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Introduction and main results

For a base β > 1 and a sequence of digits

u 1 u 2 • • • ∈ A ∞ , with A ⊂ R, let π β (u 1 u 2 • • • ) = ∞ k=1 u k β k .
We say that u 1 u 2 • • • is a β-expansion of this number. This paper deals with unique β-expansions over A, that is with

U β (A) = {u ∈ A ∞ : π β (u) = π β (v) for all v ∈ A ∞ \ {u}}.
We know from [START_REF] Daróczy | Univoque sequences[END_REF] that U β ({0, 1}) is trivial if and only if β ≤ 1+ √ 5

2 , where trivial means that U β ({0, 1}) = {0, 1}, a being the infinite repetition of a. Therefore,

G(A) = inf{β > 1 : |U β (A)| > 2}
is called generalised golden ratio of A. By [START_REF] Glendinning | Unique representations of real numbers in non-integer bases[END_REF], the set U β ({0, 1}) is uncountable if and only if β is larger than the Komornik-Loreti constant β KL ≈ 1.787; we call

K(A) = inf{β > 1 : U β (A) is uncountable} generalised Komornik-Loreti constant of A.
(We can replace uncountable throughout the paper by has the cardinality of the continuum.) The precise structure of U β ({0, 1}) was described in [START_REF] Komornik | Hausdorff dimension of univoque sets and devil's staircase[END_REF]. For integers M ≥ 2, G({0, 1, . . . , M }) was determined by [START_REF] Baker | Generalized golden ratios over integer alphabets[END_REF], and U β ({0, 1, . . . , M }) was described in [START_REF] Kong | Univoque bases and Hausdorff dimension[END_REF][START_REF] Barrera | Entropy, topological transitivity, and dimensional properties of unique q-expansions[END_REF].

For x, y ∈ R, x = 0, we have (xu 1 + y 1 )(xu 2 + y 2 ) • • • ∈ U β (xA + y) if and only if u 1 u 2 • • • ∈ U β (A), thus G(xA + y) = G(A) and K(xA + y) = K(A). Hence, the only two-letter alphabet to consider is {0, 1}, and we can restrict to {0, 1, m}, m ∈ (1, 2], for three-letter alphabets; another possibility is m ≥ 2 as in [START_REF] Komornik | Generalized golden ratios of ternary alphabets[END_REF]. We write

U β (m) = U β ({0, 1, m}), G(m) = G({0, 1, m}), K(m) = K({0, 1, m}).
It was established in [START_REF] Komornik | Generalized golden ratios of ternary alphabets[END_REF][START_REF] Lai | Minimal unique expansions with digits in ternary alphabets[END_REF][START_REF] Baker | On the regularity of the generalised golden ratio function[END_REF] that the generalised golden ratio G(m) is given by mechanical words, i.e., Sturmian words and their periodic counterparts; in particular, we can restrict to sequences u ∈ {0, 1} ∞ . Calculating K(m) seems to be much harder since this restriction is not possible. Therefore, we study

L(m) = inf{β > 1 : U β (m) ∩ {0, 1} ∞ is uncountable},
following [START_REF] Komornik | Critical bases for ternary alphabets[END_REF], where this quantity was determined for certain intervals. We give a complete characterisation in Theorem 1 below.

To this end, we use the substitutions (or morphisms)

L : 0 → 0, M : 0 → 01, R : 0 → 01, 1 → 01, 1 → 10, 1 → 1,
which act on finite and infinite words by σ(u

1 u 2 • • • ) = σ(u 1 )σ(u 2 ) • • • .
The monoid generated by a set of substitutions S (with the usual product of substitutions) is denoted by S * . An infinite word u is a limit word of a sequence of substitutions (σ n ) n≥1 (or an S-adic word if σ n ∈ S for all n ≥ 1) if there is a sequence of words (u

(n) ) n≥1 with u (1) = u, u (n) = σ n (u (n+1) ) for all n ≥ 1. The sequence (σ n ) n≥1 is primitive if for each k ≥ 1 there is an n ≥ k such that both words σ k σ k+1 • • • σ n (0) and σ k σ k+1 • • • σ n (1)
contain both letters 0 and 1. For S = {L, M, R}, this means that there is no k ≥ 1 such that σ n = L for all n ≥ k or σ n = R for all n ≥ k. Let S S be the set of limit words of primitive sequences of substitutions in S ∞ . Then S {L,R} consists of Sturmian words, and S {M} consists of the Thue-Morse word 0u = 0110100110010110 • • •, which defines the Komornik-Loreti constant by π βKL (u) = 1, and its reflection by 0 ↔ 1. We call the elements of S {L,M,R} , which to our knowledge have not been studied yet, Thue-Morse-Sturmian words. For details on S-adic and other words, we refer to [START_REF] Lothaire | Algebraic combinatorics on words[END_REF][START_REF] Berthé | Beyond substitutive dynamical systems: S-adic expansions, Numeration and substitution[END_REF]. For u ∈ {0, 1} ∞ and m ∈ (1, 2], define f u (m) (if u contains at least two ones) and g u (m) as the unique positive solutions of

f u (m) π fu(m) (sup O(u)) = m and (g u (m) -1)(1 + π gu(m) (inf O(u))) = m respectively, where O(u 1 u 2 • • • ) = {u k u k+1 • • • : k ≥ 1}
denotes the shift orbit and infinite words are ordered by the lexicographic order. For the existence and monotonicity properties of f u (m) and g u (m), see Lemma 2 below. We define µ u by

f u (µ u ) = g u (µ u ), i.e., f u (µ u ) = g u (µ u ) = β with β π β (sup O(u)) = (β -1)(1 + π β (inf O(u))).
The main result of [START_REF] Komornik | Generalized golden ratios of ternary alphabets[END_REF] can be written as

G(m) =            f σ(0) (m) if m ∈ [µ σ(10) , µ σ(0) ], σ ∈ {L, R} * M, g σ(0) (m) if m ∈ [µ σ(0) , µ σ(01) ], σ ∈ {L, R} * M, f 1 (m) if m ∈ [µ 01 , 2], 1 + √ m if m = µ u , u ∈ S {L,R} ;
cf. [BS17, Proposition 3.18], where substitutions τ h = L h R are used and f, g, µ, S are defined slightly differently. Our main theorem looks similar, but we need {L, M, R} instead of {L, R}, and the roles of f and g are exchanged.

Theorem 1. The function L(m), 1 < m ≤ 2, is given by

L(m) =            g σ(10) (m) if m ∈ [µ σ(10) , µ σ(010) ], σ ∈ {L, M, R} * M, f σ(01) (m) if m ∈ [µ σ(101) , µ σ(01) ], σ ∈ {L, M, R} * M, g 01 (m) if m ∈ [µ 01 , 2], f u (m) if m = µ u , u ∈ S {L,M,R} . The Hausdorff dimension of π β (U β (m)) is positive for all β > L(m).
The graphs of G(m) and L(m) are drawn in Figure 1. For example, σ = M gives

L(m) = g 001 (m) if m ∈ [µ 001 , µ 11001 ] ≈ [1.281972, 1.46811], f 110 (m) if m ∈ [µ 00110 , µ 110 ] ≈ [1.516574, 1.55496].
Taking σ = M 2 , we have σ(0) = 0110, σ(1) = 1001, and

L(m) = g 0010110 (m) if m ∈ [µ 0010110 , µ 11010010110 ] ≈ [1.47571, 1.503114], f 1101001 (m) if m ∈ [µ 00101101001 , µ 1101001 ] ≈ [1.504152, 1.509304].
Subintervals of the first three intervals were also given by [START_REF] Komornik | Critical bases for ternary alphabets[END_REF].

g 01 g 10 f 1 µ 001 µ 01 µ M 2 (10) µ 110 µ 01 1 2 1+ √ m 2 3+ √ 5 2 K(2) Figure 1. The critical bases G(m) (below 1+ √ m, blue) and L(m) (above 1 + √ m, red). By [KLP11, KP17], we have, for all m ∈ (1, 2], 2 ≤ G(m) ≤ 1 + √ m ≤ K(m) ≤ L(m) ≤ g 10 (m) = 1 + m, with G(m) = L(m) if and only if m ∈ {µ σ(10) , µ σ(01) }, σ ∈ {L, R} * M , or m = µ u , u ∈ S {L,R} . Besides those m, the value of K(m) is known only for m = 2 from [dVK09, AF09, KP17], with K(2) ≈ 2.536 < 3+ √ 5 2 = L(2).
The functions G(m), K(m) and L(m) are continuous for m > 1 by [START_REF] Komornik | Generalized golden ratios of ternary alphabets[END_REF][START_REF] Komornik | Critical bases for ternary alphabets[END_REF]; at least for the generalised golden ratio, this also holds for larger alphabets by [START_REF] Baker | On the regularity of the generalised golden ratio function[END_REF].

Proof of the main theorem

We first establish relations between f u (m), g u (m) and u ∈ U β (m). For convenience, we write inf(u) for inf O(u) and sup(u) for sup O(u) in the following.

Lemma 1. Let m ∈ (1, 2], β ∈ (1, 1 + m]. For u ∈ {0, 1} ∞ , we have u ∈ U β (m) if and only if 0u ∈ U β (m). For u ∈ 1{0, 1} ∞ \ {10}, u ∈ U β (m) implies that β ≥ max(f u (m), g u (m)), and β > max(f u (m), g u (m)) implies that u ∈ U β (m). Proof. For β ∈ (1, 1 + m], u = u 1 u 2 • • • ∈ {0, 1, m} ∞ , x ∈ [0, m β-1 ], we have π β (u) = x if and only if u k = d(T k-1 (x)) for all k ≥ 1, with the branching β-transformation T : [0, m β-1 ] → [0, m β-1 ], x → βx -d(x), d(x) =              0 if x < 1 β , 0 or 1 if 1 β ≤ x ≤ m β(β-1) , 1 if m β(β-1) < x < m β , 1 or m if m β ≤ x ≤ 1 β + m β(β-1) , m if x > 1 β + m β(β-1) , see Figure 2. We have thus u ∈ U β (m) ⇐⇒ π β (u k u k+1 • • • ) / ∈ [ 1 β , m β(β-1 ] ∪ [ m β , 1 β + m β(β-1) ] for all k ≥ 1. For u ∈ {0, 1} ∞ \ {0}, this means that β > 2 and π β (u k u k+1 • • • ) < m β , π β (u k+1 u k+2 • • • ) > m β-1 -1 for all k ≥ 1 such that u k = 1, see [BS17, Lemma 3.9], i.e., β π β (sup(u)) ≤ m ≤ (β -1)(1 + π β (inf 1 (u))), inf 1 (u 1 u 2 • • • ) = inf{u k+1 u k+2 • • • : k ≥ 1, u k = 1},
with strict equalities if the supremum and infimum are attained. In particular, we have u ∈ U β (m) if and only if 0u ∈ U β (m). If u starts with 1, then inf 1 (u) = inf(u), and the first lines of Lemma 2 below conclude the proof of the lemma.

Lemma 2. Let m ∈ (1, 2], u, u ′ ∈ {0, 1} ∞ . Then g u (m
) is well defined. If u contains at least two ones, then f u (m) and µ u are well defined, and we have m) is strictly decreasing in x and m (for x > 1). If u contains at least two ones, then this also holds for v, thus lim m) is strictly decreasing in x (for x > 1) and strictly increasing in m. Again,

max(f u (m), g u (m)) ≥ 2, β π β (sup(u)) < m for all β > f u (m), (β -1)(1 + π β (inf(u)) > m for all β > g u (m), f u (m) > f u (m ′ ) and g u (m) < g u (m ′ ) if m < m ′ , f u (m) < f u ′ (m) if sup(u) < sup(u ′ ) and f u (m) ≥ 2, g u (m) > g u ′ (m) if inf(u) < inf(u ′ ) and g u ′ (m) ≥ 2. Proof. Let sup(u) = v and set h v (x, m) = xπ x (v) -m. Then h v (x,
x→1 h v (x, m) ≥ 2-m and lim x→∞ h v (x, m) = 1-m. Therefore, there is, for each m ∈ (1, 2], a unique x m,v ≥ 1 such that h v (x m,v , m) = 0, i.e., f u (m) = x m,v . If m < m ′ , then we have x m,v > x m ′ ,v . If v < v ′ and x ≥ 2, then we have h v (x, m) < h v ′ (x, m), thus x m,v < x m,v ′ if x m,v ≥ 2. Let now inf(u) = v and set h v (x, m) = m x-1 -π x (v) -1. Since m x-1 = π x (m), h v (x,
0 m β-1 1 β m β(β-1) m β 1 β + m β(β-1) Figure 2. The branching β-transformation T for β = 9/4, m = 3/2. there is, for each m ∈ (1, 2], a unique x m,v > 1 such that h v (x m,v , m) = 0, i.e., g u (m) = x m,v . We have h v (x, m) < 0 if x > x m,v , x m,v < x m ′ ,v if m < m ′ , and h v (x, m) > h v ′ (x, m) if v < v ′ , x ≥ 2, thus x m,v > x m,v ′ if x m,v ′ ≥ 2. Since f u (m) is strictly decreasing, g u (m) is strictly increasing, lim m→1 f u (m) = ∞, f u (2) ≤ 2 and g u (2) ≥ 2, we have f u (m) = g u (m) for a unique m ∈ (1, 2]. Let β = f u (µ u ) = g u (µ u ), i.e., β π β (sup(u)) = (β -1)(1 + π β (inf(u))
). We have sup(u) ≥ 1 inf(u). If equality holds, then β = 2. Otherwise, sup(u) starts with

1v 1 • • • v k-1 1 and inf(u) starts with v 1 • • • v k-1 0 for some v 1 • • • v k-1 , k ≥ 1. Then βπ β (sup(u)) ≥ 1+ k-1 i=1 v i β i + 1 β k , (β -1)(1+π β (inf(u))) ≤ (β -1) 1+ k-1 i=1 v i β i + 1 β k ,
thus β ≥ 2. By the monotonicity properties that are proved above, this implies that max(f u (m), g u (m)) ≥ 2 for all m ∈ (1, 2]. Therefore, it is crucial to determine inf(u) and sup(u). We set

sup 0 (u 1 u 2 • • • ) = sup{u k+1 u k+2 • • • : k ≥ 1, u k = 0}, similarly to inf 1 (u 1 u 2 • • • ) = inf{u k+1 u k+2 • • • : k ≥ 1, u k = 1}. Lemma 3. For all u ∈ {0, 1} ∞ , we have inf(L(u)) = L(inf(u)), inf(R(u)) = R(inf(u)), 0 sup(L(u)) = L(sup(u)). If inf(u) = inf 1 (u), then inf(M (u)) = 0M (inf(u)). If sup(u) = sup 0 (u), then sup(R(u)) = 1R(sup(u)), sup(M (u)) = 1M (sup(u)).
For each σ ∈ {L, M, R} * , there is a suffix w of σ(1) such that inf 1 (σ(u)) = inf(σ(u)) = wσ(inf(u)) for all u ∈ {0, 1} ∞ with inf(u) = inf 1 (u).

For each σ ∈ {L, M, R} * M ∪ {L, M, R} * R, there is a suffix w of σ(0) such that sup 0 (σ(u)) = sup(σ(u)) = wσ(sup(u)) for all u ∈ {0, 1} ∞ with sup(u) = sup 0 (u).

For each σ ∈ {L, M, R} * L, there is a prefix w of σ(0) such that w sup 0 (σ(u)) = w sup(σ(u)) = σ(sup(u)) for all u ∈ {0, 1} ∞ with sup(u) = sup 0 (u).

Proof. The first statements follow from the facts that L, M, R are order-preserving on infinite words and that inf(u) = inf 1 (u), sup(u) = sup 0 (u) mean that 1 inf(u), 0 sup(u) are in the closure of O(u).

We claim that, for each σ ∈ {L, M, R} * , there is a suffix 1w of σ(1) such that inf 1 (σ(u)) = inf(σ(u)) = wσ(inf(u)) for all u ∈ {0, 1} ∞ with inf(u) = inf 1 (u). If 1w is a suffix of σ(1), then 1L(w), 10M (w) and 1R(w) are suffixes of Lσ(1), M σ(1) and Rσ(1) respectively. Therefore, this claim holds for Lσ, M σ and Rσ when it holds for σ. Since it holds for σ = id, it holds for all σ ∈ {L, M, R} * .

Next we claim that, for each σ ∈ {L, M, R} * {M, R}, there is a suffix 01w of σ(0) such that sup 0 (σ(u)) = sup(σ(u)) = 1wσ(sup(u)) for all u ∈ {0, 1} ∞ with sup(u) = sup 0 (u). This holds for σ ∈ {M, R}. If 01w is a suffix of σ(0), then 01L(w), 01M (1w) and 01R(1w) are suffixes of Lσ(0), M σ(0) and Rσ(0) respectively. Therefore, this claim holds for all σ ∈ {L, M, R} * {M, R}.

Finally we claim that, for each σ ∈ {L, M, R} * L, there is a prefix w0 of σ(0) such that w0 sup 0 (σ(u)) = w0 sup(σ(u)) = σ(sup(u)) for all u ∈ {0, 1} ∞ with sup(u) = sup 0 (u). This holds for σ = L . If w0 is a prefix of σ(0), then L(w0)0, M (w)0 and R(w)0 are prefixes of Lσ(0), M σ(0) and Rσ(0) respectively. Therefore, this claim holds for all σ ∈ {L, M, R} * L. Now we can prove that Theorem 1 gives an upper bound for L(m), cf. Figure 3.

Proposition 1. Let m ∈ (1, 2]. We have L(m) ≤                  g σ(10) (m) if m ≥ µ σ(10) , σ ∈ {L, M, R} * M, f σ(01) (m) if m ≤ µ σ(01) , σ ∈ {L, M, R} * M, g 01 (m) if m ≥ µ 01 , g u (m) if m ≥ µ u , u ∈ S {L,M,R} , f u (m) if m ≤ µ u , u ∈ S {L,M,R} .
If β is above this bound, then the Hausdorff dimension of π β (U β (m)) is positive.

1 + √ m σ(0) ∈ U β (m) σ(10) ∈ U β (m) σ(01) ∈ U β (m) f σ(0) g σ(1) f σ(01) g σ(10) f σ(010) g σ(101) µ σ(0) µ σ(10) µ σ(01) µ σ(101) µ σ(010) G(m) G(m) L(m) L(m)
Figure 3. A schematic picture for σ ∈ {L, R} * M . For σ ∈ {L, M, R} * M , the situation is similar, except for G(m) and 1+ √ m.

Proof. Let σ ∈ {L, M, R} * . For all h ≥ 1, v ∈ 1{0(01) h , 0(01) h+1 } ∞ , we have inf(σ(v)) ≥ inf(σ(10(01) h-1 0)) and sup(σ(v)) ≤ sup(σ((01) h+1 0)) by Lemma 3, with inf(σ(10(01) h-1 0)) → inf(σM (10)), sup(σ((01

) h+1 0)) → sup(σM (0)) (h → ∞).
Therefore, we have for each β > max(f σM(0) (m), g σM(10) (m)) some h ≥ 1 such that σ({0(01) h , 0(01

) h+1 } ∞ ) ⊆ U β (m). If m ≥ µ σM(10) , then f σM(0) (m) = f σM(10) (m) ≤ g σM(10) (m), thus U β (m) ∩ {0, 1}
∞ is uncountable (and has the cardinality of the continuum) for all β > g σM(10) (m), i.e., L(m) ≤ g σM(10) (m). By symmetry, sequences in σ({1(10) h , 1(10

) h+1 } ∞ ) give that L(m) ≤ f σM(01) (m) for m ≤ µ σM(01) .
Similarly, sequences in 1{01 h , 01 h+1 } ∞ give that L(m) ≤ g 01 (m) for m ≥ µ 01 . Let now u be a limit word of a primitive sequence (σ n ) n≥1 ∈ {L, M, R} ∞ , and

set σ ′ n = σ 1 σ 2 • • • σ n . Then inf(σ ′ n (10)) ≤ inf(u) ≤ inf(σ ′ n (101)) for all n ≥ 1, thus inf(σ ′ n (10)) → inf(u) and (by symmety) sup(σ ′ n (01)) → sup(u) as n → ∞. Therefore, for each β > max(f u (m), g u (m)) there is n ≥ 1 such that σ ′ n (v) ∈ U β (m) for all v ∈ {0, 1} ∞ \ {0, 1}, hence L(m) ≤ g u (m) for m ≥ µ u and L(m) ≤ f u (m) for m ≤ µ u .
If {v, w} ∞ ⊆ U β (m), then by [START_REF] Hutchinson | Fractals and self-similarity[END_REF] we have dim H (π β (U β (m))) ≥ r, with r > 0 such that β -|v|r + β -|w|r = 1, where |v| and |w| denote the lengths of v and w.

For the lower bound, we use Lemma 5 below, which tells us that, if the orbit of a sequence satisfies inequalities that hold for all non-trivial images of σ ∈ {L, M, R} * , then it is eventually in the image of σ. In particular, with σ = M n , n ≥ 0, this yields that U β ({0, 1}) is countable for all β less than the Komornik-Loreti constant; cf. [START_REF] Glendinning | Unique representations of real numbers in non-integer bases[END_REF]. First we show that the conditions of Lemma 3 are satisfied for a suffix. Lemma 4. Let u ∈ {0, 1} ∞ with u = 0 k 1 and u = 1 k 0 for all k ≥ 0. There is a suffix v of u such that inf(v) = inf 1 (v) = inf 1 (u) and sup(v) = sup 0 (v) = sup 0 (u).

Proof. If inf(u) = inf 1 (u) and sup(u) = sup 0 (u), then we can take v = u. Otherwise, assume that inf(u) = inf 1 (u), the case sup(u) = sup 0 (u) being symmetric. Then we have inf(u

) = u = 0 k 01u ′ for some k ≥ 0, u ′ ∈ {0, 1} ∞ \ {1}, sup 0 (u) = sup 0 (01u ′ ) = sup(01u ′ ), inf 1 (u) = inf 1 (01u ′ ) = inf 1 (1u ′ ) = inf(1u ′ ). If inf 1 (01u ′ ) = inf(01u ′ ), then u ′ = 1 n 01u ′′ with n ≥ 0, u ′′ > u ′ , which implies that sup 0 (u) = sup 0 (1u ′ ) = sup(1u ′ ). Hence, we can take v = 01u ′ or v = 1u ′ . Lemma 5. Let u ∈ {0, 1} ∞ , σ ∈ {L, M, R} * , with inf(u) ≥ inf(σ(10)), sup(u) ≤ sup(σ(01)). Then u ends with σ(v) for some v ∈ {0, 1} ∞ or with σ ′ (0), σ ′ ∈ {L, M, R} * M , σ ∈ σ ′ {L, M, R} * .
Proof. The statement is trivially true when σ is the identity. Suppose that it holds for some σ ∈ {L, M, R} * , let ϕ ∈ {L, M, R} and u ∈ {0, 1} ∞ with inf(u) ≥ inf(ϕσ(10)), sup(u) ≤ sup(ϕσ(01)).

If ϕ = L, then sup(u) ≤ 10, thus every 1 in u is followed by a 0, hence u = L(v) or u = 1L(v) for some v ∈ {0, 1} ∞ . Similary, if ϕ = R, then inf(u) ≥ 01, hence u = R(v) or u = 0R(v) for some v ∈ {0, 1} ∞ . If ϕ = M , then inf(u) ≥ 001 and sup(u) ≤ 110. Hence, for all k ≥ 1, 0(01) k as well as 1(10) k is always followed in u by 01 or 10. Since u contains 001 or 110 if u / ∈ {M (0), M (1)}, we obtain that u ends with M (v) for some v ∈ {0, 1} ∞ .

J ′ σ (m) =          {f u (m) : u is a limit word of σ} if σ is primitive, [f σ1σ2•••σn(0) (m), f σ1σ2•••σn(010) (m)] if σ n σ n+1 • • • = M L, n ≥ 1, {f σ1σ2•••σn(01) (m)} if σ n σ n+1 • • • = M R, n ≥ 1, ∅ otherwise.
By Lemmas 2 and 6, we have

(1, g 10 (m)) = σ∈{L,M,R} ∞ I ′ σ (m) and (1, f 01 (m)) = σ∈{L,M,R} ∞ J ′ σ (m). (Note that f u (m) is close to f u ′ (m) if sup(u) is close to sup(u ′ ), g u (m) is close to g u ′ (m) if inf(u) is close to inf(u ′ ).) If σ < σ ′ , then we have β > β ′ if β ∈ I ′ σ (m), 2 ≤ β ′ ∈ I ′ σ ′ (m), and β < β ′ if 2 ≤ β ∈ J ′ σ (m), β ′ ∈ J ′ σ ′ (m)
, by Lemmas 2 and 6. Since max(f u (m), g u (m)) ≥ 2 for all u ∈ {0, 1} ∞ and inf(σM (10)) ≤ inf(σM (0)), sup(σM (01)) ≥ sup(σM (1)) for all σ ∈ {L, M, R} * , we have

I ′ σ (m) ⊂ [2, ∞) or J ′ σ (m) ⊂ [2, ∞) for all σ ∈ {L, M, R} ∞ . Therefore, we have I ′ σ (m) ∩ J ′ σ (m) = ∅ for some σ ∈ {L, M, R} ∞ . If σ is primitive, this means that m = µ u . If σ n σ n+1 • • • = M L, then we have g σ1•••σn(10) (m) ∈ [f σ1•••σn(0) (m), f σ1•••σn(010) (m)], which means that m ∈ [µ σ1•••σn(10) , µ σ1•••σn(010) ], see Figure 3. Similarly, if σ n σ n+1 • • • = M R, then we have that m ∈ [µ σ1•••σn(101) , µ σ1•••σn(01) ].
Proof of Theorem 1. This is a direct consequence of Propositions 1, 2 and 3.

Final remarks and open questions

By [KLP11, BS17, Kwo18], there are simple formulas for µ σ(10) , µ σ(0) and µ σ(01) , σ ∈ {L, R} * M , and for µ u , u ∈ S L,R . This is because, for u ∈ {σ(10), σ(01)}, σ ∈ {L, R} * M , or u ∈ S L,R , we have inf(u) = 0v, sup(u) = 1v for some v, thus (β -1)(1 + π β (0v)) = (β -1) 2 = βπ β (1v), where β > 1 is defined by π β (20v) = 1, which gives that µ u = (β -1) 2 . For u = σ(0), we have inf(u) = 0w1, sup(u) = 1w0, with σ(0) = 0w1, and In [START_REF] Baker | On the regularity of the generalised golden ratio function[END_REF][START_REF] Kwon | Sturmian words and Cantor sets arising from unique expansions over ternary alphabets[END_REF], it was proved that the Hausdorff dimension of {µ u : u ∈ S L,R } is 0, using that the number of balanced words grows polynomially. What is the complexity of S L,M,R ?

As mentioned in the Introduction, we know the generalised Komornik-Loreti constant K(m) only for m = 2 and when G(m) = 1 + √ m = K(m) = L(m). This is due to the fact that it is usually difficult to study maps with two holes; see Figure 2. (For m = 2, we can use the symmetry of the map T , and for L(m) = 1 + √ m, we can restrict to sequences in {0, 1} ∞ . ) New ideas are needed for the general case.

Finally, Sturmian holes are key ingredients in [START_REF] Sidorov | Supercritical holes for the doubling map[END_REF], where supercritical holes for the doubling map are studied. Do our Thue-Morse-Sturmian sequences also play a role in this context?

  (β -1)(1 + π β (0w1)) = (β -1)βπ β (10w) = (β -1) 2 β |σ(0)| β |σ(0)| -1 = βπ β (1w0),where β > 1 is defined by π β (20w0) = 1 and |σ(0)| is the length of σ(0), hence µ σ(0) = (β-1) 2 β |σ(0)| /(β |σ(0)| -1). Are there similar formulas for σ ∈ {L, M, R} * M ?

This work was supported by the Agence Nationale de la Recherche through the project CODYS (ANR-18-CE40-0007).

We can assume that v ∈ {0, 1} or inf 1 (v) = inf(v) and sup 0 (v) = sup(v), by Lemma 4. If v = 0, then we cannot have inf(v) < inf(σ(10)) because this would imply that inf(ϕ(v)) < inf(ϕσ(10)) by Lemma 3. Similarly, we obtain that sup(v) ≤ sup(σ(10)) if v = 1. If v = 0, ϕ ∈ {L, R}, then inf(ϕ(0)) ≥ inf(ϕσ(10)) implies that inf(σ(10)) = 0, thus v = σ(0). Similarly, if v = 1 and ϕ ∈ {L, R}, then sup(ϕ(1)) ≤ sup(ϕσ(01)) implies that sup(σ(01

We obtain the following lower bound for L(m), cf. Figure 3.

by Lemma 1, thus inf(v) > inf(σ(10)) and sup(v) < sup(σ(010)) by Lemma 2. By Lemma 5, v ends with σ(v ′ ) for some (aperiodic) v ′ ∈ {0, 1} ∞ , contradicting that sup(v) < sup(σ(010)). Symetrically, we get that L(m) ≥ f σ(01) (m) for m ≥ µ σ(101) .

If u is a limit word of a primitive sequence (σ n ) n≥1 ∈ {L, M, R} ∞ , then we have

) for some n ≥ 1, and we obtain as in the previous paragraph that U β (m) ∩ {0, 1} ∞ is at most countable. Therefore, we have L(m) ≥ g u (m) and, similarly, L(m) ≥ f u (m) for m ≥ µ u . We have to refine these partitions. For σ = (σ n ) n≥1 ∈ {L, M, R} ∞ , set

Note that, for a primitive sequence σ, inf(u) as well as sup(u) does not depend on the limit word u. We order sequences in {L, M, R} ∞ lexicographically.

Lemma 6. In {0, 1} ∞ , we have

Proof. We clearly have I σ ⊂ (0, 01) for all σ ∈ {L, M, R} ∞ . For all σ ∈ {L, M, R} * , Lemma 3 gives that inf(σ(10)) = inf(σL(10)), inf(σL(101)) = inf(σM (10)), and we have M (1) = R(10), R(101) = 101, thus (inf(σ(10)), inf(σ(101))) = (inf(σL(10)), inf(σL(101)))

∪ {inf(σM (10))} ∪ (inf(σM (10)), inf(σM (101)))

(in this order). Inductively, we obtain that the sets I σ are ordered by the lexicographical order on {L, M, R} ∞ . Moreover, the union of sets I σ with σ ending in M L or M R covers (inf(10), inf(101)) = (0, 01), except for points lying in the intersection of nested intervals n≥1 (inf(σ

for large n, these intervals tend to some v ∈ {0, 1} ∞ . If σ is primitive, then Hence, the J σ are also ordered by the lexicographical order on {L, M, R} ∞ .

Proposition 3. We have the partition Proof. For m ∈ (1, µ 01 ), σ ∈ {L, M, R} ∞ , let

{g u (m) : u is a limit word of σ} if σ is primitive,