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Abstract. This work presents an efficient numerical method based on spectral expan-

sions for simulation of heat and moisture diffusive transfers through multilayered porous

materials. Traditionally, by using the finite-difference approach, the problem is discretized

in time and space domains (Method of lines) to obtain a large system of coupled Ordinary

Differential Equations (ODEs), which is computationally expensive. To avoid such a cost,

this paper proposes a reduced-order method that is faster and accurate, using a much

smaller system of ODEs. To demonstrate the benefits of this approach, tree case studies

are presented. The first one considers nonlinear heat and moisture transfer through one

material layer. The second case – highly nonlinear – imposes a high moisture content

gradient – simulating a rain like condition – over a two-layered domain, while the last

one compares the numerical prediction against experimental data for validation purposes.

Results show how the nonlinearities and the interface between materials are easily and

naturally treated with the spectral reduced-order method. Concerning the reliability part,

predictions show a good agreement with experimental results, which confirm robustness,

calculation efficiency and high accuracy of the proposed approach for predicting the cou-

pled heat and moisture transfer through porous materials.
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1. Introduction

Energy consumption of conditioned spaces is strongly related to heat transfer through
porous structures, which are dependent of external (weather) and internal conditions. More-
over, moisture migration and accumulation within the porous structures considerably affect
the transient hygrothermal performance of porous elements, especially in buildings. Thus,
coupled hygrothermal simulations are important to estimate envelope energy performance
and risks associated to the presence of moisture such as material degradation, mold growth
and related health aspects of occupants.

Initially, the major hypothesis was of no coupling between governing equations of heat
and moisture transfers. Although, in porous materials, moisture transfer and accumulation
have a direct impact on the heat transfer, especially when there is phase change [5, 37, 43].
As presented by Deru [13], to precisely determine the heat losses, simultaneous calculations
with moisture content are required, as they are closely interdependent. Temperature and
moisture contents are highly interconnected phenomena and, hence, must be simulated
together [4, 33]. For instance, moisture can affect the effective thermal conductivity by a
factor of ten.

However, there are some challenges on how to characterize mathematically those physical
processes, due to the complexity of the physical phenomena and to the porous structure.
Studies of heat and moisture transfer have been published since 1950’s by Philip and
De Vries [40] and Luikov [29]. They represented the coupled processes of heat and
moisture transfer by a system of two nonlinear second-order partial differential equations
which uses as driving potentials the temperature and the moisture content gradients. The
system is nonlinear mainly since of the phase change term in the energy conservation
equation and also due to the fact the transport coefficients are highly moisture content
and/or temperature dependent. Although, the paramount importance of accurately predict
moisture content and temperature fields in several fields of science, detailed simulation of
the heat and moisture transfer has only been performed with the improvement of the
computer systems. The main reason for that is due to the complexity of the problem and
to the high computational cost to solve the coupled heat and moisture transfer equations,
which is at least two orders of magnitude greater than that needed to solve only the heat
conduction equation [13].

The numerical models used to predict heat and moisture transfer have to deal with multi-
scale effects in both space and time domains, with different characteristic times and lengths.
For example, simulation of building behavior is generally analyzed on the scale of one year
(or more). However, the phenomena and particularly the boundary conditions evolve on a
time scale of minutes or even seconds. The geometric configurations of the buildings require
three-dimensional modeling of lengthy elements such as facades and ground. Furthermore,
when dealing with heat and moisture, the nonlinear behavior of the materials should be
taken into account. The combination of all those factors implies the use of more robust
and efficient numerical methods since no analytical solution does exist for those problems.
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For modeling purposes, the problem previously described is generally solved by the finite-
difference methods [16, 19], the finite-volume methods [14, 32, 35] and the finite-element
methods [27, 44, 47], which are well-established methods in the field of heat and mass
transfer. The basics of a numerical approach is the idea of making an approximation of
the solution, which takes a solution for a finite number of degrees of freedom (DOFs).
The greater the number of discrete points, the closer to the exact solution will be the
approximated solution [31].

However, when the solution of one problem requires long simulation periods (years),
considering an entire building, with a very fine time step and mesh refinement, compu-
tation becomes too time-consuming. To solve this problem, model reduction techniques
can be used as an alternative to approach the solution of the problem and reduce the
computational cost.

The intent to construct reduced-order models (ROMs) is to provide an accurate descrip-
tion of the physical phenomena by decreasing the number of degrees of freedom, while
retaining the model’s fidelity, at a computational cost much lower than the large original
model [42]. In recent years, reduced-order modeling techniques have proven to be powerful
tools for solving various problems. Important efforts have been dedicated to developing
reduced-order models that can provide accurate predictions while dramatically reducing
computational time, for a wide range of applications, covering different fields such as fluid
mechanics, heat transfer, structural dynamics, among others [2, 24, 28]. Reduced-order
models – such as POD (Proper Orthogonal Decomposition), MBR (Modal Basis Reduc-
tion) and PGD (Proper Generalized Decomposition) – have shown a relevant reduction
of the computational cost and have been successfully employed by the building physics
community [3]. In those works, they have applied reduced-order models to build accurate
solutions with less computational effort than the complete original model. Reduced-order
models can be classified as a priori or a posteriori methods. The a posteriori approaches
need a preliminary computed (or even experimental) solution data of the large original
problem to build the reduced one. Whereas the a priori ones do not need preliminary
information on the studied problem. The reduced-order model is unknown a priori and
is directly built. A careful attention must be paid regarding the definition of ROMs since
sometimes it is related to the degradation of the physical model [46], which is not the case
of the present work.

Another promising approach to solve the coupled transfer problem is the spectral method,
which is a robust and highly accurate method that has been applied to solve partial differ-
ential equations since the 70’s, but lost its spot due to the difficulties to treat nonlinearities,
complex geometries, irregular domains, and non-periodic boundary conditions. However,
the Spectral methods have overcome some of the mentioned difficulties and now they are
successfully applied in studies of wave propagation, meteorology, computational fluid dy-
namics, quantum mechanics and other fields [8]. The main attractiveness of this method
is the superior rate of convergence and the low dissipation and dispersion errors, mak-
ing its use also attractive to the industry. Nonetheless, spectral methods still have some
constraints. For example, complex geometries are one of their main drawbacks as they
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work better when the geometry of the problem is fairly smooth and regular [6], while
finite-element methods are particularly well suited to problems in very complex geome-
tries. Moreover, spectral methods can offer higher accuracy in geometries like boxes and
spheres, which can be combined into more complex shapes [9, 17]. In applications where
geometry-related disadvantages are not present, the classic finite-element, finite-volume
and finite-difference methods do not come close in terms of efficiency.

Some works related to transport phenomena can be found in literature involving diffusive
[22, 50], convective [11, 41] and radiative [10, 26, 30] heat transfer. The spectral techniques
applied in these works are diversified, adopted according to the geometry, boundary con-
ditions and field of application. In recent works, researchers have implemented spectral
methods for solving heat and moisture transfer in food engineering [38] and on fluid flow
[36]. Recently, in [20], the authors have studied the moisture transfer in porous build-
ing materials considering layered domains, and in [18], they have compared the Spectral
method to others ROMs, applied to parametric problems of the building physics field.

Therefore, the scope of this work is to continue the investigations presented in [20] and
[18], extending it to the coupled heat and mass transfer. Here, the Spectral method is
used to compute one-dimensional heat and moisture diffusion transfer in porous materials,
which is validated against experimental data from the literature. The problems treated here
involve irregular domains, high nonlinear transport coefficients and non-periodic boundary
conditions. The objective is to significantly reduce the computational cost while maintain-
ing high fidelity solutions. This technique assumes separated tensorial representation of
the solution by a finite sum of function products. It fixes a set of spatial basis functions
to be the Chebyshev polynomials and then, a system of ordinary differential equations
is built to compute the temporal coefficients of the solution using the Tau–Galerkin

method.
The efficiency of the Spectral approach will be analyzed for simple and multilayered do-

mains with highly nonlinear properties and with sharp boundary conditions and profiles of
solutions. For this purpose, the manuscript is organized as follows. First, the description of
the physical phenomena is presented (Section 2). Then, the Spectral technique is described
(Section 3). In the sequence, the proposed method is applied to two different cases: (i) con-
sidering heat and moisture transfer through a single layer (Section 4.1) and (ii) focusing on
the heat and moisture transfer through a multilayered domain (Section 4.2). Finally, the
method and the model are compared with experimental data from literature in Section 5,
considering a single material with real boundary conditions. The main conclusions of the
study are outlined in Section 6.

2. Mathematical model

The physical problem considers heat and moisture transfer through a porous material
defined in the one-dimensional spatial domain Ωx = [ 0, L ] and in the time horizon
Ω t = [ 0, τ ] . The moisture transfer occurs due to capillary migration and vapour diffusion.
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The heat transfer is governed by diffusion and latent mechanisms. The physical model of
the problem can be formulated as [3]:

1

P s

∂w

∂φ

∂P v

∂t
− ∂

∂x

[(

k l

R v T ρ l

P v

+ δ v

)

∂P v

∂x

]

= 0 , (2.1a)

(

ρ 0 c 0 + w cw

) ∂T

∂t
− ∂

∂x

[

λ ∇T + L v δ v

∂P v

∂x

]

= 0 , (2.1b)

where w [kg/m3] is the material volumetric moisture content, φ [−], the relative humidity,
δ v [s] and k l [s], the vapour and liquid permeabilities, P v [Pa], the vapour pressure, P s [Pa],
the saturation pressure, T [K], the temperature, R v [J/(kg · K)] , the water vapour gas
constant, c 0 [J/(kg · K)], the material specific heat, ρ 0 [kg/m3], the material specific mass,
ρ l [kg/m

3] , the water specific mass, cw [J/(kg · K)] , the water specific heat, λ [W/(m · K)],
the thermal conductivity, and, L v [J/kg] , the latent heat of vaporization. Table 1 presents
the values of the water properties considered in this work.

The relation between the moisture content w and the relative humidity φ is given by
the sorption isotherm and the relation between the vapour pressure P v and the relative
humidity φ is given by φ = P v/P s(T ) . In addition, the following assumptions are adopted
in this study: (i) no hysteresis effect; (ii) temperature within the range [0, 40]◦C ; (iii) no
temperature dependency on the mass balance equation and (iv) properties are dependent
only on the vapour pressure field.

Thus, considering the following notation:

kM

def
:= k l

ρ l R v T

P v

+ δ v : the total moisture transfer coefficient

under vapour pressure gradient,

kTM

def
:= L v δ v : the heat coefficient due to a vapour pressure gradient,

kT

def
:= λ : the heat transfer coefficient under temperature gradient,

cM

def
:=

1

P s

∂w

∂φ
: the moisture storage coefficient,

cT

def
:= ρ 0 c 0 + w cw : the energy storage coefficient,

system (2.1) can be rewritten in one-dimensional form as:

cM (P v)
∂P v

∂t
− ∂

∂x

[

kM (P v)
∂P v

∂x

]

= 0 , (2.2a)

cT (P v)
∂T

∂t
− ∂

∂x

[

kT (P v)
∂T

∂x
+ kTM (P v)

∂P v

∂x

]

= 0 . (2.2b)
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Finally, the problem of interest is a coupled system of two nonlinear parabolic partial
differential equations, with vapour pressure P v and temperature T gradients as driving
potentials.

Boundary conditions. The moisture exchange between the environment and the surface is
driven by vapour exchange, including evaporation and condensation, and by driving rain:

n ·
(

kM

∂P v

∂x

)

= hM

(

P v − P v,∞ (t)
)

− g∞ (t) , (2.3)

where P v,∞ [Pa] stands for the vapour pressure far from the surface and, hM [s/m], is
the convective moisture transfer coefficient. If the bounding surface is in contact with the
outside air, g∞ [kg/(m2 · s)] is the liquid flow from wind driven rain. The normal n assumes
+1 or − 1 at the left or right boundary sides.

The heat balance at the boundary includes the convective exchange, the latent heat
transfer due to vapour exchange, and the sensible heat transfer due to precipitation, which
is expressed as:

n ·
(

kT

∂T

∂x
+ kTM

∂P v

∂x

)

= hT

(

T − T∞ (t)
)

+ L v hM

(

P v − P v,∞ (t)
)

− H l g∞ (t) , (2.4)

where T∞ [K] is the temperature of the air that varies over time and hT [W/(m2 · K)] is
the convective heat transfer coefficient. Regarding to the moisture part, L v [J/kg] is the
latent heat of vaporization of water and H l = cw (T∞ − T ref) [J/kg] is the liquid water
enthalpy, with T ref = 273K .

Initial conditions. The initial conditions can either have a uniform distribution or a profile
more appropriated to the boundary conditions to reduce a warm-up simulation period,
which can be very significant depending on the material hygrothermal properties and on
the thickness of the building component.

P v (x , t = 0) = P v, 0 (x) ,

T (x , t = 0) = T 0 (x) .

Interface. The configuration assumed at the interface between materials follows the hy-
draulic continuity [12], which considers interpenetration of both porous structure layers.
Consider two different materials, both of them are homogeneous and isotropic, and the
coupled heat and moisture transfer are simulated, through a perfectly airtight structure.
The hydraulic continuity assumes that there is a continuous moisture distribution of vapour
content and temperature:

P v, 1 (x int, t) = P v, 2 (x int, t) , (2.5a)

T 1 (x int, t) = T 2 (x int, t) , (2.5b)
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Table 1. Hygrothermal properties of water.

Property Value Unit

Heat capacity, cw 4180 [J/(kg · K)]
Latent heat of evaporation, L v 2.5 · 10 6 [J/kg]

Water gas constant, R v 462 [J/(kg · K)]
Density, ρ l 1000 [kg/m3]

Saturation pressure, P s (T ) 997.3 ·
(

T − 159.5

120.6

)8.275

[Pa]

a continuous moisture flow and a continuous heat flux across the interface verify:
(

kM,1
∂P v, 1

∂x

)∣

∣

∣

∣

∣

x int

=

(

kM, 2
∂P v, 2

∂x

)∣

∣

∣

∣

∣

x int

, (2.6a)

(

kT,1
∂T 1

∂x
+ kTM,1

∂P v, 1

∂x

)∣

∣

∣

∣

∣

x int

=

(

kT, 2
∂T 2

∂x
+ kTM, 2

∂P v, 2

∂x

)∣

∣

∣

∣

∣

x int

, (2.6b)

where x int ∈ Ωx represents the location of the interface between materials. Therefore, we
can split the spatial domain in two parts, Ωx, 1 = [ 0 , x int ] and Ωx, 2 = ( x int , L ] , which
represent the spatial domain of material 1 and material 2 .

Fluxes and flows. One of the interesting outputs in the building physics framework is the
heat flux, divided into sensible q s and latent q l heat fluxes [W/m2], which are defined as:

q s (t)
def
:= − kT

∂T

∂x

∣

∣

∣

∣

x 0

and q l (t)
def
:= − kTM

∂P v

∂x

∣

∣

∣

∣

x 0

.

The moisture flow g [kg/(m2 · s)] is similarly computed:

g (t)
def
:= − kM

∂P v

∂x

∣

∣

∣

∣

x 0

,

where x 0 ∈ [ 0 , L ] .

2.1. Dimensionless formulation

Before solving directly the problem, it is of capital importance to get a dimensionless
formulation of the problem under consideration [25]. In this way, we define the following
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dimensionless quantities:

u
def
:=

T

T ref

, v
def
:=

P v

P v, ref

, x ⋆ def
:=

x

L ref

,

t ⋆
def
:=

t

t ref

, c ⋆
M

def
:=

cM · L 2
ref

kM, ref · t ref

, c ⋆
T

def
:=

cT · L 2
ref

kT, ref · t ref

,

k ⋆
M

def
:=

kM

kM, ref

, k ⋆
T

def
:=

kT

kT, ref

, k ⋆
TM

def
:=

kTM · P v, ref

kT, ref · T ref

,

BiT
def
:=

hT · L ref

kT, ref

, BiM
def
:=

hM · L ref

kM, ref

, BiTM

def
:=

hM · L v · L ref · P v, ref

kT, ref · T ref

,

g ⋆
∞

def
:=

g∞ · L ref

kM, ref · P v, ref

, H ⋆
l

def
:=

H l · kM, ref · P v, ref

kT, ref · T ref

.

where the subscript ref represents a reference value, chosen according to the application
problem and the superscript ⋆ represents a dimensionless quantity of the same variable.
Therefore, the governing system (2.2) can be written in a dimensionless form as:

c ⋆
M

∂v

∂t ⋆
− ∂

∂x ⋆

(

k ⋆
M

∂v

∂x ⋆

)

= 0 , (2.7a)

c ⋆
T

∂u

∂t ⋆
− ∂

∂x ⋆

(

k ⋆
T

∂u

∂x ⋆
+ k ⋆

TM

∂v

∂x ⋆

)

= 0 . (2.7b)

The dimensionless formulation of the boundary conditions are:

n ·
(

k ⋆
M

∂v

∂x ⋆

)

= BiM

(

v − v∞ (t ⋆)
)

− g ⋆
∞
(t ⋆) ,

n ·
(

k ⋆
T

∂u

∂x ⋆
+ k ⋆

TM

∂v

∂x ⋆

)

= BiT

(

u − u∞ (t ⋆)
)

+ BiTM

(

v − v∞ (t ⋆)
)

− H ⋆
l g

⋆
∞
(t ⋆) ,

and of the initial conditions are:

u (x ⋆ , t ⋆ = 0) = u 0 (x
⋆) ,

v (x ⋆ , t ⋆ = 0) = v 0 (x
⋆) .
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Interface conditions in the dimensionless form are written as:

v 1 (x
⋆
int, t

⋆) = v 2 (x
⋆
int, t

⋆) , (2.8a)

u 1 (x
⋆
int, t

⋆) = u 2 (x
⋆
int, t

⋆) , (2.8b)

k ⋆
M, 1

∂v 1

∂x ⋆

∣

∣

∣

∣

∣

x ⋆

int

= k ⋆
M, 2

∂v 2

∂x ⋆

∣

∣

∣

∣

∣

x ⋆

int

, (2.8c)

(

k ⋆
T, 1

∂u 1

∂x ⋆
+ k ⋆

TM, 1

∂v 1

∂x ⋆

)∣

∣

∣

∣

∣

x ⋆

int

=

(

k ⋆
T, 2

∂u 2

∂x ⋆
+ k ⋆

TM, 2

∂v 2

∂x ⋆

)∣

∣

∣

∣

∣

x ⋆

int

. (2.8d)

In the following, we drop ⋆ for the sake of clarity.

3. Spectral reduced-order model

Spectral methods consider a sum of polynomials that suit for the whole domain, pro-
viding a high approximation of the solution. The smoother a function is, the faster the
convergence of its spectral series [6]. For considerably smooth problems, the error decreases
exponentially, making the solution with the same order of accuracy of other methods but
with a much lower number of degrees of freedom. As a result, this method has a low mem-
ory usage, allowing to store and operate a lower number of variables [48]. The Spectral
methods used in this work are the Chebyshev polynomials on the basis function and the
Tau–Galerkin method to compute the temporal coefficients.

3.1. Method description

Problem (2.7) has an important difficulty in dealing with the nonlinearities of the storage
c and diffusion k coefficients, all of them depending on the moisture content field. These
coefficients are usually given by empirical functions from experimental data. For this
reason, Eq. (2.7a) and (2.7b) are recalled with a simplified notation:

cM (v)
∂v

∂t
− ∂

∂x

[

kM (v)
∂v

∂x

]

= 0 , (3.1a)

cT (v)
∂u

∂t
− ∂

∂x

[

kT (v)
∂u

∂x
+ kTM (v)

∂v

∂x

]

= 0 . (3.1b)
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In addition, boundary conditions are simplified and also written with a shorter notation,
just for the sake of explaining the method in a pedagogical way/manner:

n ·
(

kM (v)
∂v

∂x

)

= BiM,L

(

v − v∞, L (t)
)

, (3.2a)

n ·
(

kT (v)
∂u

∂x
+ kTM (v)

∂v

∂x

)

= BiT,R

(

u − u∞,R (t)
)

(3.2b)

+ BiTM,R

(

v − v∞,R (t)
)

. (3.2c)

A special attention must be given to the spatial domain because the Chebyshev Spectral
method is traditionally presented on the canonical interval

[

− 1 , 1
]

. Thus, if the dimen-
sionless interval is not within

[

− 1 , 1
]

, a change of variables (domain transformation)
must be performed for the computational domain.

In order to apply better the spectral method, Eqs. (3.1a) and (3.1b) are written in the
non-conservative form as:

∂v

∂t
− ν (v)

∂ 2v

∂x 2
− λ (v)

∂v

∂x
= 0 , (3.3a)

∂u

∂t
− α (v)

∂ 2u

∂x 2
− β (v)

∂u

∂x
− γ (v)

∂ 2v

∂x 2
− δ (v)

∂v

∂x
= 0 , (3.3b)

where,

ν (v)
def
:=

kM (v)

cM (v)
, λ (v)

def
:=

1

cM (v)
·
∂
(

kM (v)
)

∂x
,

α (v)
def
:=

kT (v)

cT (v)
, β (v)

def
:=

1

cT (v)
·
∂
(

kT (v)
)

∂x
,

γ (v)
def
:=

kTM (v)

cT (v)
, δ (v)

def
:=

1

cT (v)
·
∂
(

kTM (v)
)

∂x
.

The unknowns u ( x, t ) and v ( x, t ) from Eq. (3.3) are accurately represented as a finite
sum [34, Chap. 6]:

v ( x, t ) ≈ vn ( x, t ) =
n
∑

i=0

a i (t)T i (x) , i = 0, 1, 2, . . . , n , (3.4a)

u ( x, t ) ≈ un ( x, t ) =
n
∑

i=0

b i (t)T i (x) , i = 0, 1, 2, . . . , n . (3.4b)

Here, {T i (x)}n
i=0 are the Chebyshev polynomials, {a i (t)}n

i=0 are the corresponding
time-dependent spectral coefficients and n represents the number of degrees of freedom of
the solution component. Eqs. (3.4a) and (3.4b) can be seen as a series truncation from
N = n + 1 modes. The Chebyshev polynomials are chosen as the basis functions
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since they are optimal in L∞ approximation norm [21]. Therefore, the expression of the
derivatives in the Chebyshev basis are:

∂vn

∂x
=

n
∑

i=0

a i (t)
∂T i

∂x
(x) =

n
∑

i=0

ã i (t)T i (x) , (3.5a)

∂ 2vn

∂x 2
=

n
∑

i=0

a i (t)
∂ 2T i

∂x 2
(x) =

n
∑

i=0

˜̃a i (t)T i (x) , (3.5b)

∂vn

∂t
=

n
∑

i=0

ȧ i (t)T i (x) , (3.5c)

where the dot denotes ȧ i (t)
def
:=

d a (t)

dt
according to Newton notation. Note that the

derivatives are re-expanded in the same basis function. As a result, coefficients {ã i (t)}
and {˜̃a i (t)} must be re-expressed in terms of coefficients {a i (t)} . The connection is given
explicitly from the recurrence relation of the Chebyshev polynomial derivatives [39]:

ã i =
2

c i

n−1
∑

p= i+1
p+ i odd

p a p , i = 0, 1, . . . , n− 1,

ãn ≡ 0 ,

˜̃a i =
1

c i

n−2
∑

p= i+2
p+ i even

p
(

p 2 − i 2
)

a p , i = 0, 1, . . . , n− 2,

˜̃an−1 ≡ ˜̃an ≡ 0 ,

with,

c i =

{

2 , if i = 0 ,

1 , if i > 0 .

The derivatives of u (x, t) are written in a similar way by just replacing v by u and a by b .
Thus, the derivatives defined by Eqs. (3.5a), (3.5b) and (3.5c) are replaced into Eqs. (3.3a)
and (3.3b) to provide the residuals:

R 1 =

n
∑

i=0

ȧ i (t)T i (x) − ν

( n
∑

i=0

a i (t)T i (x)

) n
∑

i=0

˜̃a i (t)T i (x) − λ

( n
∑

i=0

a i (t)T i (x)

) n
∑

i=0

ã i (t)T i (x) ,

(3.6a)

R 2 =

n
∑

i=0

ḃ i (t)T i (x) − α

( n
∑

i=0

a i (t)T i (x)

) n
∑

i=0

˜̃
b i (t)T i (x) − β

( n
∑

i=0

a i (t)T i (x)

) n
∑

i=0

b̃ i (t)T i (x)

− γ

( n
∑

i=0

a i (t)T i (x)

) n
∑

i=0

˜̃a i (t)T i (x) − δ

( n
∑

i=0

a i (t)T i (x)

) n
∑

i=0

ã i (t)T i (x) , (3.6b)



S. Gasparin, D. Dutykh & N. Mendes 14 / 43

which are considered a misfit of the approximate solution. The purpose is to minimize
the residual so the solution satisfies the governing equations. To this end, the residual is
minimized via the Tau–Galerkin method, which requires that Eqs. (3.6a) and (3.6b) be
orthogonal to the Chebyshev basis functions 〈R ,T j 〉 = 0 :

〈R ,T j 〉 =

ˆ 1

−1

R ( x , t )T j ( x )√
1 − x 2

dx = 0 , j = 0, 1, 2, . . . , n− 2 . (3.7)

As a result, the project residuals are:

M · ȧ i (t) = G i, j · ˜̃a i (t) + Λ i, j · ã i (t) , (3.8a)

M · ḃ i (t) = M i, j · ˜̃b i (t) + N i, j · b̃ i (t) + F i, j · ˜̃a i (t) + J i, j · ã i (t) , (3.8b)

where, M is a diagonal and the singular matrix (rank (M ) = N − 2) which contains
the coefficients of the Chebyshev weighted orthogonal system. The matrix M has the
following form:

M =





















π
π
2

0

. . .
π
2

0 0

0





















,

and, the matrices with indices (i , j) written as:

G i, j =

ˆ 1

−1

ν
(

∑n

i=0
a i (t)T i (x)

)

T i (x)T j (x)
√
1 − x 2

dx , Λ i, j =

ˆ 1

−1

λ
(

∑n

i=0
a i (t)T i (x)

)

T i (x)T j (x)
√
1 − x 2

dx ,

M i, j =

ˆ

1

−1

α
(

∑n

i=0
a i (t)T i (x)

)

T i (x)T j (x)
√
1 − x 2

dx , N i, j =

ˆ

1

−1

β
(

∑n

i=0
a i (t)T i (x)

)

T i (x)T j (x)
√
1 − x 2

dx ,

F i, j =

ˆ

1

−1

γ
(

∑n

i=0
a i (t)T i (x)

)

T i (x)T j (x)
√
1 − x 2

dx , J i, j =

ˆ

1

−1

δ
(

∑n

i=0
a i (t)T i (x)

)

T i (x)T j (x)
√
1 − x 2

dx .

with indices i , j are the ones defined in Eqs. (3.4) and (3.7).
By using the Chebyshev–Gauß quadrature, the integrals are also approximated by a

finite sum:

G i, j ≈ π

m

m
∑

k=1

ν k T i (x k)T j (x k) , Λ i, j ≈ π

m

m
∑

k=1

λ k T i (x k)T j (x k) ,

M i, j ≈ π

m

m
∑

k=1

α k T i (x k)T j (x k) , N i, j ≈ π

m

m
∑

k=1

β k T i (x k)T j (x k) ,

F i, j ≈ π

m

m
∑

k=1

γ k T i (x k)T j (x k) , J i, j ≈ π

m

m
∑

k=1

δ k T i (x k)T j (x k) ,
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where,

ν k

def
:= ν

(

n
∑

i=0

a i (t)T i (x k)

)

, λ k

def
:= λ

(

n
∑

i=0

a i (t)T i (x k)

)

,

α k

def
:= α

(

n
∑

i=0

a i (t)T i (x k)

)

, β k

def
:= β

(

n
∑

i=0

a i (t)T i (x k)

)

,

γ k

def
:= γ

(

n
∑

i=0

a i (t)T i (x k)

)

, δ k

def
:= δ

(

n
∑

i=0

a i (t)T i (x k)

)

,

and x k are the Chebyshev nodes:

x k = cos

(

2 k − 1

2m
π

)

, k = 1, 2, . . . , m .

The value of m is approximately the same as the number of modes, as discussed in [20].
To complete the problem, the boundary conditions are also written in the form of

the residuals. First, the boundary conditions associated to the moisture transport —
Eq. (3.2a):

ω 1 = kM

( n
∑

i=0

a i (t)T i (−1)

) n
∑

i=0

ã i (t)T i (−1) − BiM,L

( n
∑

i=0

a i (t)T i (−1) − v∞, L

)

,

ω 2 = kM

( n
∑

i=0

a i (t)T i (1)

) n
∑

i=0

ã i (t)T i (1) + BiM,R

( n
∑

i=0

a i (t)T i (1) − v∞, R

)

.

Then, the boundary conditions for Eq. (3.2c), regarding the heat transport:

κ 1 = kT

( n
∑

i=0

a i (t)T i (−1)

) n
∑

i=0

b̃ i (t)T i (−1) + kTM

( n
∑

i=0

a i (t)T i (−1)

) n
∑

i=0

ã i (t)T i (−1)

− BiT,L

( n
∑

i=0

b i (t)T i (−1) − u∞, L

)

− BiTM,L

( n
∑

i=0

a i (t)T i (−1) − v∞, L

)

,

κ 2 = kT

( n
∑

i=0

a i (t)T i (1)

) n
∑

i=0

b̃ i (t)T i (1) + kTM

( n
∑

i=0

a i (t)T i (1)

) n
∑

i=0

ã i (t)T i (1)

+ BiT,R

( n
∑

i=0

b i (t)T i (1) − u∞, R

)

+ BiTM,R

( n
∑

i=0

a i (t)T i (1) − v∞,R

)

,

with T i (− 1) = (− 1) i and T i ( 1 ) ≡ 1 (see [39] for more details).
In this way, it is possible to compose the system of ODEs to be solved, plus the four

additional algebraic expressions regarding the boundary conditions. Finally, the system of
differential–algebraic equations (DAEs) has the following form:

(

M 0

0 M

)[

ȧn

ḃn

]

=

(

A 0

B C

)

·
[

an (t)

bn (t)

]

+

[

b 1 (t)

b 2 (t)

]

, (3.9)
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where b 1 (t) and b 2 (t) are vectors containing the boundary conditions, previously defined
by ω 1 , ω 2 , κ 1 and κ 2 :

b 1 (t) =





















0

0
...

0

ω 1

ω 2





















and b 2 (t) =





















0

0
...

0

κ 1

κ 2





















.

Matrix A is written from the right member of Eq. (3.8a), and, matrices B and C are written
from the right member of Eq. (3.8b).

Initial values of the coefficients {a i (t = 0)} and {b i (t = 0)} are calculated by the
orthogonal projection of the initial condition [8]:

a 0, i ≡ a i (0) =
2

π c i

ˆ 1

−1

v 0 (x)T i (x)√
1 − x 2

dx , i = 0, 1, . . . , n , (3.10a)

b 0, i ≡ b i (0) =
2

π c i

ˆ 1

−1

u 0 (x)T i (x)√
1 − x 2

dx , i = 0, 1, . . . , n , (3.10b)

where, v 0 (x) and u 0 (x), are the dimensionless initial condition.
Therefore, the reduced system of ODEs composed from Eqs. (3.9) and (3.10) can be

solved. Different approaches can be used to solve the system of ODEs (3.9). The most
straightforward solution is to apply a numerical integration scheme, with moderate ac-
curacy. So, with an embedded error control and not so stringent tolerances, it can be
done very efficiently. In this work, the Matlab™ environment was used to perform simula-
tions, and the solvers ODE15s or ODE23t were used to solve the differential-algebraic system
of equations (DAEs). The output are the vectors of spectral coefficients {a i (t)}n

i=0 and
{b i (t)}n

i=0 . Then, it enables to reconstruct the solution thanks to spectral representations.

3.2. Extension to multilayered domains

We present the idea for two materials, but it can be generalized to any finite number of
subdomains straightforwardly. Consider that the original spatial domain Ωx = [ 0, L ] is
decomposed into two subdomains Ωx, 1 = [ 0, x int ] and Ωx, 2 = ( x int, L ] , which represent
each material surface and x int represents the location of the interface, as previously defined.
From this, the unknowns v (x, t) and u (x, t) are then written as:

v (x, t) =

{

v 1 (x, t) , x ∈ Ωx, 1 ,

v 2 (x, t), x ∈ Ωx, 2 ,

u (x, t) =

{

u 1 (x, t), x ∈ Ωx, 1 ,

u 2 (x, t), x ∈ Ωx, 2 ,
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Figure 1. Schematic representation of the domain division with the real domain
(a) transformed linearly to obtain the spectral domain (b).

for t > 0 . Thus, v 1 , v 2 , u 1 and u 2 are written respectively as:

v 1 (x, t) =
n
∑

i=0

a i, 1 (t)T i (x) , v 2 (x, t) =
n
∑

i=0

a i, 2 (t)T i (x) ,

u 1 (x, t) =
n
∑

i=0

b i, 1 (t)T i (x) , u 2 (x, t) =
n
∑

i=0

b i, 2 (t)T i (x) .

Note that the Chebyshev polynomials T (x) are always the same and x must always
be in the closed set [−1, 1 ] . To assure this, the subdomains Ωx, 1 and Ωx, 2 are linearly
transformed to the spectral domains Ω̄x, 1 and Ω̄x, 2 , as illustrated in Figure 1, so they
can fit within the interval of interest, which should be seen as a horizontal coordinate in
each material. In addition, by separating the real domain in two spectral domains, the
smoothness of the solution is assured.

The condition at the interface between the two materials states the continuity of the
fields and the flows as in Eq. (2.8). It implies that the derivatives of the fields u and v are
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not continuous at the interface. This important remark has to be taken into account in
the construction of the spectral reduced-order model. Indeed, the domain is decomposed
in subdomains to maintain a smooth solution and particularly a continuous derivative on
each sub-domain. In this way, the model order reduction is optimal and ensures the error
of the Spectral-ROM to decrease exponentially. It is possible to build the reduced order
model considering the whole domain (without decomposition). However, the convergence is
undermined since the solution and its derivatives are not smooth at the interface between
two materials. Many more modes would be necessary to reach the same accuracy, as
detailed in Theorem 1 of [49, Chap. 4].

By considering the two materials, the DAE system represented in Eq. (3.9) becomes:











M 0

M

M

0 M











·

















ȧ i, 1

ḃ i, 1

ȧ i, 2

ḃ i, 2

















=



















A 1 0 0

B 1 C 1

A 2 0

0 B 2 C 2



















·

















an, 1 (t)

bn, 1 (t)

an, 2 (t)

bn, 2 (t)

















+

















b 1 (t)

b 2 (t)

b 3 (t)

b 4 (t)

















.

The interface conditions – Eq. (2.8) – are then written in the spectral form as:

ϑ 1 =

n
∑

i=0

a i, 1 (t) −
n
∑

i=0

a i, 2 (t) (−1) i ,

ϑ 2 = kM, 1

(

n
∑

i=0

a i, 1(t)

)

n
∑

i=0

ã i, 1(t) − kM, 2

(

n
∑

i=0

a i, 2(t) (−1) i

)

n
∑

i=0

ã i, 2(t) (−1) i ,

ϑ 3 =
n
∑

i=0

b i, 1 (t) −
n
∑

i=0

b i, 2 (t) (−1) i ,

ϑ 4 = kT, 1

(

n
∑

i=0

a i, 1(t)

)

n
∑

i=0

b̃ i, 1(t) + kTM,1

(

n
∑

i=0

a i, 1(t)

)

n
∑

i=0

ã i, 1(t)

− kT, 2

(

n
∑

i=0

a i, 2(t) (−1) i

)

n
∑

i=0

b̃ i, 2(t) (−1) i − kTM,2

(

n
∑

i=0

a i, 2(t) (−1) i

)

n
∑

i=0

ã i, 2(t) (−1) i ,
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which are included in vectors b 1 and b 2 and set equal to zero. In the same way, the
boundary conditions are written in the spectral form as:

σ 1 = kM, 1

( n
∑

i=0

a i (t)T i (−1)

) n
∑

i=0

ã i (t)T i (−1) − BiM,L

( n
∑

i=0

a i (t)T i (−1) − v∞, L

)

,

σ 2 = kM, 2

( n
∑

i=0

a i (t)T i (1)

) n
∑

i=0

ã i (t)T i (1) + BiM,R

( n
∑

i=0

a i (t)T i (1) − v∞, R

)

,

σ 3 = kT, 1

( n
∑

i=0

a i (t)T i (−1)

) n
∑

i=0

b̃ i (t)T i (−1) + kTM, 1

( n
∑

i=0

a i (t)T i (−1)

) n
∑

i=0

ã i (t)T i (−1)

− BiT, L

( n
∑

i=0

b i (t)T i (−1) − u∞, L

)

− BiTM,L

( n
∑

i=0

a i (t)T i (−1) − v∞, L

)

,

σ 4 = kT, 2

( n
∑

i=0

a i (t)T i (1)

) n
∑

i=0

b̃ i (t)T i (1) + kTM, 2

( n
∑

i=0

a i (t)T i (1)

) n
∑

i=0

ã i (t)T i (1)

+ BiT,R

( n
∑

i=0

b i (t)T i (1) − u∞,R

)

+ BiTM,R

( n
∑

i=0

a i (t)T i (1) − v∞, R

)

,

which are included in b 3 and b 4 and set equal to zero. Vectors b 1, b 2 , b 3 and b 4 are N × 1
column vectors with the form:

b 1 =





















0

0
...

0

ϑ 1

ϑ 2





















, b 2 =





















0

0
...

0

ϑ 3

ϑ 4





















, b 3 =





















0

0
...

0

σ 1

σ 2





















and b 4 =





















0

0
...

0

σ 3

σ 4





















.

With all elements listed before, it is possible to set the system to be solved. The system
of ODEs for solving the coupled heat and moisture transfer with two layers has the size of
4 ·N with four additional algebraic expressions for the boundary and interface conditions.
The initial condition is also given by Eq. (3.10) and the DAE system is solved by the
Matlab™ solver ODE15s. In this work, the approach was presented for a two-layered wall
for the sake of clarity, knowing it can be easily extended to any number of layers and any
other boundary conditions at their interfaces.

4. Numerical benchmark

To analyze the accuracy of the proposed method, the error between the solution Y num,
obtained by the Spectral or IMEX methods, and the reference solutions Y ref , are computed
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Figure 2. Ambient temperature (a) and relative humidity (b).

as functions of x using the following Euclidean norms:

ε Y
2 ( x )

def
:=

√

√

√

√

1

N t

N t
∑

j =1

(

Y num
j ( x , t j ) − Y ref

j ( x , t j )
) 2

,

where N t is the number of temporal steps and Y can be the temperature T or the vapour
pressure P v . The reference solution Y ref ( x , t ) is computed using the Matlab™ open source
toolbox Chebfun [15]. Moreover, the uniform norm error – ε Y

∞
– is given by the maximal

values of ε Y
2 ( x ) :

ε Y
∞

def
:= sup

x ∈

[

0 , L
]

ε Y
2 ( x ) .

4.1. Single-layered domain

Simulations of one-dimensional coupled heat and moisture transport are carried out
with the spectral method, the IMplicit-EXplicit (IMEX) method and a reference solution
to verify the applicability of the spectral method. The IMEX scheme approximates the
continuous operator to order O (∆x 2 + ∆t) . The advantage of this semi-implicit scheme
over the fully implicit one is to avoid sub-iterations in the solution procedure and, at the
same time, being stable and consistent.

This case study considers moisture-dependent coefficients cM , kM , cT , kT and kM as
illustrated in Figure 17 of Appendix B. Their variations are similar to the load bearing
material from Hagentoft [23], which are presented in Table 4 of Appendix A. The
material of 0.1 m of length has uniform vapour pressure and temperature initial conditions,
in which P v, 0 = 1.16 · 10 3 Pa and T 0 = 293K. The ambient temperature and relative
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Figure 3. Vapour pressure evolution at the boundaries (a) and vapour pressure
profiles inside the material (b).

humidity at the boundaries vary sinusoidally as illustrated in Figures 2(a) and 2(b). The
convective vapour transfer coefficients are hM,L = 2 · 10−7 s/m and hM,R = 3 · 10−8 s/m,
for the left and right boundaries, while the convective heat transfer coefficients are set to
hT,L = 25W/(m2 · K) and hT,R = 8W/(m2 · K). At the boundaries, only the convective
exchange is considered. The simulation is performed for 7 days . The dimensionless values
can be found in Appendix C.

The Spectral method is composed by N = 10 modes with m = 15 . The ODE15s was
used to solve System (3.9), with a tolerance set to 10− 5 . This solver is adaptive in time,
although it can provide the integration in time for the instants required. For this case, the
Spectral method was compared to the IMEX and to a reference solution computed using
the Chebfun Matlab™ toolbox [15]. All solutions have been computed with ∆x ⋆ = 10− 2 .
For the time discretization, the IMEX solution was computed with ∆t ⋆ = 10− 2 and the
Spectral with ∆t ⋆ = 10− 1 , to have the same order of error of the solution.

Vapour pressure variations at the boundaries are shown in Figure 3(a). In the first four
days, it is possible to observe the influence of the initial condition in which the vapour
pressure rises significantly, meaning that when the simulation started the material was not
in balance with the ambient environment. The vapour pressure at x = 0m and x = 0.1m
oscillates according to the boundary conditions while also retaining the moisture. As the
convective vapour transfer coefficient is higher at the left side, the material will exchange
more with the external environment making variations more visible.

Figure 3(b) shows the temperature variations at the boundaries of the material. The
temperature slowly oscillates according to the temperature ambient conditions and also
with the vapour pressure variations. As one could expect, vapor pressure and temperature
values inversely oscillate.
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Figure 4. Error of both solutions (a) and last spectral coefficient (b).

Results of the error ε 2 as a function of x are shown in Figure 4(a). The errors associated
to the IMEX scheme and to the Spectral method are of order of O (10−5 ), for temperature,
and of order of O (10−4 ) for moisture. The computer run time used to perform this case
and the error ε∞ are given in Table 2, which shows the spectral method is more efficient,
even compared to the IMEX, which is an improved method based on the Euler scheme as
it does not need sub-iterations. The number of degrees of freedom (DOF) of the Spectral
solution is considerably lower if compared to the IMEX solution, which impacts directly
on the computational time, making the Spectral approach 7 times more efficient for this
case.

Figure 4(b) displays the last coefficient an of the Spectral-ROM solution for the tem-
perature u and vapour pressure v solutions. The last spectral coefficient is the smallest
one and it gives the order of approximation of the residual [6, Page 51]. It works as an
upper bound on the error. For example, the error of the u solution in Figure 4(a) is of
order of O (10−5), which has the same magnitude of the last coefficient, as can be seen in
Figure 4(b).

To illustrate the rate of convergence of the methods, Figure 5(a) presents the error ε∞

as a function of the number of modes N for the Spectral solution, and, as a function
of the number of spatial nodes Nx for the IMEX solution. As the number of modes
increases, the solution of the Spectral method converges exponentially and stabilizes with
approximatively 13 modes, reaching an accuracy of order of O (10−5) , which is equivalent
to the tolerance set on the solver ode15s. On the other hand, the IMEX method converges
slower than the Spectral method. It needs at least 100 spatial nodes to reach the same
accuracy of the Spectral method: the CPU time of each simulation was measured and it is
presented in Figure 5(b). The computational time increases faster for the Spectral method.
However, the spectral solution does not need many modes to converge to an acceptable
accuracy (N ≃ 10).
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Figure 5. Error ε∞ (a) and the equivalent CPU time (b) as a function of the
number of modes N for the Spectral solution and as a function of the number of

spatial nodes N x for the IMEX solution.

Table 2. Some features of the one-layer heat and moisture transfer case.

IMEX Spectral N = 10

∆t ⋆ 1.00 · 10−2 1.00 · 10−1

ε u
∞

1.48 · 10−5 3.30 · 10−5

ε v
∞

1.43 · 10−4 2.31 · 10−4

DOF 200 20

CPU time (s) 6.46 0.94

CPU time (%) 100 15

The Spectral method has demonstrated good agreement to represent the physical model
and the fidelity of the model is not deteriorated with the use of this approach.

4.2. Multi-layered domain

This case study considers a porous wall formed by 2 layers: 8-cm load bearing material
and 2-cm finishing material. Figure 6 shows its schematic representation. The first layer has
a faster liquid transfer, while the second layer acts as a hygroscopic finish. The properties of
these materials are given in Tables 4 and 5. Considering the temperature range of interest
in building applications, temperature dependence was neglected when compared to their
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Figure 6. Schematic representation of the two-layers wall.
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Figure 7. Liquid flow g∞ at the left boundary (a) and associated sensible heat flux (b).

dependence on moisture content, with the transport coefficients calculated as a function of
the moisture content.

Initial conditions are considered to be uniform over the spatial domain, with the initial
temperature of T 0 = 293.15 K and the initial vapour pressure of P v, 0 = 1.16 · 10 3 Pa,
regarding to a relative humidity of 50% . The boundary conditions oscillate sinusoidally
during 7 days of simulation, which are represented in Figures 2(a) and 2(b). The con-
vective mass and heat transfer coefficients are set to hM = 2 · 10−7 s/m, hM,R = 3 ·
10−8 s/m, hT,L = 25W/(m2 · K) and hT,L = 8W/(m2 · K). The liquid water flow (rain)
has two peaks, one at 42 h and the other one at 126 h, reaching a maximum value of
1.53 · 10−4 kg/(m2 · s) as shown in Figure 7(a), which generates a sensible heat flux of
11W/m2 and 14W/m2 as displayed in Figure 7(b).
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Figure 8. Vapour pressure and (a) temperature (b) profiles at t = {20, 30, 40} h.

Simulations with the Spectral-ROM were performed using the ode15s, with a tolerance
set to tol = 10− 5 , with N = 8 modes and m = 13 . The time is incremented with a
discretization of ∆t ⋆ = 10− 1 and the Spectral solution is project to Nx = 101 spatial
nodes. The IMEX solution is computed for a discretization parameter of ∆t ⋆ = 10−2 and
∆x ⋆ = 10− 2 .

Figure 8(a) presents three profiles of vapour pressure field, at the time instants t =
{20, 30, 40} h , which are included on the interval of the first incoming raining flow. Vari-
ations of vapour pressure are more significant on the first layer because this material is
more hygroscopic than the second one. At the interface, one can notice a discontinuity on
the derivative. However, the continuity of the field and the one of the flow are assured.
Additionally, Figure 8(b) presents the temperature profiles for the same time instants. Vari-
ations on the boundaries occur mainly due to the variations of P v,∞ in both fields, and
not only due to the rain flow, which has an opposite effect on the temperature.

The evolution of the temperature and the vapour pressure at the boundary surfaces
(x = 0 m and x = 0.1 m) is shown in Figures 9(b) and 9(a), respectively. The vapour
pressure varies according to the sinusoidal fluctuations of the boundary conditions until
the rain hits the surface. In the first peak, it is not possible to observe high changes but
in the second peak, as the material accumulates moisture, the vapour pressure is suddenly
augmented and it diffuses through both layers. In fact, only when the vapour pressure is
higher inside both material that is possible to observe the impact of the rain flux because
of the material properties, more precisely due to the sorption isotherm. As can be observed
in Figure 9(b), the temperature at the boundaries of the composite wall varies according
to the gradients of vapour pressure rather than the temperature gradients.

By examining the profiles and evolution of temperature and vapour pressure profiles,
it is possible to notice that the solutions of the Spectral and IMEX methods are both in
a good agreement with the reference solution given by Chebfun. The distribution of the
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Figure 9. Evolution of vapour pressure (a) and temperature (b) at the
boundaries of the composite wall.

Table 3. Computer run time required for the numerical schemes to perform

simulations.

Case study Spectral IMEX Chebfun Ratio (IMEX/Spectral)

1 layer 0.9 s 6.4 s 46.6 s 7.1

2 layers 1.8 s 12.5 s 227.9 s 6.9

error ε 2 as a function of x are shown in Figure 10. The L∞ error of the spectral solution is
ε v
∞

= 2.9 · 10−3 for the vapour pressure and ε u
∞

= 1.29 · 10−4 for the temperature. These
values depend on the order of the time discretization, on the chosen tolerance of the solver
and on the number of modes. For the IMEX solution, the L∞ error is ε v

∞
= 2.6 · 10−3

for the vapour pressure and ε u
∞

= 1.1 · 10−4 for the temperature. To obtain the same
accuracy of the solutions, the Spectral-ROM was 7 times more efficient than the IMEX
approach, as it can be seen in Table 3. One should recall that the IMEX has the same
accuracy of the Euler explicit and is more efficient, in terms of computer run time, than
the largely used Crank–Nicolson scheme. Just for curiosity, the computational time
of the Chebfun simulations have been added. As one can notice they are much higher
than the values obtained by the other methods. In fact, Chebfun is made for numerical
computing of a wide range of problems. As it does not know about the specific problem, it
does not take advantage of the problem structure. Anyway, it is a good tool for comparing
purposes.

Figure 11(a) presents the last spectral coefficients of u and v solutions for material 1,
while Figure 11(b) presents the fourth and fifth spectral coefficients for material 2. The
magnitude of the last spectral coefficient acts as an error estimator, determining the error
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Figure 10. Error ε 2 given in function of x .

upper limit, as previous mentioned. In material 1, spectral coefficients needed more modes
to have an acceptable solution, while in the other material, an accurate solution can be
built with a lower number of modes. This difference occurs due to the properties of material
1 that are more nonlinear than those of material 2. One may notice in Figure 11(b) a peak
after day 5, which disappears shortly after. This may occur due to aliasing errors. However,
the magnitude of this error is very small if compared with the magnitude of the solution
and it does not occur on the other spectral coefficients. As the problem demands only a
few modes (around 10), this kind of error does not really affect the final solution.

In addition, Figure 12 displays the Fourier power spectrum function of the signal fre-
quency per unit of time, on the left and right boundaries, for u and v solutions. Oscillations
occurring for u , from 2 · 10− 1 Hz, are attributed to aliasing errors. However, the power of
this frequency is very low if compared with the highest peak, corresponding to a difference
of 6 orders of magnitude.

The results for the sensible, latent and total heat fluxes at the left boundary x = 0 m are
given graphically in Figure 13(a), the boundary that receives the rain flow. The sensible
and latent heat fluxes have high values but with opposite signs. Although, as they do not
have the same value, they do not cancel each other, as shown for the total heat flux, which
is the sum of the latent and sensible heat fluxes. Furthermore, Figure 13(b) presents the
total moisture flow at the same boundary. The rain flow is observed in the two maximal
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Figure 11. Spectral coefficients of material 1 (a) and of material 2 (b).

10
-2

10
-1

10
0

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 12. Fourier power spectrum of the Spectral solution computed in the
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Figure 13. Latent, sensible and total heat fluxes (a) and moisture flow (b) at
the left boundary (x = 0) .

peaks, one right after day 1 and the other right after the day 5 . The other variations are
caused by the boundary conditions.

5. Validation of the model

In this section, the physical model and the spectral solution are compared with exper-
imental data gathered from the French project HYGRO-BAT [1]. The measurements
were performed at the French laboratory LOCIE (Laboratory of Optimisation of the Con-
ception and Engineering of the Environment) [45]. One-dimensional coupled heat and
moisture transfer through a single-layered wall is monitored by sensors placed inside of the
material and on its surfaces. In this case, they have not considered the liquid transfer in
the moisture balance equation – Eq. (2.1a). Surface sensors provide boundary conditions
for the coupled simulation, while the other sensors provide reference measurements for the
model validation.

The relative error ǫ is computed to compare simulations with the experimental data and
it is defined as:

ǫ ( t )
def
:=

√

(

Y num
k ( x k , t ) − Y meas

k ( x k , t )
)2

Y meas
k ( x k , t )

,

where Y num
k is the computed solution and Y meas

k is the measured data.
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Figure 14. Ambient temperature (a) and relative humidity (b) of the
experimental investigation.

5.1. Experimental setup

The wall considered in this study is composed of a 16 − cm layer of wood fibre mate-
rial, which is subjected to variations in terms of temperature and relative humidity for a
14−days period. The material properties are given in Table 6. The reference data for the
evaluation is provided by temperature and humidity sensors SHT75 Sensirion, located at
x = {4, 8, 12} cm within the wall.

The sensors have a measurement uncertainty of ± 0.3◦C for temperature and of ± 0.018
for relative humidity. Furthermore, the uncertainty regarding the position of the sensors
is of ± 1 cm for the sensors located at x = {4, 12} cm and of ± 0.5 cm for the other sensor.
The uncertainty on the positions are different because the sensor at x = {4, 12} cm have
been settled by perforating a whole in the material layer.

The measured temperature and relative humidity at the interior and exterior boundaries
are given in Figures 14(a) and 14(b). The gray color around the curves represent the
uncertainties related to the measurements. At the interior boundary, the temperature is
set to approximately 24◦C and the relative humidity set to 40% in the first week and
to 70% in the second week. The exterior temperature and relative humidity values are
given by their measurement at the boundary, which is filtered by a 2 cm of a coating
layer, excluding solar radiation and driven rain phenomenon. Thus, both boundaries are
expressed as Dirichlet-type conditions for the model validation.
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5.2. Simulation

Simulations are performed for a single-layer wall of a material that separates two well
defined environments. The initial condition for temperature and vapour pressure fields are
given by an interpolation of the measurements at x = {0, 4, 8, 12, 16} cm at the first time
instant.

The Spectral method is composed of N = 8 modes with m = 13 . The ODE15s was
used to solve numerically System (3.9), with a tolerance set to 10− 5 . The solution has
been computed with a time step of ∆t ⋆ = 0.1 , the equivalent of 6min.

Simulations are compared with the dynamic temperature and vapour pressure. Figure 15
presents the measured data and the simulation results in each one location of the sensors,
at x = {4, 8, 12} cm.

The error between the predicted solution and the experimental observations is between
the uncertainties of the sensors during almost all simulation period. For the temperature
evolution, the highest discrepancy is when the moisture at the left boundary changes from
40% to 70% of relative humidity. From the 7th day, the measured temperature rises more
than the calculated one as shown in Figure 15(a), which are higher than the uncertainties
of the sensors. The difference between the simulated and measured temperature reaches
a maximum of 2◦C in this period. The temperature simulated in at x = {8, 12} cm are
presented in Figures 15(c) and 15(e). The predicted values are closer to the measurements
than in x = 4 cm, and they follow considerably well variations of the outside boundary.
It seems that the total diffusion coefficient of the temperature used for the simulation is
higher than the real one.

The influence of the step on the relative humidity can strongly be observed at x = 4 cm
in Figure 15(b) and less far from this boundary. Simulations are able to follow the variations
of the measured vapour pressure better than the temperature. In Figures 15(d) and 15(f),
the difference between simulations and measurements become more important, with the
incoming moisture flow, reaching a maximum difference of 70Pa and 80Pa, respectively.
The absolute difference is higher for x = 4 cm as it is closer to the left boundary and
consequently to the incoming flow. The discrepancies, come from the physical model,
which does not consider liquid transport neither hysteresis. Another explanation is the
fact that the properties also were estimated with and admissible error, which influences
the predicted solution. This difference on the vapour pressure simulations impacts on the
predictions of temperature.

The relative error ǫ of the computed solutions are present in Figure 16. Solutions sim-
ulated with the Spectral method showed a good agreement with the reference data. The
maximum relative error for the temperature solution is of 0.7% and for the vapour pressure
solution is of 5.6%. The average error on the dynamic profiles is 0.2% for temperature and
1.75% for vapour pressure, which are close to the values obtained by Rouchier et al.[45].

The spectral method can provide a very accurate solution of the physical model. In
this case, the last spectral coefficient for the temperature is of order of bn ≃ O (10− 5)
and for the vapour pressure of order of an ≃ O (10− 3) , for N = 8 . The difference
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Figure 15. Measured and predicted temperature and vapour pressure values at
x = {4, 8, 12} cm.
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Figure 16. Relative errors regarding temperature (a) and vapour pressure (b)
values at different positions within the porous material.

observed in Figure 15(a) can be caused by differences in the mathematical model and
by the uncertainties of the estimated properties that are not taken in consideration [7].
Despite of this disparity, simulated results can be considered satisfactory to predict the
heat and moisture transport.

As the boundary conditions are of the Dirichlet-type, the IMEX approach is more
efficient in this case, taking only 4 times more CPU time than the Spectral reduced-order
model approach. For a single simulation, it may not appear important, however, when the
direct model has to be simulated thousands of times as in [45], the gains become much
more expressive.

6. Conclusions

In the present work, we showed that the unsteady heat and moisture transfers problem is
solved efficiently with the spectral reduced-order model. This approach has been evaluated
on two numerical unidimensional case studies of heat and moisture transfer in porous media.
Each case aimed at exciting the nonlinear properties of the material to induce sharp profiles
of temperature and vapour pressure. The first case considered a single material layer with
sinusoidal boundary conditions. The second case took into account the rain effect at one
boundary through a multi-layered material. For all cases, the spectral method has shown a
high accuracy and perfect agreement with the respective reference solutions. The maximum
global error was of the order of O (10− 3) . The advantage of the proposed method is the
low computational burden 7 times more efficient than the IMEX approach. In sensitivity
analysis and inverse problems, when one has to simulate the system of differential equation
many times, the spectral approach becomes very attractive.



S. Gasparin, D. Dutykh & N. Mendes 34 / 43

Besides the numerical benchmark, one case with experimental data was performed to
confirm the physical model and the spectral-based solution method. Results of the simula-
tion showed a good agreement with the experimental data, which confirms all the process
of simulation. Results can be improved by adding the hysteresis and the liquid transport
effects. Although, this information was not available for this material and this experiment.

Further research should be dedicated to multiple space dimensions and to the appli-
cation considering both the diffusive and advective transfer, which complexity increases
considerably due to the nonlinearities of the problem.
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Nomenclature

Nomenclature

Latin letters

c 0 material specific heat [J/(kg · K)]

cw liquid water specific heat [J/(kg · K)]

cM moisture storage coefficient [s2/m2]

cT energy storage coefficient [J/(m3
· K)]

hM convective vapour transfer coefficient [s/m]

hT convective heat transfer coefficient [W/(m2
· K)]

H l liquid water enthalpy [J/kg]

g∞ liquid flow [kg/(m2
· s)]

g flow [kg/(m2
· s)]

k l liquid permeability [s]

kM moisture transf. coeff. under vap. press. grad. [s]

k TM heat transf. coeff. under vap. press. grad. [m2/s]

k T heat transf. coeff. under temp. grad. [W/(m · K)]

L length [m]

L v latent heat of vaporization [J/kg]

n normal space, that assumes either +1 or −1 [−]

P s saturation pressure [Pa]

P v vapour pressure [Pa]

q heat flux [W/m2]

R v water gas constant [J/(kg · K)]

T temperature [K]

w moisture content [kg/m3]

Greek letters

δ v vapour permeability [s]

φ relative humidity [−]

ρ specific mass [kg/m3]

λ thermal conductivity [W/(m · K)]

Dimensionless parameters

Bi Biot number [−]

u temperature [−]

v vapour pressure [−]
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A. Material properties

Table 4. Hygrothermal properties of the load bearing material [23].

Property Value Unit

Volumetric heat capacity ρ 0 c 0 = 2005 · 840 [J/m3 · K]

Sorption isotherm w (φ) = 47.1

[

1 +
(

−1692.94 · ln(φ)
)1.65

]

−0.39

+

109.9

[

1 +
(

−2437.83 · ln(φ)
)6
]

−0.83

[kg/m3]

Vapour permeability δ v (φ) = 6.413 · 10−9 ·

(

1− w (φ)
157

)

0.503
(

1− w (φ)
157

)2

+ 0.497
[s]

Liquid permeability k l (φ) = 2.52 · 10−4 · exp(−1.55 · 10 6 · φ) [s]

Thermal conductivity λ (φ) = 0.5 + 0.0045 · w (φ) [W/(m · K)]

Table 5. Hygrothermal properties of the finishing material [23].

Property Value Unit

Volumetric heat capacity ρ 0 c 0 = 790 · 870 [J/m3 · K]

Sorption isotherm w (φ) = 209

[

1 +
(

−2.7 · 10 14 · ln(φ)
)1.27

]

−0.21

[kg/m3]

Vapour permeability δ v (φ) = 6.413 · 10−9 ·

(

1− w (φ)
209

)

0.503
(

1− w (φ)
209

) 2

+ 0.497
[s]

Liquid permeability k l (φ) = exp[−33 + 0.0704 · (w − 120)
−1.742 ·10−4 · (w−120)2−2.795 ·10−6 · (w−120)3

−1.157 ·10−7 · (w−120)4+2.597 ·10−9 · (w−120)5]

[s]

Thermal conductivity λ (φ) = 0.2 + 0.0045 · w (φ) [W/(m · K)]
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Table 6. Hygrothermal properties of the wood fibre [45].

Property Value Unit

Volumetric heat capacity c 0 ρ 0 = 161.1 · 10 3 [J/(m3 · K)]
Sorption isotherm f (φ) = 7.063 · 10−5 · φ 3− 0.00736 · φ 2 +0.4105 · φ+

0.2688
[kg/m3]

Vapour permeability δ v (φ) = 6.36 · φ+ 2.16 · 10−11 [s]

Thermal conductivity λ (φ, T ) = 0.038 + 0.192 · f (φ)

ρ l

+ 1.08 · 10−4 · T [W/(m · K)]

B. Coefficients of the different materials

See Figure 17.

C. Dimensionless values

Some reference values were used on all the simulation cases. The reference time is
t ref = 1 h , the equivalent to 3600 s. The reference temperature was T ref = 293.15K and
the reference of the vapour presure was P v, ref = 1166.9Pa . The reference length is the
total length of the spatial domain L ref = Lm , so it is possible to have a dimensionless
domain between x ⋆ = [ 0, 1 ] .

C.1. Case from Section 4.1

The temperature boundary conditions are expressed as:

u∞, L (t
⋆ ) = 1 − 0.05 · sin(π t ⋆/8760) + 0.01 · sin(2 π t ⋆/24) ,

u∞,R (t ⋆ ) = 1 + 0.005 · sin(π t ⋆/48) .

and, of the vapour pressure boundary conditions as:

v∞, L (t
⋆ ) =

(

0.5 + 0.45 · sin 2 ( 2π t ⋆/90 )
)

· P s

(

u∞, L ( t
⋆ ) · T ref

)

/P v, ref ,

v∞, R (t ⋆ ) =
(

0.5 + 0.4 · sin 2 ( 2π t ⋆/30 )
)

· P s

(

u∞,R ( t ⋆ ) · T ref

)

/P v, ref .
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For the dimensionless properties of the material, they can be written as:

c ⋆
M (v) =

−4.15 · 10 6 · v 3 + 7.76 · 10 6 · v 2 − 5.44 · 10 5 · v + 3.53 · 10 6

v 4 + 9.18 · 10 5 · v 3 − 2.47 · 10 6 · v 2 + 1.68 · 10 6 · v + 5493
,

k ⋆
M (v) = − 4.23 · v8 − 4.901 · v7 + 120.6 · v6 − 340.7 · v5 + 417.8 · v4 − 255.9 · v3

+ 77.15 · v2 − 10.33 · v + 1.57 ,

c ⋆
T (v) = 9.327 · exp(− 2.4 · 10−4 · v) + 1.457 · 10−14 · exp(15.58 · v) ,

k ⋆
T (v) = 0.9996 · exp(− 8.813 · 10−4 · v) + 5.65 · 10−15 · exp(15.58 · v) ,

k ⋆
TM (v) = 0.1276 · exp(− 1.651 · 10−4 · v) ,

with kM, ref = 5.4712 · 10−9 s and kT, ref = 0.5021W/(m · K) .

C.2. Case from Section 4.2

The dimensionless temperature and vapour pressure at the boundaries are written as
in the previous case and also the materials properties of material 1. Thus, for the second
material, properties are written as:

c ⋆
M, 2 (v) = 1.221 · v−0.878 ,

k ⋆
M, 2 (v) = − 1.084 · 10−4 · v15.44 + 11.34 ,

c ⋆
T, 2 (v) = 4.52 · exp(0.1058 · v) + 1.79 · 10−11 · exp(12.81 · v) ,

k ⋆
T, 2 (v) = 0.8686 · exp(0.1414 · v) + 9.498 · 10−7 · exp(7.968 · v) ,

k ⋆
TM, 2 (v) = − 1.884 · 10−11 · exp(14.25 · v) + 1.216 · exp(− 0.0284 · v) ,

with kM, ref and kT, ref equal to the previous case. In addition, the rain flow is expressed as:

g ⋆
∞
(t ⋆ ) = 2.4 · sin(π t ⋆/84)70 .

C.3. Case from Section 5.2

The boundary conditions are gathered from the experimental data and just admension-
alized. The dimensionless form of the initial condition are:

u 0 (x
⋆) = −0.08806 · (x ⋆)4 + 0.1688 · (x ⋆)3 − 0.1143 · (x ⋆)2 − 0.01621 · x ⋆ + 1.015 ,

v 0 (x
⋆) = −0.408 · (x ⋆)4 + 1.188 · (x ⋆)3 − 1.053 · (x ⋆)2 + 0.08969 · x ⋆ + 1.092 .



A spectral method for solving heat and moisture transfer 39 / 43

The dimensionless properties of the material can be written as:

c ⋆
M (v) = − 0.663 · v + 37.52 ,

k ⋆
M (v) = 0.007289 · v + 0.9854 ,

c ⋆
T (v) = 0.08587 · v + 16.53 ,

k ⋆
T (v) = 0.0005546 · v + 0.9989 ,

k ⋆
TM (v) = 3.465 · 10−5 · v + 0.004684 ,

with kM, ref = 3.34 · 10 − 11 s and kT, ref = 6.98 · 10 − 2W/(m · K) .
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Figure 17. Coefficients cM (a), cT (b), kM (c), kT (d) and kTM (e) of the
load bearing material, of the finishing material and of the wood fibre.
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