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Abstract12

Proton transmission imaging has been proposed and investigated as imaging modality13

complementary to X-ray based techniques in proton beam therapy. In particular, it ad-14

dresses the issue of range uncertainties due to the conversion of an X-ray patient computed15

tomography (CT) image expressed in Hounsfield Units (HU) to relative stopping power16

(RSP) needed as input to the treatment planning system. One approach to exploit a single17

proton radiographic projection is to perform a patient-specific calibration of the CT to RSP18

conversion curve by optimising the match between a measured and a numerically integrated19

proton radiography.20

In this work, we develop the mathematical tools needed to perform such an optimisation21

in an efficient and robust way. Our main focus lies on set-ups which combine pencil beam22

scanning with a range telescope detector, although most of our methods can be employed23

in combination with other set-ups as well. Proton radiographies are simulated in Monte24

Carlo using an idealised detector and applying the same data processing chain used with25

experimental data. This approach allows us to have a ground truth CT-RSP curve to compare26

the optimisation results with.27

Our results show that the parameters of the CT-RSP curve are strongly correlated when28

using a pencil beam based set-up, which leads to unrealistic variation in the optimised CT-29

RSP curves. To address this issue, we introduce a regularisation procedure which guarantees30

a plausible degree of smoothness in the optimised CT-RSP curves. We investigate three31

different methods to perform the numerical projection operation needed to generate a proton32

digitally reconstructed radiography. We find that the approximate and computationally33

faster method performs as well as the more accurate but more demanding method. We34

perform a Monte Carlo experiment based on a head and neck patient to evaluate the range35

accuracy achievable with the optimised CT-RSP curves and find an agreement with the36

ground truth expectation of better than 0.5%. Our results further indicate that the region37

in the patient in which the proton radiography is acquired does not necessarily have to38

correspond to the treatment volume to achieve this accuracy. This is important as the39

imaged region could be freely chosen, e.g. in order to spare organs at risk.40

1 INTRODUCTION41

Proton beam therapy offers high selectivity in dose deposition due to the protons’ distinct depth42

dose profile, commonly referred to as Bragg curve. This feature potentially allows for high dose43

to the tumour while sparing healthy surrounding tissue (Durante & Paganetti 2016). To fully44

exploit this advantage, precise knowledge of the relative stopping power (RSP) of the patient45

tissue is needed to correctly predict the proton range in the treatment planning system (TPS),46

in the best case on the day of treatment.47
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2. MATERIALS AND METHODS

Currently, proton treatment planning is performed based on X-ray computed tomography48

(CT) data typically acquired some days before the first delivered fraction. The X-ray CT49

is expressed in Hounsfield Unit (HU) and approximately converted to RSP (Schneider et al.50

2005). The uncertainties associated with the conversion process require additional safety margins51

around the contoured treatment volume (Jäkel et al. 2001, Paganetti 2012b). Proton radiography52

and proton CT have already been investigated a long time ago (West & Sherwood 1972, Koehler53

1968, Steward & Koehler 1973, Takada et al. 1988) and more recently been brought up in the54

context of proton beam therapy (Schneider & Pedroni 1995, Schulte et al. 2004). In analogy to55

X-ray based transmission imaging, protons are shot through the patient and an image is formed56

based on the residual energy or residual range measured by a suitable detector positioned behind57

the patient (Parodi 2014, Poludniowski et al. 2015, Johnson 2018). A full tomographic scan58

directly provides a volumetric RSP map of the patient and therefore bypasses any conversion.59

It could thereby allow for reduced safety margins (Arbor et al. 2015).60

Schneider et al. (2005) proposed an approach based on a single proton radiography expressing61

the water equivalent thickness (WET) of the patient which is arguably easier to achieve in62

practice and exposes the patient to a lower dose than a full proton CT scan. The idea is not to63

circumvent the conversion, but to perform a patient-specific calibration of the CT-RSP curve64

by comparing a proton radiographic image with a proton digitally reconstructed radiography65

(pDRR). This optimised curve would then be used for the treatment planning instead of the66

clinical one.67

More recently, the method has been studied in combination with two types of proton imaging68

set-ups. Doolan et al. (2015) used a single plane detector in double scattering beam delivery.69

In this case, the beam is gradually pulled back by a range modulator device while the pixel70

detector behind the patient records the signal created by many protons at once. On the other71

hand, in single proton tracking, the imaging set-up records information proton by proton and an72

estimate of individual proton trajectories through the patient can be derived, the so-called most73

likely path (Williams 2004, Schulte et al. 2008). Collins-Fekete et al. (2017) have investigated74

the patient-specific calibration in combination with this kind of system.75

In this work, we consider a proton imaging set-up which combines pencil beam scanning76

with a range telescope (Rinaldi et al. 2013, 2014, Farace et al. 2016). It can be employed in clin-77

ical practice potentially using available quality assurance (QA) equipment and without further78

hardware modifications in the treatment room (Krah et al. 2018). It is therefore of interest to79

develop the mathematical tools necessary to perform a patient-specific CT-RSP calibration in80

combination with such a set-up. In particular, we develop a regularised optimisation procedure81

which, as it turns out, is necessary to obtain plausible calibration curves. We perform a Monte82

Carlo study to assess the accuracy and robustness of the proposed methods. Although we fo-83

cused on a specific kind of imaging system, most of our methods can be adapted and applied to84

other proton imaging set-ups as well.85

2 MATERIALS AND METHODS86

2.1 Patient specific calibration - general principle87

The CT-RSP conversion curve is typically modelled as a series of linear segments parametrised by88

a set of parameter tuples (Hα, Rα), as illustrated in the centre of figure 1 (Schneider et al. 1996,89

Taasti et al. 2018). The patient-specific calibration optimises the values of Rα by minimising the90

difference between a pDRR and a measured proton radiography. A brute force implementation91

would start from an initial guess for the CT-RSP curve, convert a planning CT (expressed in92

Hounsfield Units [HU]) to a three-dimensional (3D) RSP map, project it to produce the pDRR,93

compare with the proton radiography (e.g., by calculating the mean squared difference), update94

the set of Rα values, and iterate again. We will present a method to separate the projection95

operation from the actual optimisation step.96
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Figure 1: Optimisation scheme for the patient-specific CT-RSP calibration. The plot in the
center is a schematic illustration of the CT-RSP curve defined as set of linear interpolations.

2.2 Framework of this study97

Naturally, an important question to be asked would be: “How accurate does the patient-specific98

calibration method reproduce the HU to RSP relation of the patient’s tissue?” Answering this99

experimentally on the basis of phantom measurements would require precise knowledge of the100

phantom’s spatial material distribution. For realistically complex anthropomorphic or animal101

tissue phantoms, this information is difficult to have, although proton radiographic measure-102

ments have been performed in phantoms of known material composition in some studies (Farace103

et al. 2016, Wohlfahrt et al. 2018). Phantoms which are geometrically less complex than a104

patient, on the other hand, might lead to unrealistic conclusions. For this reason, we remained105

entirely within a Monte Carlo framework for our study where we could use a digital patient106

model as ground truth. It was derived by converting a patient CT into RSP before importing107

it into Monte Carlo (see section 2.4). The CT-RSP curve used for this conversion was therefore108

the ground truth reference curve and we evaluated how well it was recovered by the optimisation109

procedure. At no point do we attempt to directly compare the calibration outcome with some110

clinical curve. This would require quantifying or modelling the typical discrepancies between111

the true tissue properties and those predicted by a clinical curve, and it was not the scope of112

this work.113

2.3 Proton radiographies114

We used Fred, a GPU-accelerated Monte Carlo code developed at University Rome La Sapienza,115

to simulate proton radiographies. The code has been validated against other MC toolkits, Geant4116

(Agostinelli et al. 2003, Allison et al. 2016) and FLUKA (Ferrari et al. 2005, Böhlen et al. 2014)),117

as well as experimental data from the CNAO proton therapy facility in Italy (Schiavi et al. 2017,118

?) and, more recently, against measurements from the Krakow proton therapy facility (Garbacz119

et al. 2019). Its advantage for our study was the high computation speed.120

A patient CT image was imported into Fred and to each voxel, an elemental composition,121

density, RSP, and radiation length was assigned as explained in section 2.4. No segmentation122

into tissue compartments was performed.123
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Figure 2: Left: Geometry used in Monte Carlo to simulate proton radiographies. The detector is
idealised as solid block of water and the dose scored in 2.3 mm depth intervals. Right: Example
of a simulated proton radiography.

We modelled the range telescope as a homogeneous box of water in which the integrated124

depth dose profiles were scored in depth increments of 2.3 mm. The geometry used in Fred is125

shown in figure 2 as well as a proton radiography of the patient used in this study.126

The irradiation plan contained a two dimensional array of pencil beams with 103 protons127

per spot and a beam energy of 200 MeV, i.e., high enough so that the protons fully traversed128

the patient and partly penetrated the range telescope. For simplicity, we used a parallel beam129

geometry and kept the beam axis aligned with the voxel grid. Furthermore, we chose the beam130

spot positions to be centred on the voxel surfaces. The initial beam profile was assumed to be131

a symmetric Gaussian distribution characterised by the full width at half maximum (FWHM)132

parameter.133

For each scanned beam spot, the range telescope recorded a (discretised) Bragg curve from134

which the water equivalent thickness (WET) was determined using a data processing procedure135

detailed in (Krah et al. 2018). From the list of beam spot coordinates and WET values, the136

proton radiography was constructed as 2D image so that each spot corresponded to one pixel137

in the proton radiography.138

2.4 Conversion of CT to RSP, density, and elemental composition139

Fred interpolates all parameters (density, RSP, radiation length, elemental composition) linearly140

between the materials provided in a lookup table according to the CT number in each voxel, i.e.,141

it treats each tissue as a composition of two out of the given set of reference materials. Fred uses142

RSP, density, and radiation length to calculate electromagnetic energy loss and multiple Coulomb143

scattering (MCS), and the elemental composition to obtain cross sections of nuclear interactions144

(Schiavi et al. 2017). When simulating the proton radiographies, we used Fred’s default set145

of materials reported in table 1 which is essentially table 4 in Schneider et al. (1996) with an146

additional column containing the calculated radiation length X0. Following the arguments in147

Sec. 2.2, we defined the relationship between CT numbers and RSP in this table as ground148

truth conversion curve. Some materials in the table refer to tissues which do not appear in a149

patient head and which would be disregarded when using the table in a TPS. For the purpose of150

providing a ground truth information, we kept them to have a relatively granular lookup table151

in the simulation.152

We built an additional reference lookup table (table 2) using the material compositions and153

HU intervals reported in table 6 in Schneider et al. (2000). The density was determined using154
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2. MATERIALS AND METHODS

Table 1: Material table from Schneider et al. (1996) used to simulate the proton radiographies.
It contains the CT-RSP relationship which we used as ground truth knowledge.

Elemental fraction in % ρ CT No. RSP X0

O C H N Ca P Na Mg S Cl K Fe I [g/cm3] [HU] [cm]

Air 23.5 0 0 76.5 0 0 0 0 0 0 0 0 0 0.0012 -1000 0.001062 30862.6
Lung infl. 74.9 10.5 10.3 3.1 0 0.2 0.2 0 0.3 0.3 0.2 0 0 0.26 -741 0.257998 140.478
Adip. tissue 27.8 59.8 11.4 0.7 0 0 0.1 0 0.1 0.1 0 0 0 0.95 -70 0.978975 43.3744
Yellow marrow 23.1 64.4 11.5 0.7 0 0 0.1 0 0.1 0.1 0 0 0 0.98 -42 1.01303 42.5351
Water 88.81 0 11.19 0 0 0 0 0 0 0 0 0 0 1 0 1 36.0823
Breast 52.7 33.2 10.6 3 0 0.1 0.1 0 0.2 0.1 0 0 0 1.02 3 1.02898 37.8775
Red marrow 43.9 41.4 10.5 3.4 0 0.1 0 0 0.2 0.2 0.2 0.1 0 1.03 14 1.04102 38.0317
GI tract 75.1 11.5 10.6 2.2 0 0.1 0.1 0 0.1 0.2 0.1 0 0 1.03 23 1.02804 35.7108
Lymph 83.2 4.1 10.8 1.1 0 0 0.3 0 0.1 0.4 0 0 0 1.03 28 1.02701 35.1365
Testis 69.4 16.9 10.6 2.2 0 0.2 0.2 0 0.1 0.2 0.2 0 0 1.04 32 1.04104 35.7064
Brain 71.2 14.5 10.7 2.2 0 0.4 0.2 0 0.2 0.3 0.3 0 0 1.04 37 1.04 35.3985
Thyroid 74.5 11.9 10.4 2.4 0 0.1 0.2 0 0.1 0.2 0.1 0 0.1 1.05 40 1.04496 34.9107
Muscle 71 14.3 10.2 3.4 0 0.2 0.1 0 0.3 0.1 0.4 0 0 1.05 42 1.04401 35.0533
Kidney 72.4 13.2 10.3 3 0.1 0.2 0.2 0 0.2 0.2 0.2 0 0 1.05 43 1.04496 34.9957
Lung defl. 74.9 10.5 10.3 3.1 0 0.2 0.2 0 0.3 0.3 0.2 0 0 1.05 44 1.04401 34.785
Ovary 76.8 9.3 10.5 2.4 0 0.2 0.2 0 0.2 0.2 0.2 0 0 1.05 45 1.04601 34.7622
Eye lens 64.6 19.5 9.6 5.7 0 0.1 0.1 0 0.3 0.1 0 0 0 1.07 50 1.06005 34.9361
Liver 71.6 13.9 10.2 3 0 0.3 0.2 0 0.3 0.2 0.3 0 0 1.06 53 1.05396 34.6543
Spleen 74.1 11.3 10.3 3.2 0 0.3 0.1 0 0.2 0.2 0.3 0 0 1.06 54 1.05396 34.5251
Heart 74.5 11 10.2 3.3 0 0.1 0.1 0 0.2 0.3 0.2 0.1 0 1.06 55 1.053 34.5819
Skin 64.5 20.4 10 4.2 0 0.1 0.2 0 0.2 0.3 0.1 0 0 1.09 75 1.08401 34.2994
Cartilage 74.4 9.9 9.6 2.2 0 2.2 0.5 0 0.9 0.3 0 0 0 1.1 98 1.08097 32.4815
Skel. spong. 36.7 40.4 8.5 2.8 7.4 3.4 0.1 0.1 0.2 0.2 0.1 0.1 0 1.18 260 1.15605 29.3503
Skel. sacrum 43.8 30.2 7.4 3.7 9.8 4.5 0 0.1 0.2 0.1 0.1 0.1 0 1.29 413 1.23801 25.3857
Vert. col. (D6,L3) 43.7 28.7 7 3.8 11.1 5.1 0 0.1 0.2 0.1 0.1 0.1 0 1.33 477 1.26696 24.0933
Femur 36.8 34.5 7 2.8 12.9 5.5 0.1 0.1 0.2 0.1 0 0 0 1.33 499 1.26895 23.8711
Ribs (2nd, 6th) 43.6 26.3 6.4 3.9 13.1 6 0.1 0.1 0.3 0.1 0.1 0 0 1.41 595 1.32907 22.0085
Vert. col. (C4) 43.6 26.1 6.3 3.9 13.3 6.1 0.1 0.1 0.3 0.1 0.1 0.1 0 1.42 609 1.33693 21.7318
Humerus 36.9 31.4 6 3.1 15.2 7 0.1 0.1 0.2 0 0 0 0 1.46 683 1.37006 20.8816
Ribs (10th) 43.4 23.5 5.6 4 15.6 7.2 0.1 0.1 0.3 0.1 0.1 0 0 1.52 763 1.41299 19.6246
Cranium 43.5 21.2 5 4 17.6 8.1 0.1 0.2 0.3 0 0 0 0 1.61 903 1.48007 17.9969
Mandible 43.5 19.9 4.6 4.1 18.7 8.6 0.1 0.2 0.3 0 0 0 0 1.68 1006 1.53401 16.9642
Cortical bone 43.5 15.5 3.4 4.2 22.5 10.3 0.1 0.2 0.3 0 0 0 0 1.92 1376 1.71398 14.0583

the fit shown in their figure 9. The stopping power and radiation length values were calculated155

based on the elemental composition exploiting Geant4’s functionality (Agostinelli et al. 2003).156

We used this table for some of the presented results to determine the regulariser weights (see157

section 2.10.1).158

2.5 Notations159

Throughout the paper, we will use the lower case variables h and r to refer to the HU and RSP160

values in the voxels, respectively. We use i, j, k as voxel indices and, by convention, associate k161

with the beam axis. With P , we refer to the proton radiography and with D to the pDRR. Both,162

P andD, share the same pixel indices denoted as ip and jp. It is sometimes convenient to combine163

the two indices ip, jp into a single index l so that, e.g., Pl denotes the vector of pixels in the164

proton radiography. The N interval limits of the CT-RSP conversion curve are given as capital165

letter variables Rα and Hα with the Greek index enumerating the parametrisation intervals (see166

figure 1). We use the~ symbol to indicate vector notation, e.g. ~R = (R0, R1 . . . , RN ).167

2.6 Remapping of CT image168

We exploit the piecewise linear character of the CT-RSP conversion curve to remap the CT169

numbers [in HU] in the CT image onto a set of coefficients. This allows us to state the optimi-170

sation as a linear minimisation problem. Let h be the HU value in one voxel of the patient CT171

image. Its conversion to r depends on a parameter tuple (Hα, Rα) if and only if h lies in the HU172

intervals left or right of Hα, i.e., h ∈ (Hα−1, Hα+1). Specifically, r is the linear barycentric in-173

terpolation between the parameter pair (Rα, Rα+1) if h ∈ (Hα, Hα+1) and between (Rα−1, Rα),174

if h ∈ (Hα−1, Hα).175

This motivates the definition of a vector ~w whose components wα are calculated in the176

following way:177
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Table 2: Lookup table according to Schneider et al. (2000) with additional columns containing
RSP (at 200 MeV) and radiation length X0.

Elemental fraction in % ρ CT No. RSP X0

O C H N Ca P Na Mg S Cl K Ar [g/cm3] [HU] [cm]

23.2 0 0 75.5 0 0 0 0 0 0 0 1.3 0.000605 -1050 0.000537909 60521.5
74.9 10.5 10.3 3.1 0 0.2 0.2 0 0.3 0.3 0.2 0 0.052695 -950 0.0529346 693.293
19.8 68.1 11.6 0.2 0 0 0.1 0 0.1 0.1 0 0 0.907347 -120 0.934753 46.3824
30.8 56.7 11.3 0.9 0 0 0.1 0 0.1 0.1 0 0 0.943934 -82 0.967335 43.3455
41.1 45.8 11 1.5 0 0.1 0.1 0 0.2 0.2 0 0 0.97083 -52 0.989457 40.9452
50.9 35.6 10.8 2.2 0 0.1 0 0 0.2 0.2 0 0 0.997725 -22 1.01295 38.9291
57.8 28.4 10.6 2.6 0 0.1 0 0 0.2 0.2 0.1 0 1.02462 8 1.03652 37.2415
72.3 13.4 10.3 3 0 0.2 0.2 0 0.2 0.2 0.2 0 1.03056 19 1.0359 35.7234
62.2 20.7 9.4 6.2 0 0 0.6 0 0.6 0.3 0 0 1.09681 80 1.09214 34.0022
35.5 45.5 9.5 2.5 4.5 2.1 0.1 0 0.1 0.1 0.1 0 1.08746 120 1.0832 33.8555
36.3 42.3 8.9 2.7 6.4 3 0.1 0 0.1 0.1 0.1 0 1.13485 200 1.11908 31.2418
37.2 39.1 8.2 2.9 8.3 3.9 0.1 0 0.1 0.1 0.1 0 1.19409 300 1.16414 28.6198
38 36.1 7.6 3 10.1 4.7 0.1 0.1 0.2 0.1 0 0 1.25333 400 1.20957 26.3764
38.7 33.5 7.1 3.2 11.7 5.4 0.1 0.1 0.2 0 0 0 1.31257 500 1.25601 24.5068
39.4 31 6.6 3.3 13.2 6.1 0.1 0.1 0.2 0 0 0 1.37181 600 1.30145 22.8421
40 28.7 6.1 3.5 14.6 6.7 0.1 0.1 0.2 0 0 0 1.43104 700 1.34623 21.3871
40.5 26.5 5.6 3.6 15.9 7.3 0.1 0.2 0.3 0 0 0 1.49028 800 1.38998 20.0717
41.1 24.6 5.2 3.7 17 7.8 0.1 0.2 0.3 0 0 0 1.54952 900 1.43531 18.9582
41.6 22.7 4.9 3.8 18.1 8.3 0.1 0.2 0.3 0 0 0 1.60876 1000 1.4818 17.9454
42 21 4.5 3.9 19.2 8.8 0.1 0.2 0.3 0 0 0 1.668 1100 1.52574 17.0139
42.5 19.4 4.2 4 20.1 9.2 0.1 0.2 0.3 0 0 0 1.72724 1200 1.57143 16.2022
42.9 17.9 3.9 4.1 21 9.6 0.1 0.2 0.3 0 0 0 1.78648 1300 1.61658 15.4529
43.2 16.5 3.6 4.2 21.9 10 0.1 0.2 0.3 0 0 0 1.84572 1400 1.66118 14.7594
43.5 15.5 3.4 4.2 22.5 10.3 0.1 0.2 0.3 0 0 0 1.90496 1500 1.7082 14.1711

wα(h) ≡ h−Hα−1

Hα −Hα−1
Ωα(h) +

Hα+1 − h
Hα+1 −Hα

Ωα+1(h)

w0(h) =
H1 − h
H1 −H0

Ωα=1(h)

wN (h) =
h−HN−1

HN −HN−1
Ωα=N (h)

(1)

with178

Ωα(h) =

{
1 for Hα−1 ≤ h < Hα

0 otherwise.
(2)

The value of wα thus quantifies how much r depends on the corresponding parameter Rα.179

Note that most components of the vector ~w are zero except for two (or one if h lies exactly on180

an interval boundary) and that the sum over all wα is always one. The RSP value r is obtained181

by contracting ~w with the vector ~R containing the parameters Rα of the conversion curve:182

r =

N∑
α=0

wαRα = ~w · ~R. (3)

When applying the piecewise barycentric interpolation to all voxels in the CT image, the183

three dimensional HU matrix, hijk, is mapped onto a four dimensional coefficient matrix wijk,α.184

In accordance with equation 3, the 3D RSP map is:185

rijk =
N∑
α=0

wijk,αRα = ~wijk · ~R (4)

2.7 Proton digitally reconstructed radiography186

The pDRR is obtained by projecting the RSP map along lines corresponding to the pencil beams187

used to acquire the proton radiography. We do not consider projection directions oblique to the188

CT grid in this work (see section 2.3). Denoting with projk the projection operation along axis189
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2. MATERIALS AND METHODS

k, the pDRR is calculated as190

Dipjp = projk,ipjp(rijk) = projk,ipjp

(
N∑
α=0

wijk,αRα

)
=

N∑
α=0

projk,ipjp(wijk,α)Rα =
N∑
α=0

Aipjp,αRα

(5)
with191

Aipjp,α = projk,ipjp(wijk,α). (6)

The projection operation is wrapped into the matrix A because it only acts on the coefficients192

wijk, but not on the parameters Rα, and may therefore be interchanged with the contraction over193

the ~R vector. For an ideal pencil beam with FWHM=0 and neglecting scattering, the projection194

is simply the sum along k multiplied by the voxel size s, i.e., Aip,jp,α = s
∑

k wi=ipj=jpk,α. A195

more realistic projection operation must at least take into account the beam size and possibly196

the effect of scattering. In this work, we investigated the following three projection models:197

(1) Gaussian beam without scattering, (2) Gaussian beam with material and depth dependent198

scattering, and (3) Monte Carlo based projection.199

2.7.1 Gaussian beam without scattering200

In this model, the beam is described by a Gaussian transverse profile characterised by the201

FWHM, which is 5-10 mm for clinical proton beams at the energies used for proton imaging202

(≈ 200 MeV). The effect of scattering within the patient is neglected and the beam profile is203

considered to be constant in depth and independent of the pencil beam position. Mathematically,204

this corresponds to a convolution with a shift invariant Gaussian kernel Gip−i,jp−j in the plane205

orthogonal to the proton beam. The matrix Aip,jp,α is then calculated as206

Aip,jp,α = s
∑
k

∑
i,j

Gip−i,jp−jwijk,α = s
∑
i,j

Gip−i,jp−j
∑
k

wijk,α. (7)

The convolution needs to be performed only once after summing along k, making the implemen-207

tation computationally inexpensive.208

2.7.2 Gaussian beam model with scattering209

This more realistic projection model takes into account the effect of scattering which leads to210

a gradual widening of the proton beam with depth. The most important contribution is due211

to MCS, i.e., a succession of many small angle deflections as a proton propagates through the212

medium. We take as depth dependent beam size a combination of the initial beam size and the213

contribution due to MCS in the medium,214

σbeam(zk) =
√
σ2

init + σ2
mcs(zk), (8)

because the Gaussian pencil beam can approximately be thought of as a weighted superposition215

of many pin-like pencil beams, each of which undergoes MCS. We denote with zk the depth of216

the slices in the CT voxel grid along the beam axis.217

We used a discretised version of the analytical formulae from (Lynch & Dahl 1991) and218

(Gottschalk et al. 1993) to calculate σ2
mcs as a function zk:219

σ2
mcs(zk) = Ω2

0

[
1 + 0.038 ln

(
zk
X0

)]
s

k∑
k′=0

z2
k′

β2(zk′)p2(zk′)

1

X0(zk′)
, (9)

with Ω0 = 13.6 MeV and s the voxel size. The radiation length X0 depends on the type220

of material and parametrises the amount of MCS the protons suffer while traversing it. In221

a heterogeneous medium like a patient, it depends on the three dimensional position within222
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the patient volume. The terms β and p are the proton’s velocity relative to the speed of223

light, β = v/c, and its momentum, respectively. They relate to the proton energy as βp =224

(E2+2E Ep)/(E+Ep)c, where Ep is the proton’s rest mass, and decrease as a proton continuously225

slows down while traversing the patient.226

Evaluating equation 9 requires some prior knowledge about the material composition within227

the patient which we obtained by converting the patient CT to an RSP and X0 map through228

the default tables implemented in Fred. Alternatively, one could perform a first optimisation229

of the CT-RSP curve using the Gaussian model without scattering, use the result to evaluate230

equation 9, and optimise the CT-RSP curve again, this time using the Gaussian beam model231

with scattering.232

We make the following approximations to be able to sum along the beam axis z only in233

equation 9. For a given pencil beam, we determine the mean radiation length the protons234

encounter in each slice of the CT volume by calculating the weighted average value of X0235

around the beam center (ip, jp) in the (i, j) plane at depth zk. We use a two dimensional236

Gaussian weighting kernel with a standard deviation reflecting the beam spot size. This yields237

the depth dependent term X0(zk′) in equation 9. Similarly, we calculate the water equivalent238

thickness zWET that the protons belonging to a given pencil beam have traversed on average239

when penetrating the patient up to some geometric depth zk. We then use the expression240

E(zWET) = ((R− zWET)/χ)1/ξ from Bortfeld & Schlegel (1996) to calculate the average proton241

energy in depth zk. In this formula, R refers to the proton range in water and χ and ξ are fit242

constants.243

We determine the approximate beam size for each pencil beam (ip, jp) and in all CT slices244

k as explained above to build a space variant Gaussian convolution kernel Gipjp;ij(zk) of width245

σbeam,ipjp(zk). The matrix Aipjp,α is calculated as246

Aipjp,α = s
∑
k

∑
i,j

Gipjp;ij(zk)wijk,α. (10)

Fast Fourier transform based convolution algorithms cannot be used here because the kernel247

is shift variant. Instead, the multiplication and summation operations in equation 10 must be248

executed explicitly for all HU intervals α. We therefore implemented equation 10 on an Nvidia249

Titan X GPU card using the OpenCL library. This helped lowering the computation time from250

several hours per projection down to about 15 sec.251

2.7.3 Monte Carlo based projection252

We used Monte Carlo to perform the projection in equation 5 to avoid the approximations253

inherent in the analytical beam model and to include the effect of nuclear interactions on the254

proton trajectories. To this end, we implemented a dedicated plugin to Fred which iterates255

through the following scheme: Initially, the patient CT is loaded and the components of the256

matrix ωijk,α are calculated. The pencil beams are defined and arranged in the same way as in257

the proton radiography simulation (see Sec. 2.3). The protons are then transported across the258

patient CT volume using the physics models of the MC code. After each transport step (before259

traversing into a new voxel the latest), the coefficient vector ~ω is extracted from the current260

voxel and multiplied by the step length projected onto the beam axis z. This information is261

cumulated along the entire trajectory and for all protons within one pencil beam. The result is262

the integrated coefficient vector ~ω associated with one pencil beam and repeating the procedure263

over the entire array of pencil beams yields the matrix Aipjp,α.264

If the number of protons per pencil beam remained constant across the patient volume, the265

integrated coefficient vector would simply be normalised by this number. In reality, the number266

of protons fluctuates as a function of depth because (1) secondary protons are created through267

inelastic scattering or knock-on elastic collisions, (2) protons stop inside the patient because268

they lose a large fraction of their energy in a nuclear interaction, and (3) some protons are269

8
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scattered at large Rutherford-like angles and exit the patient laterally without fully traversing270

it. Our plugin accounts for these effects by applying a depth dependent normalisation and only271

includes protons which would have reached the detector. In the current implementation of Fred,272

the plugin can only be executed in a single thread on a CPU which makes the computation time273

much longer (order of hours) than for the analytical projection model.274

2.8 Linear minimisation problem275

Henceforth, we use a single index l for the pixels in the proton radiography (see section 2.5).276

We define the data attachment term of the cost function as277

Edata(~R) =
∑
l

(
Pl −

N∑
α=0

AlαRα

)2

= ‖~P −A~R‖2 with Alα = projk(wlk,α), (11)

where ‖ ‖2 refers to the ` norm. We have introduced compact matrix/vector notation on the278

right hand side.279

The optimal parameters of the CT-RSP conversion (denoted with the ˆ symbol) curve are the280

components of the vector ~̂R which minimises the objective function, i.e.,281

~̂R = argmin
{
E(~R)

}
. (12)

Note that the HU intervals Hα are implicitly encoded in the matrix A and not subject282

to optimisation, i.e. the parameters ~̂R are optimal for a given discretisation of the CT-RSP283

curve. Optimising Hα and Rα alongside each other would mean to optimise both A and ~R284

in equation 11 - a much harder problem to solve, if solvable at all. In practice, the intervals285

Hα can be chosen to yield a desired degree of granularity (e.g. smaller intervals in soft tissue286

region, fewer in bone region), or in accordance with a clinical calibration curve already in use287

in the facility. In this work, we used the same intervals as in the ground truth curve except for288

one dedicated test where different intervals where used in the optimization than in the proton289

radiography simulation (figure 4 in section 3.1).290

2.9 Parameter correlation coefficients291

The minimisation problem in equation 12 is mathematically well posed if matrix A has full rank,292

or, in practical terms, if there are at least as many pixels in the proton radiography as there293

are Rα parameters to be optimised. Even if this criterion is met, the optimised CT-RSP curve294

would not be plausible from a physics point of view in many cases, as we will show in section 3.1.295

The reason is the following: The WET value encoded in a single pixel of the pDRR results from296

a summation of RSP values in many voxels along and around the proton beam (see section 2.7).297

Increasing the value of a parameter Rα increases the RSP in some of the contributing voxels and298

consequently the average WET. At the same time, lowering the value of another parameter Rα′299

tends to lower the WET value. Therefore, the R parameters are expected to be correlated. We300

also note that neighboring Rα parameters are in any case anti-correlated because the CT-RSP301

curve interpolates linearly between them and is continuous by construction. The correlation302

coefficient of the parameters Rα can determined from the covariance matrix of the cost function303

as follows:304

ραα′ =
Covαα′

√
Covαα Covα′α′

with Covαα′ = (ATA)−1
αα′ . (13)

The coefficient values always lie within the [−1, 1] interval and ραα = 1 by construction.305
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2.10 Regularised optimisation306

As we will show in the results, correlation among the parameters Rα would lead to unrealistic307

optimised CT-RSP curves. Therefore, we introduce a regularisation term in the cost function308

to control the variation of the CT-RSP curve. It penalises the intrinsic variation of the patient-309

specific CT-RSP curve. We define310

Ereg =

αM∑
α=α0

(dα+1 − dα)2 , (14)

with the discrete derivative dα of the curve calculated as311

dα =
Rα −Rα−1

Hα −Hα−1
. (15)

The regularisation may be applied to a subset of HU intervals only (see section 2.10.1) and α0312

and αM refer to the first and last of them, respectively.313

Equation 14 can be written as matrix equation,314

Ereg =

αM∑
α=α0

(
Areg
α′αRα

)2
= ‖Areg ~R‖2, (16)

where the matrix components are given as315

Areg
α′α =

1

Hα+1 −Hα−1

(
δα′,α−1 − 2δα′,α + δα′,α+1

)
, with δα′,α =

{
1 for α′ = α

0 otherwise.
(17)

2.10.1 Regularised cost function316

The conversion curve is expected to be rather smooth and monotonic in the regions HU< −100317

and HU> 100, but should be allowed to fluctuate slightly in the region of soft tissue, i.e.,318

−100 < HU < 100 (Schneider et al. 2000). For this reason, we applied the regularisation319

separately to the three intervals.320

The regularised cost function is the sum of the data term (equation 11) and three regulariser321

terms (equation 16). It takes the form322

E(~R) = Edata + γairEreg,air + γsoftEreg,soft + γboneEreg,bone. (18)

We have used the extra subscripts “air”, “soft”, and “bone” as short hand notation to refer323

to the three distinct HU regions of the conversion curve subject to the regularisation, with the324

indices α0 and αM in equation 16 chosen appropriately to confine the selected HU intervals.325

We used the python package scipy.linalg.lstsq to minimise the cost function, which is based on326

singular value decomposition.327

The γ factors set the relative weight of the regularisers compared to the data term and their328

value should be chosen such that the optimised curve contains a plausible level of smoothness.329

We adopted the following method to automatically select the weights γ: Starting with an330

initial guess, we ran the optimisation and then calculated the magnitude of each regulariser331

term once for the optimised CT-RSP curve and once for a reference curve. We increased the332

respective weight γ, if the regulariser term of the optimised curve was greater than that of the333

reference curve, and lowered it in the opposite case. This procedure was repeated iteratively334

until all regulariser terms of the optimised and reference curve corresponded to within a few335

percent. In this way, the optimised CT-RSP curve had a comparable amount of variation as the336

reference.337

The reference curve should be chosen (or constructed) such that it includes a level of RSP338

variation which is thought to be necessary to reflect the tissue variability within one patient.339
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The relative weights need to be set for each optimisation because the data term to which they340

refer is linked to a specific proton radiography (and the choice of a region-of-interest - see341

section 2.12). Note also that the regulariser does not force the absolute RSP values of the342

optimised and reference curves to resemble each other, but only their degree of smoothness.343

Therefore, optimised RSP may still vary strongly among patients even in the case of a very344

smooth reference curve which suppresses RSP variation within one patient. In this work, we345

used the ground truth CT-RSP curve as reference to fix the regulariser weights, except for346

figure 4.347

2.11 Assessment of range accuracy348

The patient-specific CT-RSP calibration optimises the parameters Rα by minimising the differ-349

ence between predicted and measured average residual range for a field of pencil beams which350

fully penetrate the patient. From the treatment point of view, it is of interest to estimate how351

accurately the optimised curve predicts the range of lower energy protons stopping inside the352

patient.353

To quantify the range accuracy which would be obtained with an optimised CT-RSP curve,354

we performed the following kind of Monte Carlo experiment. We defined a volume inside the355

patient’s head and built an irradiation plan containing 10,000 pencil beams with randomised356

positions and beam energies. The positions were constrained by the lateral extension of the357

volume and the energy was chosen so that the pencil beams would penetrate the patient at358

least 20% of its total water equivalent thickness at that point and at most 80%. We scored the359

integrated depth dose profiles individually for all pencil beams. The same plan was simulated360

twice: once using the ground truth CT-RSP curve (see sections 2.2 and 2.3) to convert the patient361

CT to RSP and once using the optimised one. In this way, we obtained 10,000 pairs of integrated362

depth dose profiles. From each of them, we estimated the proton range by determining the water363

equivalent depth in which the distal edge decayed below 80 % of the peak value (Paganetti 2012a).364

The profiles were linearly interpolated to reach subvoxel resolution. We built histograms out of365

the 10,000 range differences and determined the mean value as estimate for the range accuracy.366

We note that for certain pencil beams directed towards complex structures (e.g. nose and367

air cavities), the 80% distal fall-off technique may suffer from range mixing and therefore lead368

to additional variation of the range differences. Manual inspection of a random subsample of369

profiles led us to conclude that such cases are rare enough not to compromise the results in370

terms of average range accuracy in the Monte Carlo experiment.371

2.12 Region of interest in the proton radiography372

To perform the CT-RSP curve optimisation, it suffices to acquire a proton radiography of a373

region of interest of the patient instead of, e.g., the entire head to perform the patient-specific374

calibration as long as the image contains a sufficient amount of pixels. The region could for375

example be chosen such to reduce the dose given to healthy tissue. To investigate how much376

the optimised CT-RSP curve depends on such a choice, we simulated nine proton radiographies377

capturing differently positioned (but equally sized) rectangular areas (shown in figure 9) and378

calculated an optimised CT-RSP curve for each of them.379

In practice, the region imaged by the proton radiography could be selected in accordance380

with the treatment volume or, instead, be placed so that the imaged volume does not correspond381

to the treated one, e.g. to avoid giving dose to an organ at risk distal to the treatment volume382

during image acquisition. We performed the Monte Carlo experiment (see section 2.11) to383

investigate whether this would have an impact on the range accuracy. Specifically, we selected384

a region of interest, ROIexp, and defined the randomised irradiation plans so that the lateral385

coordinates of all pencil beams lay within it. We used the CT-RSP curve previously optimised386

based on another (or the same) region of interest proton radiography, ROIopti, as look up table387
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Figure 3: Left: Optimised CT-RSP curves obtained without (blue) and with (red) regulariser
applied. The black curve is the ground truth reference used to simulate the proton radiography.
The two dashed vertical lines indicate the three separately regularised HU regions “air”, “soft
tissue”, and “bone” (see section 2.10.1). Right: Relative difference between the DRRs calculated
using the regularised and non-regularised CT-RSP curves, respectively.

in the Monte Carlo. We then determined the range accuracy as explained in section 2.11 for388

each pair (ROIexp, ROIopti).389

3 RESULTS390

3.1 Regularisation391

In figure 3 left, we show a patient-specific CT-RSP with and without regularisation used in the392

optimisation process. The proton radiography was simulated with an 8 mm FWHM beam and393

we used a rectangular region of interest indicated as black box in the right panel containing394

5500 pixels. The projection was performed using the Gaussian beam model with scattering (see395

section 2.7.2). The patient-specific calibration curve contained 33 (Hα, Rα) pairs to be optimised.396

It is evident that the variation in the non-regularised curve is unacceptable, while it is kept at397

a plausible level when employing regularisation. The right panel shows the relative difference398

between two pDRR images: one calculated using the regularised CT-RSP curve and the other399

one using the non-regularised version. The two DRRs agree to better than 3% although the400

two conversion curves themselves differ by much more. This underlines that the non-regularised401

solution, despite its unrealistic variation, does indeed optimise the residual range similarly well402

as the regularised one.403

The left panel of figure 4 shows optimised calibration curves for which the regulariser weights404

γ in equation 18 were determined based on two different reference CT-RSP relationships (see405

section 2.4). The regulariser terms have consequently enforced a degree of smoothness in the406

optimised curves similar to each reference curve. At the same time, both optimised curves407

approximately recovered the RSP values of the ground truth curve. This demonstrates that408

the regulariser does not affect absolute RSP, but only the RSP variability within the curve (see409

section 2.10.1).410

The right panel shows optimised CT-RSP curves for which different HU intervals were used.411

The five HU thresholds in the yellow curve were [−1000,−100, 0, 100, 1376]. The γ weights412

were determined based on the dashed reference curve and consequently the optimised curves are413

smoother than the ground truth curve. It is interesting to note that the yellow curve does not414

exhibit any unrealistic variation despite the fact that no regularisation was applied.415

The patient-specific calibration curves shown in figure 5 are based on proton radiographies416
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Figure 4: Left: Optimised CT-RSP curves using two different reference curves to determine
the regulariser weights γ. Right: Optimised CT-RSP curves using different HU-intervals for the
parameterisation. The regulariser weights γ were determined in accordance with the smoothness
of the reference curve based on (Schneider et al. 2000) (see section 2.4). For the curve with five
HU thresholds only, these were placed at HU=-1000, -100, 0, 100, 1376. No regularisation was
applied to this curve.

simulated with different beam sizes, where “pin like” means FWHM=0 mm. We used the Gaus-417

sian beam model with scattering to perform the projection of the pDRR. The optimisation was418

regularised as explained in section 2.10. No regularisation was used for the green curve. The419

lower panel shows the relative difference in percent between the ground truth CT-RSP and the420

optimised ones. We have omitted the data point for HU = −1000 because dividing by a very421

small ground truth RSP value (0.012) makes the relative difference large and meaningless.422

Figure 6 illustrates the parameter correlation matrix ραα′ (equation 13) for three different423

beam sizes. We have used the Gaussian beam model with scattering (see section 2.7.2) to424

calculate the pDRR. The central diagonal contains values of 1 by construction, while the two425

diagonals off-set to the left and right are close to -1 because Rα parameters of neighbouring HU426

intervals of the conversions curve tend to be anti-correlated. Non-zero correlation coefficients427

further away from the central diagonal occur because RSP information from many voxels is428

mixed during the projection operation (see section 2.9). Indeed, they are much more prominent429

in the left panel corresponding to an 8 mm FWHM beam than in the right panel, which refers430

to a pin-like beam.431

In figure 7, we present optimised calibration curves obtained from proton radiographies simu-432

lated with different scattering processes activated. The lower panel shows the relative difference433

in percent between optimised and ground truth CT-RSP curves. “Full physics” includes all434

processes currently available in Fred, i.e., MCS and nuclear elastic and inelastic scattering; for435

“No nuclear”, only MCS was included; and “no nuclear, no MCS” corresponds to a pure con-436

tinuous slowing down simulation in which protons travel on straight lines through the voxel437

geometry. Energy loss and straggling was left at default settings in all cases. The Gaussian438

beam model with scattering was used to calculate the pDRR except for “no nuclear, no MCS”439

where the Gaussian beam model without scattering was employed. The FWHM=8 mm curves440

were regularised (see section 2.10), while the pin-like curves were not.441

Figure 8 left shows optimised CT-RSP curves obtained with the three projection models442

(see section 2.7). In all cases, the proton radiography was simulated with 8 mm FWHM pencil443

beams and the optimisation was regularised. The Monte Carlo projection (see section 2.7.3)444

was performed with 1000 protons per pencil beam. The right panel shows the relative difference445

between the pDRR obtained with the Gaussian projection model with scattering and the Monte446

Carlo projection.447
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Figure 5: CT-RSP curves obtained from proton radiographies simulated with different beam
sizes. The lower panel shows the relative difference in percent between the optimised and the
ground truth CT-RSP curve.

Figure 6: Visualisation of the parameter correlation matrix ραα′(equation 13) for three different
beam sizes.
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Figure 7: CT-RSP curves obtained from proton radiographies simulated with different physics
processes activated. The lower panel shows the relative difference in percent between the opti-
mised and the ground truth CT-RSP curve.

Figure 8: Left: CT-RSP curves obtained using three different projection models (see section 2.7).
The lower panel shows the relative difference in percent between the optimised and the ground
truth CT-RSP curve. Right: Relative difference between pDRR images obtained with the
Gaussian projection model with scattering and the Monte Carlo based projection.
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Figure 9: Left: regions of interest in the proton radiography used for the optimisation. Right:
Optimised CT-RSP obtained using these regions of interest.

3.2 Range accuracy and region of interest448

In the figure 9, we show optimised CT-RSP curves (right panel) using the different regions of449

interest in the proton radiography illustrated in the left panel. Colours in all panels match.450

The optimisation was performed using the Gaussian projection model with scatter (see sec-451

tion 2.7.2) and employing the regularisation separately in three HU regions (see section 2.10.1).452

The curves vary by a few percent among each other, but deviate no more than 4% from the453

ground truth curve. There appears to be some systematic under estimation in the range above454

800 HU associated with bony tissue.455

Figure 10 presents the results of the Monte Carlo range experiment explained in section 2.11.456

The upper left panel shows an example distribution of range differences obtained from 10, 000457

pencil beams. The blue distribution refers to the difference between predicted and true range of458

the pencil beams when using an optimised CT-RSP. The mean relative range difference quantifies459

the overall average range accuracy while the RMSE is indicative of the range precision. The460

yellow distribution was generated by repeating the Monte Carlo experiment twice, both times461

with the same ground truth curve, and it reflects the intrinsic range variations due to statistics462

in the depth dose profiles.463

The upper right panel of figure 10 shows the mean relative range difference obtained when464

performing the Monte Carlo experiment in a region of interest, ROIexp, while optimising the CT-465

RSP curve based on another, ROIopti (see section 2.12). The diagonal elements in the graphic466

correspond to the case when the imaged area corresponds to the treated volume. On the other467

hand, for combinations such as ROIexp = 1 and ROIopti = 4 (see figure 9, left), there is no overlap468

between the imaged and the treated volume. The lower panels show the RMSE for the control469

experiment (left) and the optimised vs. ground truth runs (right). The fact that the RMSE470

tends to be slightly higher when the Monte Carlo experiment was performed in a relatively471

heterogeneous region (e.g. ROI 9) is in line with the remark in section 2.11 concerning the472

robustness of the 80% fall-off test. Overall, the RMSE associated with the optimised CT-RSP473

curves is less than 0.3% higher than the RMSE in the control run.474

Figure 11 shows the mean relative range accuracy and the RMSE (as error bars) resulting475

from the Monte Carlo experiment using the optimised CT-RSP curves based on DRRs calculated476

with the three beam models (see section 2.7). We performed both, the optimisation and the477

Monte Carlo experiment, in the same nine regions of interest shown in the left panel of figure 9.478

The RMSE is only slightly larger than the RMSE of the control run (ground truth vs. ground479

truth; not shown), i.e. it is mainly due to Monte Carlo statistics and variation of the range480

retrieved by means of the 80% fall-off criterion (see section 2.11). Overall, the Gaussian beam481
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Figure 10: Upper left: example distribution of relative range differences obtained from the Monte
Carlo experiment (see section 2.11). Upper right: Mean relative range difference between true
and predicted range using different regions of interest for the optimisation and the Monte Carlo
experiment (see section 2.11). Lower panels: RMSE in control experiment (left) and between
true and predicted range (right).

Figure 11: Mean relative range accuracy obtained in the Monte Carlo experiment (see sec-
tion 2.11). The CT-RSP curves were optimised for the nine regions of interest shown in figure 9
left and using DRRs calculated with three different beam models (see section 2.7).
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model with fixed beam size seems to introduce a slight overestimation of the proton range. The482

other two beam models, on average, reproduce the ground truth range faithfully to within 0.2-483

0.5%. Whether or not the minimal positive bias observed with the variable FHWM model is484

statistically significant appears difficult to establish based on the nine data points.485

4 DISCUSSION486

In the presented work, we introduced methods for the patient-specific calibration of the CT-RSP487

conversion curve based on proton radiography, with a special regard to proton imaging set-ups488

which combine pencil beam scanning with a position-insensitive range telescope. Our results489

demonstrate that the optimisation of a piecewise linear conversion curve needs to be regularised490

because it otherwise leads to unrealistic variations in the optimised curve. The advantage of a491

quadratic norm is that the regulariser terms can be easily combined with the data attachment492

term keeping the optimisation computationally very feasible. With the proposed procedure493

to select the relative weights of the regulariser terms, the variation in the optimised curve494

corresponds to that observed in the stoichiometric curve used as reference.495

Our results show that the main reason for the need to regularise the cost function is linked496

to the correlation among the parameters Rα of the CT-RSP conversion curve, which in turn is497

strongly influenced by the beam size (figure 6). In a wider phantom than the one considered in498

this work, scattering becomes more important leading to increased correlation and potentially499

poorer optimisation results unless more strongly regularised. In case of a pin-like pencil beam, for500

example, the non-regularised optimisation yielded almost the same result as the regularised one501

(figure 5). This explains why Collins-Fekete et al. (2017), who investigated the patient-specific502

CT-RSP calibration based on proton radiographies acquired with single tracking set-ups, did503

not encounter similar problems: the integration in their case is performed along an estimate of504

individual proton trajectories with very thin uncertainty envelopes around them and the degree505

of parameter correlation is expected to be even smaller than with a pin-like pencil beam in our506

case. On the other hand, the set-up used by Doolan et al. (2015) detects many protons at the507

same time, as in our case, yet delivered in a passive field rather than by pencil beam scanning.508

Parameter correlation is therefore expected to be even stronger because the effective beam size509

is larger. The authors did not report any variation in the optimised CT-RSP curves, such as510

seen in figure 3, although they did not regularise the optimisation. The reason is probably that511

they overrode HU values to a single value in each organ making the phantom geometry much512

more homogeneous. They furthermore excluded heterogeneous regions prone to range mixing.513

We remark that such a region-wise homogenous RSP map might potentially over-simplify the514

patient geometry.515

We note that the way of parametrising the CT-RSP curve has an impact on the correlation516

between parameters and thus on the need to regularise the optimisation. Figure 4 shows that no517

regularisation might be required when using relatively few HU intervals. On the other hand, the518

CT-RSP curve has then less granularity to resolve intra-patient tissue variability. In practice, a519

reasonable option would be to choose the HU intervals in accordance with the parametrisation of520

the clinical lookup table, possibly with some additional intervals for more granularity. The way521

of interpolating between HU intervals is also expected to affect the optimisation outcome. In522

our case, neighbouring Rα values are intrinsically anti-correlated because the linear segments are523

assumed to form a continuous conversion curve. This is seen from the negative entries below and524

above the diagonal of the correlation matrix in figure 6. Alternative parametrisations include525

a piecewise linear interpolation without the constraint of continuity at the intervals boundaries526

or a piecewise constant conversion curve which assigns the same RSP value to all voxels whose527

HU values fall in the same interval. In the latter case, the Rα parameters would be correlated528

only through the projection operation and consequently less variation would be expected in529

the optimised conversion curve even without regularisation. We remark that such a piecewise530
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constant conversion curve assigns the same RSP value to all voxels whose HU values fall in the531

same interval and is therefore similar to segmenting the CT image into homogeneous material532

regions as in (Doolan et al. 2015). Investigating the impact of different kinds of interpolation533

was beyond the scope of this work.534

Among the three projection models used in our work, the Monte Carlo based one (sec-535

tion 2.7.3) takes the scattering processes into account most accurately through the physics536

models implemented in the code. In line with this, differences between the pDRR obtained with537

the Gaussian projection model with scattering and the Monte Carlo projection are mainly visible538

in heterogeneous regions and along the outer perimeter of the patient’s head (figure 8, right)539

where proton scattering has the greatest impact on the projected image. In the left panel of540

figure 8, the resulting optimised CT-RSP curve differs from the one obtained with the analytical541

beam model in its shape, but both lie within 3-5% of the ground truth curve. In terms of range542

accuracy (figure 11), our results suggest that the simple Gaussian beam model with a fixed beam543

size might lead to an overestimation of up to about 1%. The other two models reproduce the544

ground truth range expectation to 0.2-0.5% accuracy on average. Among the two, the Monte545

Carlo beam model seems to be slightly preferable over the variable FWHM Gaussian model,546

although we cannot deduce whether this observation is statistically significant. At the moment,547

the latter is much faster (< 1 min) to calculate thanks to our GPU implementation compared to548

the former (order of hours) which currently runs on single CPU only, although these technical549

issues could be improved in the future.550

Remapping the HU values h in the CT voxels to coefficient vectors ~w (section 2.6) allowed551

us to separate the projection operation from the actual optimisation. This is particularly useful552

when using a cost function that requires iterative minimisation. We emphasise that the remap-553

ping can be used with proton radiographies acquired by any kind of set-up. For example, when554

using a single tracking proton scanner (Collins-Fekete et al. 2017), the projection operation to555

construct the pDRR (section 2.7) would be performed by integrating the wijk,α matrices along556

the estimated most likely path of every detected proton.557

In our Monte Carlo experiment, the range accuracy achievable with patient-specific conver-558

sion curves optimised using the methods presented here was well below 1%. Whether or not the559

imaged region-of-interest is chosen in accordance with the treated volume did not systematically560

impact the range accuracy. This statement only refers to the optimisation process itself and561

does not take into account possible local variability in the tissue composition.562

We chose to perform our study entirely in Monte Carlo because it allowed us to define a563

ground truth CT-RSP conversion curve. This approach is idealised in one regard: In reality, no564

one-to-one correspondence exists between the HU and RSP of the patient tissue. Our ground565

truth scenario is therefore an approximation because we generate the RSP map through a one-to-566

one conversion process. Studying the impact of the tissue composition on range accuracy could567

be achieved by modelling the expected tissue variation (Yang et al. 2010, Möhler et al. 2016,568

Wohlfahrt et al. 2017) and perturbing the converted RSP value in each voxel. We emphasise that569

this was not the scope of this work. It should also be noted that the patient-specific CT-RSP570

calibration based on proton radiography cannot solve the issue of tissue variability within one571

patient because it intrinsically relies on a conversion curve. Only a full volumetric proton CT572

image would provide a voxel-wise RSP value and thereby circumvent the conversion process.573

5 CONCLUSION574

We developed a series of methods to perform a patient-specific calibration of the HU to RSP575

conversion curve based on proton radiography. We introduced a regulariser term in the cost576

function and showed that this is necessary to avoid unrealistic variation in the optimised curve.577

The main reason is the correlation between the parameters of the piecewise linearly interpolated578

CT-RSP curve and the effect is more pronounced with larger beam size. We performed Monte579
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Carlo experiments and obtained a range accuracy of better than 0.5%. Our results further in-580

dicate that from the point of view of the optimisation procedure, no systematic loss of range581

accuracy is probably to be expected if the imaged region of the patient does not correspond to582

the treatment volume. This work underlines that it is possible to perform a patient-specific cal-583

ibration of the CT-RSP conversion curve on the basis of a single proton radiographic projection584

acquired with a detector typically available in a treatment facility.585
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