+ µ2
τα2

= C (42)

with

A = µ̃eg − µ̃er , B = (µ(1)
eg
− µ(1)

er
)τ (1)α ∂µ̃er

∂µ
(1)
er

and C =
(µ(1)
eg − µ

(1)
er )

τ (1)α
∂µ̃eg

∂µ
(1)
eg

. (43)

In order to solve the system (42), we set a fractional relaxation time of the serie equal to the one of the matrix

phase: τα1 = τ (1)α. The three other parameters are then given by

τα2 = Aτα1 −B
Cτα1 −A

, µ1 = B −Aτα1
τα2 − τα1

and µ2 = A− µ1. (44)
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4.2 Mean-field homogenization estimates

The approximate viscoelastic model only requires to estimate the asymptotic effective elastic moduli of the

composite, which correspond to the relaxed and glassy states, and their derivatives with respect to the phase

moduli. In the following, this is achieved by resorting to a mean-field homogenization scheme whose relevance is

assessed with reference numerical estimates on representative microstructures.

The classical estimates (bounds) of the Hashin-Shtrikman type for materials with an isotropic distribution of

the phases [63] read

µ̃ = µ(1) + c2
µ(2) − µ(1)

1 + c1
µ(2) − µ(1)

µ? + µ(1)

and κ̃ = κ(1) + c2
κ(2) − κ(1)

1 + c1
κ(2) − κ(1)

κ? + κ(1)

(45)

with µ? and κ? the shear and bulk moduli of the Hill constraint tensor

µ? =
µ0 (9κ0 + 8µ0)

6 (κ0 + 2µ0) and κ? = 4
3µ

0. (46)

The choice (µ0 = µ(1), κ0 = κ(1)) corresponds to the lower Hashin-Shtrikman bound which coincides with the Mori-

Tanaka (MT) model [42] while the choice (µ0 = µ̃, κ0 = κ̃) defines the self-consistent (SC) estimate [30]. Another

widely used model to estimate the effective response of particulate composites is the generalized self-consistent

(GSC) model [11,28] which considers coated spherical inclusions. The effective bulk modulus is the one of the

Hashin composite sphere assemblage which attains the lower Hashin-Shtrikman bound and the effective shear

modulus is solution of a quadratic equation. It has been shown that this model correctly describes experimental

results on the effective (shear) viscosity of polydisperse suspensions with rigid particles [10]. It is also noted that

comparisons have been reported between the MT, SC, GSC models and unit-cell computations, in the elastic case,

for composites with monodisperse spherical inclusions [22].

4.3 Fourier transform-based numerical homogenization

To assess viscoelastic mean-field estimates for particulate composites, full-field computations are performed on

unit-cells containing a random distribution of polydisperse spherical inclusions. Thanks to the correspondence

principle [38], the overall complex viscoelastic properties can be obtained by making use of the fast Fourier transform

(FFT) numerical scheme [44,43,17].
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We consider a symbolic heterogeneous elastic problem (6), with periodic boundary conditions, which corresponds

to the stationary harmonic regime at angular frequency ω. By introducing a homogeneous reference material L0,

the constitutive law can be rewritten as

σ∗(x, iω) = L0 : ε∗(x, iω) + τ ∗(x, iω) with τ ∗(x, iω) = (L∗α(x, iω)− L0) : ε(x, iω) (47)

with τ ∗ the polarization field. The complex strain solution field thus reads, in real and Fourier spaces,
ε∗(x, iω) = ε− [Γ0 ∗ τ ∗] (x, iω)

ε̂
∗(ξ, iω) = −Γ̂0 : τ̂ ∗(ξ, iω), ∀ξ 6= 0, ε̂(0, iω) = ε

(48)

with ξ the wave vector. Γ̂0 represents the Fourier transform of the strain Green operator associated with the

reference medium L0

Γ̂0 =
[
ξ ⊗ κ−1 ⊗ ξ

]
s

(49)

with the acoustic tensor κ = ξ.L0.ξ. The notation [.]s indicates minor and major symmetrizations. To solve the

Lippman-Schwinger equation for complex strain field ε∗ (48)1, we resort to the iterative numerical scheme of Eyre

and Milton which is well-suited for materials with a high mechanical contrast [15,43]. It must be noted that, as

pointed out by Figliuzzi et al. [17], the reference elastic stiffnesss L0 must be real to ensure the symmetry of the

physical strain and stress fields (i.e real parts of the corresponding complex fields). For the studied two-phase

composite, the optimal choice for the shear and bulk moduli of an isotropic reference medium L0 is

µ0 =
√

Re
(
µ(1)

)
Re
(
µ(2)

)
and κ0 =

√
Re
(
κ(1)
)

Re
(
κ(1)
)
. (50)

4.4 Overall behaviour of viscoelastic composites

4.4.1 Assessment of mean-field models with respect to FFT reference results

We consider two-phase particulate composites with a size polydisperse distribution of elastic spherical inclusions

embedded in a fractional Zener viscoelastic matrix. The material parameters are given in Table 1. The elastic

moduli, used in [25], correspond to silica particles and a typical epoxy resin matrix. It is noted that the elastic shear

moduli contrast vary from 30, in the glassy state (ω → +∞), to 3000, in the relaxed state (ω → 0). Distributions

of particles in a cubic unit-cell, with geometric periodic conditions, are obtained by using the Random Sequential
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κe µer µeg τ α

Viscoelastic matrix (1) 4 0.01 1 2.65× 10−2 s 0.7

Elastic inclusions (2) 40 30 30 — —

Table 1: Constitutive parameters of reinforced particulate composites with a fractional Zener viscoelastic matrix

(38). Bulk and shear elastic moduli (κ, µ) are expressed in GPa.

Adsorption (RSA) algorithm [62,59] (Appendix C). Full-field FFT simulations, for a prescribed angular frequency

ω, are performed on discretized unit-cells with a regular grid of 2553 voxels. The overall response is averaged

over 10 different microstructural realizations for each volume fraction (c = 0.1, 0.3 and 0.5). Besides, since the

bulk viscoelasticity is neglected, only shear loadings are considered. An overall isotropic complex shear moduli

µ̃∗α(iω) = µ̃′α(ω) + i µ̃′′α(ω) is defined by averaging the response of the composite subjected to three independent

shear loadings. Comparisons between MT, SC, GSC estimates and FFT computations of the overall storage shear

moduli µ̃′α(ω) in the range ω ∈ [10−2; 10−4] are reported in Figure 1. At low particles volume fraction, the three

mean-field models almost coincide and agree with the numerical results. With increasing volume fraction, only

the GSC scheme provides accurate estimates. These results are consistent with the ones obtained in [25] by using

finite-element computations with a time-integration approach. It can be also noted that the SC scheme, which

presents a percolation threshold for an infinite mechanical contrast, leads to an unrealistic quasi-elastic effective

response at volume fraction c = 0.5.

4.4.2 Approximate viscoelastic GSC estimates

Following these assesments, we choose the GSC scheme to build an approximate viscoelastic homogenization model

which makes only use of the linear homogenization elastic problems at low and high frequency. The approximation

of the real and imaginary parts of the effective complex shear moduli µ̃∗α(iω) reads
Re(µ̃∗α(iω)) = µ̃

′

α(ωα) = µ̃er +
2∑
k=1

1
qk

[
(ωτk)α cos

(πα
2

)
+ (ωτk)2α

]
µk,

Im(µ̃∗α(iω)) = µ̃
′′

α(ωα) =
2∑
k=1

1
qk

[
(ωτk)α sin

(πα
2

)]
µk.

(51)
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(a) (b)

(c)

Fig. 1: Mean-field estimates and FFT computations of the effective storage shear moduli µ̃′α(ω) of particulate

composites with different volume fractions c (a): 0.1, (b): 0.3 and (c): 0.5. MT: Mori-Tanaka model and (G)SC:

(Generalized) Self-Consistent schemes.

with qk = 1 + 2(ωτk)α cos
(πα

2

)
+ (ωτk)2α. The unknown parameters of the serie expansions are obtained with

relations (43) and (44) where the closed form GSC estimate [11,28] is used for µ̃er and µ̃eg . The comparison with

reference FFT computations shows an overall good agreement of the approximate GSC model (Figure 2). It is

worth mentioning that the exact shear relaxation spectrum of the GSC model presents a continuous part [2].

5 Conclusion

This study is a contribution to the description of the overall properties of composites materials with fractional

viscoelastic constituents. Previous results for classical viscoelasticity [19] have been extended to fractional behaviour

in the particular case of mixtures of Zener constituents. Exact relations have been obtained on time integrals of the
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(a) (b)

Fig. 2: Effective storage moduli µ̃′α (a) and loss factor tan δ = µ̃′′α/µ̃
′
α (b) of reinforced viscoelastic composites for

particle volume fractions c = 0.1, 0.3 and 0.5. Comparisons between FFT full-field simulations and approximate

model (51).

effective relaxation spectrum which are related to non-integer derivative and integral of the complex viscoelastic

moduli. However, by contrast with classical viscoelasticity, no simple physical interpretation can be given. By

making use of these relations, an approximate model has been proposed for the effective complex moduli by

describing the relaxation spectrum of the composite with only two Dirac delta functions. The parameters of this

approximation (relaxation times and corresponding intensities) depend on the local properties of the constituents

and the intraphase second moments of the strain fields which are solution of the purely elastic heterogeneous

problems at low and high frequency. For particulate composites with polydisperse spherical elastic inclusions, the

comparisons of this approximate model with reference FFT full-field simulations show that it delivers accurate

estimates in the whole frequency range.

A Stieltjes convolution and Laplace-Carson transform

The Stieltjes convolution product of two functions f and g is the derivative of their usual convolution product. If g is a

differentiable function of time, it reads

(f ~ g)(t) =
d
dt

(f ∗ g)(t) =
∫ t

0
f(t− u)ġ(t) du (A1)
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If g is only piecewise continuous and differentiable, its time derivative in (A1) contains Dirac masses at discontinuity points tn

and the Stieljes convolution product must be understood as

(f ~ g)(t) =
∫ t

0
f(t− u)ġ(u)du+

∑
n

f(t− tn)[g]n (A2)

where [g]n is the discontinuity of g at time tn and ġ(u) is the usual derivative of g.

The Laplace-Carson (LC) transform of a function f(t) is defined by

LC(f(t)) = f∗(p) = p

∫ +∞

0
e−ptf(t) dt (A3)

From (A1) and (A3), it follows that

(f ~ g)∗(p) = f∗(p)g∗(p). (A4)

B Useful relations for fractional calculus

For a comprehensive review on fractional calculus and its applications in viscoelasticity, the reader is referred to [46,47,13,36].

B.1 Gamma function

The Gamma function Γ is a continuation of the factorial function to complex numbers. It is defined by

Γ (z) =
∫ +∞

0
uz−1e−u du, ∀z ∈ C\{{0} ∪ Z−} (B1)

Integration by parts leads to the following property

Γ (z + 1) = zΓ (z) (B2)

It is also noted that Γ (1) = 1 and Γ (n) = (n− 1)!, ∀n ∈ N.

B.2 Fractional integral and derivative operators

Cauchy’s formula for successive integrations of a causal function f , with null initial conditions, reads

Inf(t) =
1

(n− 1)!

∫ t

0
(t− u)n−1f(u) du, ∀n ∈ N, (B3)

namely

Inf(t) = (Yn ∗ f)(t) with Yn(t) =
tn−1

(n− 1)!
, ∀n ∈ N. (B4)

By using the function Γ , the integral operator I can be extended in a straightforward manner to non-integer order α > 0

Iαf(t) = (Yα ∗ f)(t) with Yα(t) =
tα−1

Γ (α)
, α > 0. (B5)
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It can be also noted that

Iαf(t) = Iα+1ḟ(t) = (Yα+1 ∗ ḟ)(t) = (Yα+1 ~ f)(t) (B6)

The non-integer derivative operator Dα is defined by successive derivation (of order 1) and integration of order 1− α, that is

Dαf(t) = (Y1−α ∗ ḟ)(t) = (Y1−α ~ f)(t). (B7)

From (A4), the LC transform of the fractional derivative thus simply reads

LC(Dαf(t)) = (Dαf)∗(p) = Y ∗1−α(p) f∗(p). (B8)

By noting that LC(t−α) = Γ (1− α) pα, it gives

(Dαf)∗(p) = pα f∗(p), α > 0. (B9)

which extends a classical result to the case of derivatives with non-integer order.

B.3 Mittag-Leffler function

The Mittag-Leffler function (or exponential) Eα is defined by the following power series

Eα(z) =
+∞∑
n=0

zn

Γ (1 + αn)
, ∀z ∈ C, 0 < α ≤ 1. (B10)

Alternatively, it admits an integral representation [24,37] which reads

Eα(−tα) =
∫ +∞

0
Hα(θ) e−t/θ dθ, t > 0, 0 < α < 1. (B11)

with

Hα(θ) =
1
π

θα−1 sin(απ)
1 + 2θα cos(απ) + θ2α . (B12)

It can be also noted that
∫ +∞

0 Hα(θ) dθ = 1 since Eα(0+) = 1.

The Mittag-Leffler function corresponds to a generalization of the exponential function since E1(z) = ez . Besides, its

fractional derivative satisfies

DαEα(tα) = Eα(tα). (B13)

The function Eα naturally appears in fractional calculus since it is solution of the fractional differential equation

Dαf(t) + λα f(t) = 0, ∀t > 0 with f(0) = 1. (B14)

The solution reads [13] f(t) = Eα (−(λt)α). The asymptotic expansion of the function Eα(−tα) at short and long times reads

lim
t→0

Eα(−tα) = 1−
tα

Γ (1 + α)
and lim

t→+∞
Eα(−tα) =

t−α

Γ (1− α)
(α 6= 1). (B15)

The Laplace-Carson transform of the Mittag-Leffler function satisifies

LC (Eα [(−t/τ)α]) =
(pτ)α

1 + (pτ)α
. (B16)
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B.4 Fractional dashpot constitutive relations

The constitutive relation of a 1D fractional element reads [7]

σ(t) = EταDαε(t) (B17)

with elastic modulus E and fractional relaxation time τα. From the definition (B7), it follows that

σ(t) =
∫ t

0
R(t− u)ε̇(u)du (B18)

where the relaxation function R(t) reads

R(t) = E Y1−α

(
t

τ

)
=

E

Γ (1− α)

(
τ

t

)α
. (B19)

The inversion of the constitutive law (B17) simply yields

ε(t) =
1

Eτα
Iασ(t) =

1
Eτα

Iα+1σ̇(t). (B20)

From relation (B6), it may be written as

ε(t) =
∫ t

0
F (t− u)σ̇(u)du (B21)

where the creep (or retardation) function F (t) reads

F (t) =
1
E
Y1+α

(
t

τ

)
=

1
E Γ (1 + α)

(
t

τ

)α
. (B22)

C Random distribution of size polydisperse particles

Random polydisperse microstructures have been built using the RSA algorithm which consists in placing randomly, irreversibly

and sequentially nonoverlapping geometric objects into a fixed volume. The size distribution of the spherical inclusions follows a

lognormal density function φ(r) with r the radius of the particles

φ(r) =
1

r σ
√

2π
e−(ln(r)−µ)2/2σ2

, σ > 0, (C1)

where the parameters µ and σ represent the mean and the standard deviation of the variable’s natural logarithm respectively.

The generation of a microstructure composed of P spherical inclusions requires to define inclusion size families characterized by

a fixed radius and a number of inclusions. The determination of the inclusion size families and the associated radii, supposed to

be evenly spaced hereafter, is assessed from the integral of the lognormal density function A(+∞) =
∫ +∞

0 φ(r;µ, σ) dr = 1.

In practice, it is thus necessary to choose a maximal radius rmax corresponding to a given value A(rmax). We have chosen a

maximal radius corresponding to A(rmax) = 0.99

rmax = eσψ+µ with ψ =
√

2π erf−1
(22

25

)
(C2)
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Fig. C.1: Polydisperse microstructure composed of spherical inclusions with volume fraction c = 0.3. Parameters:

µ = 0, σ = 1 and P = 100.

By considering evenly spaced radii, the knowledge of the limit radius allows to determine each radius associated to an inclusion

size family. The number of inclusions per inclusion size family is then deduced by the calculation of the area sections. For n

inclusion size families, the radius ri and the number of particles Pi associated to an inclusion size family i read
ri =

rmax

2n
(2i− 1) , n > 2,

Pi = Ai P with Ai =
∫ r+

i

r−
i

φ(r) dr, r±i = ri ±
rmax

2n
.

(C3)
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