
HAL Id: hal-02023805
https://hal.science/hal-02023805

Submitted on 18 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Virtual Prototyping for Embedded Computing
Systems Design and Exploration

Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, Nicolas
Ventroux

To cite this version:
Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, Nicolas Ventroux. Fast Virtual Pro-
totyping for Embedded Computing Systems Design and Exploration. RAPIDO2019 - 11th Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools, Jan 2019, Valence, Spain.
pp.1-8, �10.1145/3300189.3300192�. �hal-02023805�

https://hal.science/hal-02023805
https://hal.archives-ouvertes.fr

Fast Virtual Prototyping for Embedded Computing Systems
Design and Exploration

Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas and Nicolas Ventroux
Computing and Design Environment Laboratory

CEA, LIST
Gif-sur-Yvette CEDEX, France

firstname.surname@cea.fr

ABSTRACT

Virtual Prototyping has been widely adopted as a cost-
effective solution for early hardware and software co-validation.
However, as systems grow in complexity and scale, both the
time required to get to a correct virtual prototype, and
the time required to run real software on it can quickly be-
come unmanageable. This paper introduces a feature-rich
integrated virtual prototyping solution, designed to meet
industrial needs not only in terms of performance, but also in
terms of ease, rapidity and automation of modelling and ex-
ploration. It introduces novel methods to leverage the QEMU
dynamic binary translator and the abstraction levels offered
by SystemC/TLM 2.0 to provide the best possible trade-offs
between accuracy and performance at all steps of the design.
The solution also ships with a dynamic platform composition
infrastructure that makes it possible to model and explore a
myriad of architectures using a compact high-level descrip-
tion. Results obtained simulating a RISC-V SMP architecture
running the PARSEC benchmark suite reveal that simulation
speed can range from 30 MIPS in accurate simulation mode
to 220 MIPS in fast functional validation mode.

1 INTRODUCTION

To keep up with a fast-evolving and highly competitive em-
bedded system industry, designers are compelled to deliver
complete working solutions under tight delay and budget
constraints. To make this possible, hardware architectures,
as well as the full software stacks that drive them should be
validated and optimized as early as possible in the design
process. In this context, Virtual Prototyping has been widely
adopted as a cost-effective solution for early hardware and
software co-validation.

The rapid adoption of virtual prototyping solutions was
greatly facilitated by the emergence of the SystemC/TLM

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

RAPIDO ’19, January 21–23, 2019, Valencia, Spain

© 2019 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/3300189.3300192

2.0 standard [1], which, in addition to offering interoper-
ability and reusability of SystemC models, provides several
abstraction levels to cope with varying needs in accuracy and
speed. More recently, in response to an increasing demand
for simulation speed, the use Dynamic Binary Translation
(DBT) for CPU modelling has gained in relevance [17], [20],
[10], and has effectively set a new standard for simulation
performance in early prototypes.

However, as systems grow in complexity and scale, it is
now more vital than ever that virtual prototyping solutions
be able to wisely exploit these technologies to offer proper
balance between simulation representativeness and execution
speed throughout the design process. Moreover, at this level
of complexity, the time required to model and explore new
architectures can quickly become unmanageable, especially
at the earliest stages, where it is often necessary to make
heavy alterations before reaching a stable prototype.

To cope with these new difficulties, virtual prototyping
solutions need to meet new requirements not only in terms
of performance, but also in terms of ease, rapidity and au-
tomation of system modelling and design space exploration.
This paper introduces VPSim, a feature-rich integrated vir-
tual prototyping solution that addresses the aforementioned
challenges based on three major contributions:

∙ A new way of integrating the QEMU emulator, making
its rich CPU and peripheral model portfolio available
as a collection of SystemC modules. Our method can
leverage the technologies used in QEMU, such as Dy-
namic Binary Translation (DBT) and paravirtualiza-
tion to bring outstanding simulation speeds into the
more deterministic and standardized SystemC domain.

∙ An Accuracy Control framework, that can be used to
define regions of interest in both the software and the
simulated hardware dynamically. A system designer
can therefore enable accurate simulation only on parts
of the design and portions of code that are of inter-
est, guaranteeing the best possible trade-off between
performance and accuracy given specific needs.

∙ A generic and powerful infrastructure for dynamic
platform composition and design space exploration
(DSE). It allows a single compiled executable to be used
to model an infinity of architectures. Combined with
a Python scripting front-end, it makes it possible to
simulate, explore and optimize highly complex systems
in a single compact script.

https://doi.org/10.1145/3300189.3300192

RAPIDO ’19, January 21–23, 2019, Valencia, Spain A.Charif, G.Busnot, R.Mameesh, T.Sassolas, N.Ventroux

The remainder of this paper is organized as follows: In Sec-
tion 2, we review some related tools and methods. Section
3 provides a complete high-level view of the features and
capabilities of the VPSim tool. In Section 4, details on the
underlying implementation challenges are presented. The
performance of our tool is evaluated in Section 5, before
concluding in Section 6.

2 RELATED WORKS

The first generation of Virtual Prorotyping (VP) solutions
used functional Instruction Set Simulators (ISSs) with more
or less internal low-level details such as pipeline stages.
Among such solutions, GEM5 [7, 16] is a discrete-event
simulator able to dynamically switch between different ab-
straction levels. Detailed CPU models with full pipelining
description can be simulated at 0.1 Million Instructions Per
Second (MIPS), whereas instruction-accurate CPU models
can reach 1MIPS. Other MPSoC modeling environments,
such as SESAM [24] or Unisim [3] used instruction-based ISS
generation librairies to support the modeling of various CPUs,
reaching approximately 10MIPS. However, this accuracy and
ISA flexibility come at the cost of limited simulation speed,
which hampers their capacity to address complex systems
embedding several CPUs and running full-fledged OSes.

To address this complexity, a recent trend is the use of
Dynamic Binary Translation (DBT). DBT consists in dy-
namically translating instructions of the modeled ISA (guest
instructions) to host ones (usually x86), whenever needed
during guest code execution, yielding very high execution
speeds.

Today, all high-performance simulation environments use
DBT. Industrial solutions are led by solutions like Virtualizer
[25], Vista [19], VPS [18], VLAB [26], FastModels [20] or, for
instance, Simics [22]. However, these come at a significant
cost and do not offer the degree of customization that is
required when designing new architectures. In addition, they
do not provide fast design space exploration capabilities.

Amongst open-source virtual platforms, OVP [17] uses
processor models simulated through a closed-source DBT
engine named OVPSim reaching hundreds of MIPS. An OVP
model can be wrapped for inclusion in a SystemC model
using TLM 2.0 interfaces. However, OVPSim cannot provide
performance evaluation as the models are timed relying on
instruction count and neglecting memory access timings.
In addition, OVP claims to support parallel multiprocessor
simulation but this is at the cost of deterministic execution
loss.

QEMU [4] is an open source DBT based emulator support-
ing many CPU models but does not provide performance
estimation. Several works have tried to embed QEMU within
a SystemC simulation environment to provide both deter-
minism and timing evaluation [15]. In [15], the authors wrap
QEMU processors within SystemC threads and investigate
several QEMU instrumentation options to take into account
instruction count and data access latency. Depending on
whether synchronization shall occur on every data access

or on a periodic basis, the simulation speed varies from
3 to 60MIPS. However, the cumbersome annotation is to
be performed for every ISA and possible accuracy settings
are limited to a few predefined configurations. GreenSocs
[10, 12, 13] propose a QEMU-based framework that exploits
QEMU MMIO callback mechanisms to access external Sys-
temC peripherals. This allows for very fast simulation for
applications with few IO communications, as the execution
mostly takes place in the context of QEMU. Unfortunately,
this solution runs QEMU and SystemC in separate kernel
threads, requiring frequent synchronization and precluding
determinism.

The solution we propose integrates QEMU by execut-
ing its CPU and peripheral models in the context of Sys-
temC threads, thereby preserving the predictability of Single-
Threaded SystemC simulation. The accuracy of memory
accesses, including instruction fetches, can be configured at
a very fine granularity, and may change dynamically during
simulation.

3 A USER-LEVEL VIEW OF VPSIM

VPSim is a key asset in charge of virtual prototyping and DSE
within SESAM, an integrated EDA framework for complex
electronic systems ranging from Cyber-Physical Systems to
Microservers. SESAM provides a holistic environment to ad-
dress HW/SW co-design, exploration and validation through
Virtual Prototyping, HW prototyping and emulation while
taking into account power, temperature and reliability factors.
This section provides a high-level view of the major features
and capabilities of VPSim as perceived by the end-user.

VPSim is a tool that was designed specifically to accelerate
software/hardware co-validation at the earliest design stages
of all kinds of computer architectures. It can be used to easily
compose, simulate and explore new hardware architectures,
but also to run, profile and debug full software stacks on the
simulated platforms.

Figure 1 gives a global overview of how VPSim can be used.
The user specifies a platform using a platform composition
front-end, which forwards a high-level platform description
to a central VPSim object named the Platform Builder. The
Platform Builder uses this description, and a library of regis-
tered components to construct and run a SystemC simula-
tion. Components can be either internal hardware models, or
Proxy Components for interfacing with external subsystems.
VPSim loads software binaries through the ElfLoader and
BlobLoader special components. Once the SystemC simula-
tion is launched, the user can use standard debugging tools
or VPSim’s built-in debug and profiling utilities, to evalu-
ate and optimize their software. VPSim collects fine-grained
per-components statistics and pushes them back to the high-
level front-end, which may use them to present performance
profiles to the user or to perform design space exploration.

VPSim is also capable of operating as merely one compo-
nent of a wider Cyber-Physical System (CPS) simulation,
in compliance with the Functional Mockup Interface (FMI)
co-simulation standard [8]. In this mode, VPSim is packaged

Fast Virtual Prototyping for Embedded System Design and Exploration RAPIDO ’19, January 21–23, 2019, Valencia, Spain

Figure 1: An Overview of the VPSim Platform.

as a Functional Mockup Unit (FMU), that can be loaded by
an FMI simulation master. This makes it possible to evalu-
ate the cyber part of a cyber-physical system (modelled in
VPSim) along with its surrounding physical environment.

3.1 Component library

VPSim includes a large library of CPU models, buses and pe-
ripherals to chose from. Common controllers such as UART,
I2C and SPI, PCI-Express from various vendors (Xilinx,
Renesas, Cadence, etc.) are modelled in VPSim. Network,
block devices and GPUs are also made available through
Paravirtualization [21]. All the components that are instanti-
ated in VPSim are fully standard-compliant SystemC/TLM
2.0 modules. CPU and Virtio models are made available to
the SystemC world through a new approach for integrating
QEMU into SystemC, which will be described in Section 4.

To further broaden its range of supported models, VPSim
provides proxy components. These components are able to
load and connect SystemC/TLM 2.0 initiator and target
subsystems from any third-party EDA vendor to the system
described in VPSim. The external subsystem is separately
compiled in a shared library that implements simple glue
functions. Through this interface, VPSim can seamlessly
integrate CPU models such as the ARM Fast Models [20],
OVP (Open Virtual Platforms) CPUs [17] or QBox [10].

3.2 Composition and Exploration

To enable truly rapid prototyping of complex architectures, it
is not enough for simulations to be fast. The time required to
fully describe an architecture, configure it, modify it is also
of critical importance to designers and software developpers.

Most related tools employ a common scheme, wherein
the platform’s top is written in SystemC, either manually
or generated using a Graphical User Interface, and then
compiled. Later on, the configuration of the simulation is
usually described in a higher level language such as Lua [10].

VPSim adopts a different philosophy: Compilation shall
take place only once, and the whole simulation, including
the platform to be simulated, the applications to be run,
and the configuration, shall be described using a dynamic

front-end. The benefits of this approach are manyfold. For
instance, changes in the simulated architecture do not require
recompilation. This is a true game changer at early design
phases, where it is very common to make adjustments in
the architecture itself. Also, the ability to describe the sys-
tem hierarchy along with the components’ configuration in
the same environment removes the need to create a custom
configuration file format for every new platform.

VPSim also provides the front-end with fine-grained simu-
lation statistics, making it possible to perform both platform
specification and Design Space Exploration within the same
environment. VPSim communicates with the front-end using
the XML markup language, as described in Section 4.3.

By default, VPSim ships with a Python-based composition
and exploration front-end, detailed in Section 4.4. Note that
unlike other tools that use high-level description languages,
e.g. GEM5 [7], VPSim is not tighly linked to its Python
interface, nor does it know about its existence. By using
XML, which is a standardized data exchange format, many
new interfaces can be developped for VPSim according to
specific needs. In addition, it makes it much easier to couple
VPSim with existing XML-capable tools.

3.3 Debug facilities

A decisive factor in the usefulness of any virtual prototyping
tool is its ability to inspect and help understand the behaviour
of the system under evaluation. VPSim offers debug and
control capabilities out of the box. These are described in
what follows.

3.3.1 Standard tool support. VPSim makes it possible to
debug individual CPU cores in the system using GDB. Each
CPU core in the system has a gdb enable attribute which,
when set to True, enables a GDB session to control and debug
the code it executes.

3.3.2 The VPSim Monitor. The system designer interacts
with VPSim through a command line interface named the
“VPSim Monitor”. At any point during the simulation, the sys-
tem can be frozen using a key stroke, bringing up a command
prompt. Through the Monitor, the user can inspect/alter
the memory and register contents, but also reconfigure the
entire simulation. For instance, it is possible to change the
debug level of any component in the system to enable more
or less debug information for the rest of the simulation. It
is also possible to create watches on specific address ranges
to monitor memory accesses, and possibly manually override
the read/written values.

3.3.3 Dynamic Checkpointing. When inside the VPSim
Monitor, it is possible to create one or several named check-
points. Then, at anytime during the rest of the simulation,
it is possible to roll back to the named checkpoint to inves-
tigate the cause of bugs. When a checkpoint is created, the
entire user process is copied using the fork() system call.
The parent process then sleeps and waits for a wakup signal.
Rolling back to the checkpoint simply consists in terminating
the current process after waking up the correct parent. The

RAPIDO ’19, January 21–23, 2019, Valencia, Spain A.Charif, G.Busnot, R.Mameesh, T.Sassolas, N.Ventroux

list of checkpoints and their associated process IDs is trans-
ported with each rollback to make sure that all checkpoints
are accessible from any process instance. This non-intrusive
approach has several advantages. Unlike [14], our method
does not require implementing a checkpointing method for
each individual component, nor does it introduce changes to
the SystemC kernel. Since it operates on the entire process, it
works even with closed-source SystemC modules. Compared
to other methods that use snapshots of the entire process,
such as [11], our method can operate fully in-memory, with-
out having to save images to disk. This makes rolling back to
checkpoints created within one same simulation much faster
than [11], where several seconds are necessary to store and
load the snapshots.

3.4 Profiling and Performance Evaluation

Unless otherwise specified in global simulation parameters,
VPSim attempts to run the target software as fast as possible.
That is, most accesses to main memory will be emulated in a
fast, untimed fashion based on the Direct Memory Interface
(DMI) of TLM components. This mode of operations greatly
eases and accelerates the functional validation and debugging
phases. However, when optimizing the target software, it
would also be helpful to get detailed information about its
execution, such as cache usage and network latency.

One specificity of VPSim is its ability to dynamically define
regions of interest, in both the software and the hardware.
These regions of interest are simulated more precisely, i.e. bus
accesses, caches, and other transactions are fully modelled.
This helps provide a performance profile for a specific portion
of the executed code.

The user can describe the beginning and end of the software
region of interest dynamically (during execution), or statically
(in global parameters). The hardware components that need
to be precisely simulated can also be designated by the user.
One common usage is when profiling a Linux user-space
application. In such cases, the Linux boot phase is of little
interest and can be quickly skipped through in untimed mode.
VPSim then switches to a more accurate simulation mode
once the user application is entered.

At the end of the software region of interest, statistics from
all the simulated components are registered and displayed
to the user (e.g. cache miss rate, network latency, executed
instructions, etc.). This fine-grained control over the simula-
tion’s accuracy allows the user to make the best trade-offs
between simulation speed and accuracy given their specific
needs, which may evolve from one design phase to another.

4 KEY TECHNICAL CONTRIBUTIONS

In this section, we describe the key technical contributions
that we made to enable all the features presented so far.

4.1 QEMU in VPSim

QEMU is one of the leading Dynamic Binary Translation
(DBT) -based emulation solutions to date [4]. In addition
to unmatched execution speeds, QEMU supports a wide

Figure 2: QEMU integration in VPSim.

range of virtualized and paravirtualized hardware models,
including most of the existing CPU architectures, and many
peripherals.

Methods for leveraging QEMU in a SystemC simulation
environment have been extensively explored [12], [13], [10],
[15], [23], [9]. Some of these methods view QEMU as merely an
Instruction Set Simulator (ISS), while others make it possible,
in addition to CPU clusters, to model complete subsystems
within QEMU, and some peripherals in SystemC [10]. In the
latter approach, accesses to the peripherals modelled within
QEMU are not visible to the outter SystemC world.

VPSim adopts a different approach. In VPSim, all CPUs
and peripherals must implement a common consistent inter-
face and be executed in the SystemC context. This is key
to guaranteeing a certain level of predictability, inspectabil-
ity and compatibility with VPSim’s debugging and profiling
tools. Therefore, in VPSim, models that are backed by QEMU
can be instantiated, configured, and controlled in the same
way as native components. For instance, the VirtioNet and
VirtioBlk components, which are backed by virtio-net and
virtio-blk devices in QEMU, can be instantiated, mapped
to any address, connected to any interrupt line in VPSim.
Accesses to these peripherals, as well as the interrupts they
generate, are all visible and debuggable through the VPSim
Monitor, for instance.

In our approach, no IO accesses are served within QEMU.
Instead, all accesses are visible to the SystemC world and
completed by SystemC models. Accesses to RAM (fetches
and data) can be completed in QEMU for efficiency, but only
if the target Memory module has a Direct Memory Interface
(DMI) as per the SystemC/TLM 2.0 standard. QEMU’s CPU
execution thread and IO thread are both executed in the
context of SC THREADs and SC METHODs, making simulations
more predictable and controllable. In the absence of external
input (Network, Keyboard, etc.), simulations in VPSim are
deterministic and guaranteed to be repeatable.

While transparent to the user, internally, VPSim maintains
a number of QEMU instances, as shown in Figure 2. Each
QEMU instance may be used to instantiate CPUs of the
same model, plus any number of peripherals. These models
are then associated to proxy VPSim components, which are
exposed to the user like any other components.

Fast Virtual Prototyping for Embedded System Design and Exploration RAPIDO ’19, January 21–23, 2019, Valencia, Spain

4.2 Dynamic Accuracy Control

In the SystemC/TLM 2.0 standard, some memory-mapped
modules may have a DMI (Direct Memory Interface). That is,
it is possible to get a pointer to their internal memory space,
and access it directly, without simulating the entire TLM
transaction. QEMU in VPSim makes good use of this feature
by declaring all DMI regions as RAM regions [2], thereby
enabling ultra-fast inline accesses to main memory.

However, to enable the accurate simulation mode presented
in Section 3.4, it is necessary to perform the full TLM trans-
actions. Components in VPSim possess a DMI OK flag, which
is active by default. When set to false, the component will
issue a DMI invalidation request for its address range. Op-
tionally, only a subset of the entire a accessible range can
be invalidated. This propagates the invalidation request up-
stream and will force the upstream component to initiate full
TLM transactions for the invalidated range. The upstream
component then sets its own DMI OK flag to false, which will
provoke the invalidation of its own accessible address space
by its upstream initiator, and so on until the root of the
device tree is reached.

VPSim can take TLM transactions only as far as necessary
to get the desired level of accuracy. For instance, if the user
disables the DMI OK flag only on a Cache component, VPSim
only makes sure that TLM transactions get to the designated
Cache component, which then completes memory accesses
using DMI pointers to the final targets. VPSim’s Component
interface automatically manages these pointers internally and
is able to use them to complete a transaction when eligible.

In VPSim, components take the port from which these
invalidation requests are received into account. Therefore, a
Component may force TLM accesses only on specific ports,
while allowing fast DMI simulation on the rest of the device
tree. This is extremely useful when only part of the memory
hierarchy is of interest. For instance, forcing TLM accesses
on the instruction cache component will only force blocking
TLM transactions from QEMU when fetching instructions,
while data accesses remain unaffected.

4.3 Platform Builder

At the core of the dynamic platform composition presented
in Section 3.2, is a central VPSim object named the Platform
Builder. The Platform Builder interacts with a composition
front-end, such as the Python frond-end presented in Section
4.4, and has three roles:

First, it communicates to the front-end the structure of
the platform description document that it expects. Currently,
VPSim supports platform descriptions in XML format. There-
fore, the Platform Builder automatically generates, from the
list of self-registered Components, an XML Schema Document
(XSD) that describes the structure of the expected XML doc-
ument. This document also includes information about all
the available components in VPSim and their attributes. The
front-end should use this Schema to present the components
to the user. A GUI front-end might display them as boxes
that can be connected to each other, for instance. The Python

frond-end presented in Section 4.4 uses the Schema to dy-
namically generate Python classes corresponding to each
component.

Second, upon receiving an XML document from the front-
end, it elaborates and configures the specified platform. Plat-
form elaboration takes place in three phases:

∙ Make: During this phase, all the components of the
platform are instantiated and initialized. The Plat-
form Builder checks whether all the required attributes
were specified, sets the specified attributes, and assigns
defaults when applicable.

∙ Connect: All connections between components that
were specified in the platform description are realized.
The availability and compatibility of the connected
ports are checked during this phase.

∙ Finalize: The Platform Builder sets some Platform-
wide parameters as specified in the input XML doc-
ument, and, more importantly, invokes a finalize

callback that Components may implement to perform
finalization actions after all the platform has been elab-
orated.

Finally, at the end of a simulation, the Platform Builder
collects per-component statistics and forwards them back to
the front-end in an XML document. The front-end may use
these statistics to build performance profiles, or for architec-
tural exploration.

4.4 The Python front-end

The default and preferred front-end in VPSim uses the
Python language. With this front-end, VPSim strives to
provide a dynamic platform composition environment that
is compact, intuitive, but also expressive enough to allow
detailed platform configuration and description.

To illustrate with an example, Listing 1 shows how a 4-core
ARMv8 Platform capable of booting the Linux operating
system is described and simulated in VPSim. A simulated
system is represented by the System class. Each component

is represented by a corresponding Python class, e.g. Memory,
Bus, etc. The attributes of each component can be either
specified in the constructor for compactness (see Listing 1,
Line 9), or as regular class members (see Listing 1, Line
3). This makes it possible to set or modify some attributes
programmatically. Of course, each of these components has
many more attributes that can be configured. When omitted,
VPSim sets them to sensible defaults. Some relationships
between components can also be inferred automatically. For
instance, since the GIC400 (Generic Interrupt Controller) is
the only interrupt controller in the system, it is automatically
connected to the interrupt lines of the UART and the ar-
chitected timers of the CPUs. Calling the simulate method
interprets the entire system and launches a simulation. At
the end of the simulation, per-component statistics are re-
turned in a Python dictionary object. This model allows for
as much expressiveness and modelling freedom as one would
get writing a Top in SystemC. In addition, we get all the
dynamicity, compactness and power of the Python language.

RAPIDO ’19, January 21–23, 2019, Valencia, Spain A.Charif, G.Busnot, R.Mameesh, T.Sassolas, N.Ventroux

1 from vpsim import *

2

3 class ExampleSystem (System) :

4 def i n i t (s e l f) :

5 System . i n i t (s e l f , ’MyExample ’)

6

7 s e l f . sysbus = Bus (l a t ency=10*ns)

8

9 ram = Memory(base=0x10000000 , s i z e=1*GB)

10 s e l f . sysbus >> ram

11

12 rom = Memory(base=0x00000000 , s i z e =100*KB)

13 rom . i s r e a d on l y = True

14 s e l f . sysbus >> rom

15

16 s e l f . sysbus >> GIC400 (base=0xf f000000)

17

18 s e l f . sysbus >>

19 CadenceUART(base=0xfe000000 , i r q=0x70)

20

21 for i in range (4) :

22 cpu = Arm64(id=i , model=’ cortex−a57 ’)

23 cpu . r e s e t p c = rom . base

24 cpu (’ i c ache ’) >> s e l f . sysbus

25 cpu (’ dcache ’) >> s e l f . sysbus

26

27 BlobLoader (o f f s e t=rom . base ,

28 f i l e=’u−boot . bin ’)

29 BlobLoader (o f f s e t=ram . base ,

30 f i l e=’ example . dtb ’)

31 BlobLoader (o f f s e t=ram . base+0x80000 ,

32 f i l e=’ Image ’)

33

34 i f name == ’ ma in ’ :

35 sys = ExampleSystem ()

36 sys . addParam(param=”quantum” , va lue=1000*ns)

37 s t a t s = sys . s imulate ()

Listing 1: Simulating a quadcore ARMv8 System
running Linux in VPSim

The Python front-end of VPSim was also designed with
rapid design space exploration in mind. Because several Sys-
tem instances can live within the same Python script, and
because simulation results are made available as Python ob-
jects, complete design space exploration can be performed in
one same script. To accelerate DSE, the Python frond-end
makes it possible to perform the simulations concurrently.
To do so, it is enough to call the simulate method with
a wait=False argument, to run simulations asynchronously.
This fully integrated approach saves the user from having to
write ad-hoc automation scripts for each new study.

5 EXPERIMENTAL SETUP AND
RESULTS

In this section, we describe the experimental setup and the
results obtained in terms of simulation performance.

5.1 Simulated platform and experimental
setup

All the experiments have been conducted on a RISC-V-based
simulated platform [6]. It is an SMP platform whose number
of cores ranges from 1 to 32, running Linux kernel 4.6.2 as
guest. Each simulated CPU has 32KB instruction and data
caches, and all cores share an L2 cache of 2 MB and 1 GB of
RAM.

This platform was simulated under VPSim on a i7-4770
host machine with 16 GB of RAM running Ubuntu 18.04 LTS.
We have checked that the CPU frequency remains stable at
3.9GHz under any load.

When driven by the Accellera SystemC simulation kernel,
VPSim is single-threaded and relies exclusively on single-
core performance. Simulation performance is never limited
by RAM, as less than 200 MB are used in any simulation
scenario. The simulations were executed one at a time inside
Docker containers based on Ubuntu 18.04 LTS. We have
verified that Docker has no significant impact on the runtime
performance of VPSim.

The simulated platform runs Linux with various bench-
marks from the PARSEC [5] suite: bodytrack, ferret, swap-
tions, blackscholes, fluidanimate and dedup. The standard
simmedium datasets were used. The execution sequence starts
with Linux boot, followed by the benchmark setup, warmup,
the benchmark’s Region of Interest (ROI), teardown and
finally, the platform’s shutdown. Simulation time starts when
the sc start function is called and ends when the kernel
sends the poweroff signal. Platform elaboration time is negli-
gible with respect to the duration of a simulation.

Depending on the experiment, four accuracy modes are
used:

(1) DMI: this is the fastest mode where as many transac-
tions as possible are completed using DMI.

(2) L1-ROI: DMI is used everywhere except in the ROI for
transactions initiated by CPU 0. In that case, TLM
transactions reach the L1-caches, which then complete
the requests using DMI.

(3) ACCURATE-ROI: DMI is used everywhere except in the
ROI, where blocking TLM is used.

(4) ACCURATE: this is the most accurate mode where all
memory accesses are modelled and timed using blocking
TLM transactions.

ACCURATE-ROI mode is as accurate as ACCURATE mode dur-
ing the ROI, which is likely to be what the user is focusing
on in a real world application. L1-ROI mode gives accurate
information about the L1-caches of a single core during the
ROI. In cases where the platform and the benchmarks are
symmetric in terms of executed code, the behaviour of one
core with respect to caches is likely to be representative of
the rest.

The number of MIPS and the real simulation time are col-
lected at the end of each simulation. A total of 3 experiments
are conducted:

Fast Virtual Prototyping for Embedded System Design and Exploration RAPIDO ’19, January 21–23, 2019, Valencia, Spain

(a) (b)

(c) (d)

Figure 3: (a) MIPS and real simulation time for various benchmarks on a single-core platform running Linux.
(b) MIPS and real simulation time for the fluidanimate benchmark with 1 to 32 cores. (c-d) Speedup with
various simulation accuracy levels compared to ACCURATE mode on a quad-core platform.

(1) The first experiment only uses the single-core version
of the platform and runs all the benchmarks to assess
the performance of the simulator in DMI mode.

(2) The second experiment focuses on the fluidanimate

benchmark and simulates it on platforms composed of
1, 2, 4, 8, 16 and 32 cores in DMI mode. It shows the
effect of platform complexity on VPSim.

(3) The third experiment shows the effects of the various
levels of accuracy on different PARSEC benchmarks.

5.2 Simulation results and performance

In Figure 3a, the raw performance of VPSim in fast DMI mode
on a single-core simulated platform can be observed. The
speed ranges from 121 to 219 MIPS and the real simulation
time from 31 to 193 seconds. The Linux boot and shutdown
processes take approximately 14 seconds. The difference in
observed performance mainly comes from varying benchmark
profiles and the way this impacts QEMU. Indeed, QEMU
performance can be hampered by conditional jumps or mem-
ory accesses requiring the use of the software MMU. However,

these factors are hard to predict and there is no clear cor-
relation between, for instance, the frequency of load/store
instructions of a benchmark and the speed at which it can
be simulated.

In Figure 3b, the effect of platform complexity on MIPS
and real simulation time is reported. While there is a slight
drop in MIPS between the single and dual-core platforms,
the speed remains in the noise margin up to 32 cores. This
was expected as the overall simulation pattern remains the
same: a single core doing the work outside of the ROI and
all cores sharing the work inside the ROI. However, the real
simulation time increases almost linearly with the number of
cores. This can be explained by the sequential simulation of
all cores, which introduces extra overhead in single-threaded
phases (e.g. boot, setup, etc.). By contrast, the time required
to simulate the ROI remains more-or-less constant, since a
fixed amount of computation is shared between all cores. As
a result, ROI simulation time becomes negligible compared
to the other phases, hence the linear increase in simulation
time.

RAPIDO ’19, January 21–23, 2019, Valencia, Spain A.Charif, G.Busnot, R.Mameesh, T.Sassolas, N.Ventroux

Figures 3c and 3d show the speedups obtained when vari-
able accuracy is applied. The reference speed for both MIPS
and real simulation time is the ACCURATE mode. It can be
observed that ACCURATE-ROI introduces a MIPS speedup
comprised between 1.3x and 1.5x with no loss in simulation
accuracy in the ROI. The only slight difference that occurs
resides in the cold caches at the beginning of the ROI. How-
ever, if the ROI is big enough, this effect is negligible. Also,
simulating the caches while not recording the statistics dur-
ing the first steps of the ROI could mitigate this inaccuracy.
The MIPS speedup obtained with L1-ROI ranges from 3.9x
to 6.6x. In the context of cache performance evaluation on
a multithreaded application, this mode may be sufficient.
Indeed, if the application makes a comparable usage of all
cores and exhibits negligible data sharing, then there is no
need to simulate all caches.

The observation on real simulation time is comparable but
speedup is larger. It ranges from 2.1x to 9.2x for ACCURATE-ROI
and from 6.8x to 17.8x for L1-ROI. One particularly interest-
ing thing to note is the difference between these speedups and
the respective MIPS improvements. The reason resides in the
timing accuracy variations. When simulating with maximum
accuracy, all memory transactions are timed and participate
in the update of the internal SystemC time, which passes
faster than in DMI mode as a result. Consequently, all actions
triggered by timed interruptions occur more often. This con-
cerns several Linux routines such as thread scheduling, IO
polling, etc. This variation in the simulated instructions is
a side effect of the simulation accuracy changes. It plays in
favor of variable accuracy as simulations get even shorter.

6 CONCLUSIONS

This paper introduced several contributions. First, we pre-
sented an alternative approach to integrating the QEMU
emulator into SystemC. Our approach makes the CPU and pe-
ripheral models of QEMU available as TLM modules. One key
benefit is the ability to leverage QEMU’s high-performance
emulation technologies such as Dynamic Binary Translation
and Paravirtualization to boost simulation speed. Results
show speeds approaching 220 MIPS when simulating work-
loads on top of Linux. Then, we presented a method for
fine-tuning the simulation to get the best performance given
specific accuracy requirements. Our framework is based on
a clever use of the TLM 2.0 DMI specification. We exper-
imentally demonstrated that by focusing simulation effort
only on regions of interest, speedups of over 17x could be
achieved. Finally, we showed how it was possible to abstract
away all the complexity SystemC architecture modelling,
by introducing a sophisticated dynamic platform elabora-
tion infrastructure. By allowing designers to specify their
modelling and exploration needs at a higher level, hours of
development and compilation time can be saved. All of these
promising building blocks are integrated into a unique virtual
prototyping solution named VPSim.

REFERENCES
[1] TLM 2.0. 2018. Open SystemC Initiative (OSCI).

https://www.accellera.org/images/downloads/standards/

systemc/TLM 2 0 LRM.pdf
[2] QEMU Memory API. 2018. QEMU. https://github.com/qemu/

qemu/blob/master/docs/devel/memory.txt.
[3] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard,

D. A. Penry, O. Temam, and N. Vachharajani. 2007. UNISIM: An
Open Simulation Environment and Library for Complex Archi-
tecture Design and Collaborative Development. IEEE Computer
Architecture Letters (2007), 45–48.

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic
translator.. In USENIX Annual Technical Conference (ATEC).
Anaheim, CA, 41–41.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai
Li. 2008. The PARSEC Benchmark Suite: Characterization
and Architectural Implications. Technical Report TR-811-08.
Princeton University.

[6] Andrew Waterman et al. 2014. The RISC-V Instruction Set
Manual.

[7] Binkert et al. 2011. The gem5 simulator. ACM SIGARCH
Computer Architecture News 39, 2 (2011), 1–7.

[8] Blochwitz et al. 2012. Functional mockup interface 2.0: The
standard for tool independent exchange of simulation models. In
International MODELICA Conference (MODELICA). Munich,
DE, 173–184.

[9] Chiang et al. 2011. A QEMU and SystemC-based cycle-accurate
ISS for performance estimation on SoC development. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems 4 (2011), 593–606.

[10] Guillaume Delbergue et al. 2016. QBox: an industrial solution for
virtual platform simulation using QEMU and SystemC TLM-2.0.
In European Congress on Embedded Real Time Software and
Systems (ERTS). Toulouse, FR, 315–324.

[11] Kraemer et al. 2009. A checkpoint/restore framework for SystemC-
based virtual platforms. In International Symposium on System-
on-Chip (SOC). IEEE, Tampere, FI, 161–167.

[12] Monton et al. 2007. Mixed sw/systemc soc emulation framework.
In IEEE International Symposium on Industrial Electronics
(ISIE). Vigo, ES, 2338–2341.

[13] Montón et al. 2009. Mixed simulation kernels for high performance
virtual platforms. In Forum on Specification & Design Languages
(FDL). Munich, DE, 1–6.

[14] Màrius Montón et al. 2013. Checkpointing for virtual platforms
and SystemC-TLM. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 21, 1 (2013), 133–141.

[15] M Gligor, N Fournel, and F Pétrot. 2009. Using Binary Trans-
lation in Event Driven Simulation for Fast and Flexible MPSoC
Simulation. In International Conference on Hardware-Software
Codesign and System Synthesis (CODES+ ISSS). Grenoble, FR,
71–80.

[16] C. Menard, J. Castrillon, M. Jung, and N. Wehn. 2017. System
Simulation with gem5 and SystemC. In International Conference
on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS). Samos, GR, 62–69.

[17] Open Virtual Platforms (OVP). 2018. Imperas Ltd. http:
//www.ovpworld.org

[18] Virtual System Platform. 2018. Cadence. https:
//www.cadence.com/content/dam/cadence-www/global/
en US/documents/Archive/virtual system platform ds.pdf

[19] Vista Virtual Prototyping. 2018. Mentor, A Siemens Business.
https://www.mentor.com/esl/vista/virtual-prototyping/

[20] N Rodman. 2008. ARM fast models-virtual platforms for embed-
ded software development. Information Quarterly Magazine 7, 4
(2008), 33–36.

[21] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual
I/O devices. ACM SIGOPS Operating Systems Review 42, 5
(2008), 95–103.

[22] Simics. 2018. Wind River. http://www.windriver.com/products/
simics

[23] TLMu. 2018. Edgar E. Iglesias. https://edgarigl.github.io/tlmu/
tlmu.pdf

[24] N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil, G. Blanc, C.
Bechara, and R. David. 2010. SESAM: An MPSoC Simulation
Environment for Dynamic Application Processing. In IEEE Inter-
national Conference on Computer and Information Technology
(CIT). Bradford, UK, 1880–1886.

[25] Virtualizer. 2018. Synopsys. https://www.synopsys.com/
verification/virtual-prototyping/virtualizer.html

[26] VLAB. 2018. ASTC. http://vlabworks.com/index.php/products/

https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://github.com/qemu/qemu/blob/master/docs/devel/memory.txt
https://github.com/qemu/qemu/blob/master/docs/devel/memory.txt
http://www.ovpworld.org
http://www.ovpworld.org
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/Archive/virtual_system_platform_ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/Archive/virtual_system_platform_ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/Archive/virtual_system_platform_ds.pdf
https://www.mentor.com/esl/vista/virtual-prototyping/
http://www.windriver.com/products/simics
http://www.windriver.com/products/simics
https://edgarigl.github.io/tlmu/tlmu.pdf
https://edgarigl.github.io/tlmu/tlmu.pdf
https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
http://vlabworks.com/index.php/products/

	Abstract
	1 Introduction
	2 Related works
	3 A User-Level View of VPSim
	3.1 Component library
	3.2 Composition and Exploration
	3.3 Debug facilities
	3.4 Profiling and Performance Evaluation

	4 Key Technical Contributions
	4.1 QEMU in VPSim
	4.2 Dynamic Accuracy Control
	4.3 Platform Builder
	4.4 The Python front-end

	5 Experimental setup and results
	5.1 Simulated platform and experimental setup
	5.2 Simulation results and performance

	6 Conclusions
	References

