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Abstract: In this paper we propose to study an extension of the classical RCPSP called the
Multi-site RCPSP. This extension allows to take into account transportation times (both for
resources and tasks) between several sites and has some medical or industrial applications for
instance. We design an approximate resolution method in which three solution encodings are
proposed. Each of them is coupled with a dedicated list algorithm which build feasible schedules.
The results obtained on a benchmark inspired by literature are presented and discussed. The
methods are also compared with a mathematical model.
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1. INTRODUCTION OF THE MULTI-SITE RCPSP

Resource pooling management for multi-site organisations
receives an increasing interest from decision workers. Re-
sources are shared between several sites and have the
possibility to move from one site to another. To model this
situation, we have proposed a new model, the Multi-Site
RCPSP.

In the classical Resource Constraint Project Scheduling
Problem (RCPSP) a set of N tasks has to be scheduled.
The duration of the task j is pj . Each task has a set
Pj of precedence relations. Each task j needs a set of
rj,k resources of type k, for each K types. Mathematical
models have been proposed by Oğuz and Bala (1994) and
Correia et al. (2012). A lot of paper deal with this classical
problem and its extensions.

Because of the multi-site context, new characteristics
which are not considered in the classical RCPSP have to
be used. We first introduce the notion of site. Each task
needs a site to be performed. The second concept is the
distinction between fixed resources and mobile resources.
For example, a fixed resource can be a machine that can
not be moved. Thus, its use for a task will determine the
site where the task will be assigned. A fixed resource can
not be assigned to a task performed on a site where the
resource is not located. In contrast, a mobile resource can
execute tasks on every site.

If a mobile resource executes two consecutive tasks on
two different sites, time constraints must be considered to
model the transportation time of the resource from one site
to another. Mobile resources are available on the site where
they realized their first task. A transportation time results

in a minimum delay between the end of the execution of
the first task and the beginning of the execution of the
second task. This time depends on the pair of sites where
both tasks are performed. There is another case in which a
transportation time is applied: when two tasks are linked
by a precedence relation and are realized on different sites.
In this case, it represents the transportation time of a semi-
finished product between two sites.

This problem extends the definition of the RCPSP. If only
one site is considered for an instance of the Multi-Site
RCPSP, the remaining problem is a classical RCPSP. As
the RCPSP is NP-hard in the strong sense, this extension
is NP-hard too.

The goals of this paper is to propose and compare three dif-
ferent solution encodings to solve the Multi-Site RCPSP.
We will determine if there is a more effective encoding,
or in which case an encoding will perform better than the
others.

In this paper we first present a quick state of the art
about RCPSP extensions related to transportation times.
Then we present the proposed proposes three different
solution encodings to solve the Multi-Site RCPSP. Finally
we present some results and discuss about the interests of
the encodings.

2. TRANSPORTATION TIME IN RCPSP

The classical RCPSP, written PS|prec|Cmax by Kan
(1976), consists in scheduling each task and assigning
resources to it. A version of this problem exists with several
modes of execution for each task. A mode define a resource



requirement and completion time to execute a task. This
problem is called MRCPSP for Multi-mode RCPSP.

Two extensions of the RCPSP and three extensions of the
MRCPSP are related to our problem:

• RCPSP with minimum time lags (RCPSP min) Klein
(2000)
• RCPSP with conditional minimum time lags
(RCPSP-CTL) Toussaint (2010)
• MRCPCP with generalized precedence relations
(MRCPSP-GPR) De Reyck and Herroelen (1999)
• MRCPSP with Mode Dependent Time Lags
Sabzehparvar and Seyed-Hosseini (2008)
• MRCPSP with schedule dependent set-up time
(MRCPSP-SST) Mika et al. (2004)

Each RCPSP extension can model transportation times.
The RCPSP with minimum time lags considers a time
between the end of a task and the beginning of another
task. This time is known and given for each pair of tasks.
The RCPSP-CTL also considers resource transfer with
transportation time known for each couple of tasks. The
MRCPSP-GPR considers mode-dependant time lags. In a
multi-site context, the mode can represent the site where a
task is assigned and the time lag will be the transportation
time of the semi-finish product to the next site. But in
the MRCPSP-GPR, no transportation time is considered
for resources. In the MRCPSP-SST each task needs a site
to be executed and the time lag for a couple of tasks is
dependent of the site assignment.

Some of these extensions can model transportation time
of semi-finish products or resources transportation. How-
ever, none of these extensions models both aspects of
multi-site context: the site assignment for tasks and the
resources and tasks transportation. This is why the Multi-
site RCPSP has been proposed Laurent et al. (2015).

3. RESOLUTION METHOD

As this problem is NP hard in the strong sense, approxi-
mate methods form a good alternative for average-to-large
size instances. Among them, metaheuristics are a family
of generic methods that are considered to be efficient for
solving hard optimisation problems. We propose to imple-
ment individual-based metaheuristics. First we describe
the three solution encodings used for this problem and the
corresponding neighborhood system. Then, we define the
corresponding list algorithms that schedule the solution
depending on the encoding.

3.1 Solution encodings

We added two fictitious tasks to the project, one will
represent the begining of the project and the other one
will represent the end. These two tasks have a duration
of 0 period. The beginning task precede every tasks and
every tasks precede the ending task. We propose three
different solution encodings based on the three following
components:

• σ = (σ1, σ2, ..., σN ) is a permutation of the N tasks
describing a topological list in which precedence rela-
tions will always be respected. σ1 and σN are fictitious
project tasks, representing respectively the start and

the end of the project. Resources will execute tasks
in the order given by σ.
• l = (l2, l3, ...lN−1) with lj ∈ {1, S} the site among the
S sites where the task j ∈ {1, N} will be executed.
This assignment must respect the amount of resources
available on the site, which is equal to the sum of fixed
resources on the site and the mobile resources.
• a = (a2, a3, ...aN−1) with aj the set of resources
assigned to the task j ∈ 2, N − 1.

The three solution encodings are:

(σ, l, a) is the most complete encoding, with the resources
and site assignment and the topological list for tasks.

(σ, l) which does not define the resources assignment as
(σ, l, a)

(σ) which has only the topological list

3.2 Schedule Generation Scheme (SGS)

The principle of SGS introduced by Kelley et al. (1963) is
to schedule a solution based on a sequence of tasks.

We define three SGS, one for each encoding.

• For the encoding (σ, l, a): the algorithm schedules
tasks as soon as possible. In the σ order, it
determines the earliest availability date for each
resource assigned to a task. This availability date for
a resource is computed depending on the end of the
last task executed and the sites assigned to the two
tasks. The task will be scheduled at the maximum
date of all resources availabilities or ending date of
tasks with precedence relation plus transportation
time.

• For the encoding (σ, l): the algorithm determines
the assignment of resources to tasks. To do that, in
the order σ, it selects the earliest available resources
needed on the site lj to execute task j. When the
resources have been determined, the task is schedule
according to the same rules that for (σ, l, a) list
algorithm. The algorithm 1 represent the SGS for
this solution encoding.

• For the encoding (σ): the algorithm assigns tasks to
sites and assigns resources to tasks. To assign tasks
to sites, the algorithm applies the (σ, l) list algorithm
for each possible site, for each task in the σ order.
The site with the earliest date is chosen.

Algorithm 1 List-scheduling based algorithm for the σ, l
encoding

Require: X = (σ, l)
for j = σ1 to σN do
Selection of the earliest available resource
Assignment of the selected resources to the task j
Computation of the completion time for task j

end for

Each SGS associated to a solution encoding forms a search
space Ωσ,l,a, Ωσ,l and Ωσ. To our knowledge, there is
no polynomial SGS for (σ) and (σ, l) that ensures the
existence for every instances of an optimal solution in Ωσ,l

and Ωσ.



3.3 Neighborhood system

The neighborhood system used for the different encodings
is composed of three basic moves. The first one is dedicated
to the sequence of tasks, the second one concerns the
site assignment l and the last one concerns the resource
assignment. At each iteration, each move is randomly
chosen. Let us describe these moves.

Insertion of the tasks The first move modifies the tasks
by applying an insertion move. A task is moved from a
position p to another one p′ (p′ ̸= p ). A move is feasible
if the resulting sequence of tasks satisfies the precedence
constraints. This move is implemented such that only the
feasible moves are considered. This means in particular
that the starting and the ending project tasks stay in the
first and last position. See algorithm 2.

Algorithm 2 Algorithm of the insertion move

Require: σ : initial sequence
while Not Stop do
undo the moves;
Choose two random positions p ∈ [2, N − 1] and
p′ ∈ [2, N − 1]/p′ ̸= p;
if p < p′ then

σ′ = σ1, ...σp−1, σp+1, ..., σp′ , σp, ..., σN

else
σ′ = σ1, ..., σp′ , σp, ...σp−1, σp+1, ..., σN

end if
if σ’ is feasible then

Stop
end if

end while

Site-assignment move The second move modifies the site
assigned to a task j. Like for the previous one, this move
preserves the feasibility of the solution. For each type of
resource, the sum of the fixed resources located in the new
site and the mobile resources must be greater than the
amount of resources required for executing the task j. The
principle of this move is given by algorithm 3.

Algorithm 3 Algorithm of site-assignment move

Require: l : initial site-assignment
Choose a task j ∈ 2, N − 1 ;
Choose a compatible site;
l′ ← l2, ..., lj − 1, l′j , lj + 1, ..., lN−1;

Resource reassignment The third move substitutes a
resource for a task j by another one. This move selects a
task and removes a resource assignment. Another resource
of the same type but different from the previous one
is assigned to the task. The chosen resource must be
compatible, this mean that either the resource is fixed and
it is necessary on the site, or the resource is mobile. The
principle of this move is given by algorithm 4.

Algorithm 4 Algorithm of resource reassignment move

Require: a : initial assignment;
Choose randomly a set of resource aj
Replace a resource r in the set aj by a resource r′ /∈ aj
and compatible

Metaheuristic
List Algorithm

(SGS)

Solution encoding

Schedule of the solution

Initial encoding

Final solution

Fig. 1. Principle of the coupling

3.4 Metaheuristic

To solve this problem we use a metaheuristic to modify the
solution with the neighborhood system. The principle of
the coupling is presented in figure 1. At each iteration,
a solution encoding is created by the application of a
neighborhood system on the current solution. Then the
solution encoding is evaluated by the list algorithm. This
solution is now compared to the current one and selected
depending on the acceptance criterion.

Algorithm 5 Algorithm of the Iterated Local Search
(ILS)

Require: X0 : initial solution
X∗ ← local search on X0;
while Stopping criterion is not satisfied do
X ′ ← Perturbation of X∗;
X∗′ ← Local search on X ′;
X∗ ← Acceptance criterion of X∗′ to X∗ taking into
consideration the history;

end while
return X∗

To test these coupling we use the Iterated Local Search
(ILS) proposed by Lourenço et al. (2003). The principle
of the ILS (Algorithm 5) is to run many local searches.
When a local minimum is obtained from the first local
search, a new solution is build by perturbation of the
local minimum. A new local search is applied on the new
solution. The two local minima are compared and one of
them is selected depending on the acceptance criterion
(history). The process is iterated until the stopping cri-
terion is reached. There is some parameters to fix to use
this metaheuristic:

• The stopping criterion: we will use two : 100K iter-
ations in total for small instances and 10 minutes of
computation time for the larger ones.
• The acceptance criterion: we use the Metropolis ac-
ceptance criterion Metropolis et al. (1953). This cri-
terion is also known as the simulated annealing ac-
ceptance criterion. The probability to accept a lower
quality solution decreases with the time.
• The perturbation: the perturbation used is 4 times
the neighborhood system.

4. RESULTS

The purpose of this section is to test the effectiveness of
the proposed encodings on the new problem.



Encoding σ σ, l σ, l, a MM % completed

10 tasks 26,45 26,5 26,125 26 100

15 tasks 36 36,45 36,22 36 100

20 tasks 57,75 57,5 58,9 55,5 100

25 tasks 70,98 70,38 72,23 68,25 100

30 tasks 79,15 82,125 90,725 X 10

2 sites 51,98 52,08 54,99 X 84

3 sites 56,11 57,11 58,69 X 80

10 resources 55,53 55,56 56,27 84

20 resources 52,56 53,63 57,41 80

TCT 2240,45 1110,0 400,19 X

Table 1. Average makespan obtained on the
small instances

First of all we test these methods on small instances
and compare the results obtained to the ones given by
the mathematical model [Laurent et al. (2015)]. We have
generated a set of 160 instances. An instance is composed
of 10 to 30 tasks, 2 or 3 sites and 10 or 20 resources
in total. For a set of instance, there is 8 instances with
the same number of resources and the same number of
sites. Ten replications are run on each instance. The goal
is to compare the performance of the different encodings
depending on the number of tasks, the number of resources
and the number of sites. For each method, 10 replications
are run with a maximum number of iterations (stopping
criterion) fixed to 100 000. The initial solution for every
replication is build randomly. The mathematical model
(MM) are stopped after 30 minutes if an optimal solution is
not found. For the 30 tasks instances, no solution is found
with the mathematical model. This is why no value are
given for the 30 tasks instances, all the 2 or 3 sites instances
and all the 10 or 20 resources instances. For each set of
instances with the same parameters, the average makespan
is given. This average is done one the 8 different instances
with 10 replications. The Total Computation Time (TCT)
is also given for each method. The total computation time
is the sum of all computation times for a given method to
solve every instances.

The results given by table 1 show that the performance
of the methods depend on the size of the instances. The
Second thing is that the result of σ and σ, l encodings are
close to the ones given by the mathematical model. Finally,
the computation time of the different encodings system is
not equivalent, depending on the complexity of the list
algorithm. This is why in the next experimentations we
will compare the results depending on the computation
time.

In this second part, to test the different encodings de-
pending on the computation time, we adapt literature
instances of the PSPLIB [Kolisch and Sprecher (1997)]. In
this paper we only use the 30 tasks set of the library. We
add to these instances 2 or 3 sites. Each resource has a
probability of 50%to be fixed to a random site, otherwise
the resource is considered as mobile. We set transportation
times between each site with a value in the same range as
the duration of the tasks. There is 480 instances of 48
different classes. We run each instances 10 times, with a
maximum computation time of 10 minutes.

The results on the 30 tasks instances are reported in the
table 2. The presented results are the average makespan

Time(s) 0 10 60 150 300 600

(σ, l, a) 208,9 103,6 96,1 92,1 87,7 85,1

(σ, l) 138,2 80,1 73,9 72,4 71,15 70,5

(σ) 95,9 75,5 72,9 72,4 71,9 71,6

Table 2. Average makespan obtained on the 30
tasks instances

of the best solution found by each encoding according to
the execution time.

In the table 2, the best average makespan for a given
computation time is highlighted. If we compare the results
obtained by the different methods, we can observe the
following results:

• After 10 minutes, the (σ, l) encoding gives the best
results and (σ, l, a) the worse.
• The (σ, l, a) gives good results on small instances,
but for larger instances, the other encoding seems a
better alternative. For 30 tasks instances the (σ, l, a)
encoding seems to not have converge yet after 10
minutes. This can be explained by the largest search
space.
• The (σ, l) encoding gives better results than (σ)
encoding after 150 seconds.

According to these results, the σ encoding could be more
relevant to use on larger instances (number of tasks, sites
and resources). In the other hand, on small instances, σ, l
will give better results if the computation time is long
enough. The use of these methods will depend on the
available time of computation and the size of the instance.

5. CONCLUSION AND PERSPECTIVES

To conclude, we propose in this article a resolution
method, using three solution encodings. The Multi-Site
RCPSP is a new and complex problem with transportation
of resources and tasks allocations to site. With these three
different solution encodings, we try to determine which
solution encodings has the more advantages. The first
results on small instances show that the (σ, l, a) encoding
will not be exploitable on this form. The (σ, l) encoding
gives the best results when enough CPU time is available,
but the (σ) encoding converges faster to the best solution
that it can found. These two methods offer a compromise
between speed and performance to find a good solution for
the Multi-Site RCPSP .

One of our highest priority is to test our method on
largest instances to see the relevance of the (σ, l) encoding
compared to the (σ) encoding.
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Oğuz, O. and Bala, H. (1994). A comparative
study of computational procedures for the resource
constrained project scheduling problem. Euro-
pean Journal of Operational Research, 72(2), 406
– 416. doi:http://dx.doi.org/10.1016/0377-2217(94)
90319-0. URL http://www.sciencedirect.com/scie
nce/article/pii/0377221794903190.

Sabzehparvar, M. and Seyed-Hosseini, S.M. (2008). A
mathematical model for the multi-mode resource-
constrained project scheduling problem with mode de-
pendent time lags. The Journal of Supercomputing,
44(3), 257–273.

Toussaint, H. (2010). Algorithmique rapide pour les
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