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A Finite Element Method (FEM) mesh is converted to a reluctance network through an original magnetostatic formulation based on face shape functions. This meshed reluctance network is coupled with an standard one, characterizing a 0D system. Both approaches are fully-compatible and the hybridized problem can be solve with a single circuit solver. The approach is tested in 2D on a magnetic circuit with an air gap and compared to classical FEM nodal formulation.

I. INTRODUCTION

Optimizing electromagnetic devices can require a large amount of data that might be provided by numerical simulations. Many numerical methods are used to model electromagnetic devices, but the RNM (Reluctance Network Method) and FEM (Finite Element Method) are the most widely used for magnetostatic modeling.

The FEM is well known by its flexibility and generality, once the mathematical formulations are based on a mesh. Furthermore, it is noticeable the knowledge base available for this method, for instance [START_REF] Bastos | Magnetic Materials and 3D Finite Element Modeling[END_REF]. However, it leads to an high number of degrees of freedom and so quite long computation times.

On the other hand, the RNM is one of the most primitive methods for magnetic modeling and its application is based on a reluctance network. This method has remained useful due to its coherent results obtained with low computational effort and low computational simulation time [START_REF] Sykulski | Computational Magnetics, ser. International journal of numerical modelling[END_REF] and has been largely applied to model power transformers [3] [4]. This method is also largely applied to model rotating electrical machines [START_REF] Petrichenko | Contribution à la modélisation et à la conception optimale des turbo-alternateurs de faible puissance[END_REF][6] [START_REF] Tang | Analytical modeling of flux-switching machines using variable global reluctance networks[END_REF] and transmission lines [START_REF] Bormann | Reluctance network treatment of skin and proximity effects in multi-conductor transmission lines[END_REF]. Nevertheless, it is important to notice that these applications are based on a reluctance network defined manually, that might imply an hard, long and non-general task.

In [START_REF] Dular | Dual finite element formulations for lumped reluctances coupling[END_REF] is presented a methodology that couples nodal/edge FEM with external reluctances network. In this paper, we go a step forward by proposing a formulation fully-compatible with both numerical approaches and solved with a single 0D circuit solver.

Finally, the results of modeling a actuator with the classical nodal FEM and with the proposed methodology are compared.

II. MAGNETOSTATIC FACE FEM FORMULATION

The magnetostatic fields might be described by the Ampère's (1) and Gauss (2) laws and the constitutive relation for magnetic materials [START_REF] Lopez-Fernandez | Stray losses control in shell type transformers. part ii: Method of threedimensional network solution[END_REF].

curl H = J (1) div B=0 (2) B = µH (3)
where the magnetic field H, in A/m, is composed by the fields H 0 , due to an imposed current density source J 0 , and H m that can be obtained from the gradient of the magnetic scalar potential V r , as presented in [START_REF] Petrichenko | Contribution à la modélisation et à la conception optimale des turbo-alternateurs de faible puissance[END_REF].

H = H 0 + H m (4) H m = -∇V r (5) 
Thus, applying (5) in ( 4) and integrating the resulting equation along a domain Ω, it is possible to obtain [START_REF] Fukuoka | A method for optimizing the design of spm type magnetic gear based on reluctance network analysis[END_REF], for which W is the face interpolation function.

Ω W i • H dΩ + Ω W i • ∇V r dΩ = Ω W i • H 0 dΩ (6)
Since the magnetic induction B, in T , is given by [START_REF] Tang | Analytical modeling of flux-switching machines using variable global reluctance networks[END_REF], the left side of ( 6) is rewritten as [START_REF] Bormann | Reluctance network treatment of skin and proximity effects in multi-conductor transmission lines[END_REF].

B = n f j=1 W i Φ i (7) 
Ω W i • HdΩ = n f j=1 Ω υW i • W j dΩ Φ j (8) 
where j and i are the faces index, nf is the number of faces, υ is the magnetic reluctivity, and Φ is the magnetic flux.

Applying the divergence theorem in the second term of (6) and evaluating it along two adjacent elements Ω a and Ω b , leads to [START_REF] Dular | Dual finite element formulations for lumped reluctances coupling[END_REF]. Taking into account that the normal component of the function W is constant along the face shared by Ω a and Ω b , its second term becomes null and it can be rewritten as (10).

Ωa+Ω b W i • ∇V r dΩ = Γa-Γ b V r W i • ndΓ- Ωa+Ω b V r ∇ • W i dΩ (9) Ω W i • ∇V r dΩ = - Ωa+Ω b V r ∇ • W i dΩ (10)
This equation can be split in terms of Ω a and Ω b , where the flux direction is defined from Ω a to Ω b . Then, considering that ∇ • w i is the inverse of the element volume, it is possible to obtain (11).

Ω W i • ∇V r dΩ = V r a -V r b (11)
The third term of ( 6) is the magnetic field due to an imposed current density J 0 , which can be obtained using Biot-Savart law, for instance.

Finally, lets rewrite ( 6) as the following matrix system

[ ] [Φ] -[∆V M ean ] = [H 0 ] (12) 
where [ ] is a reluctance matrix,[Φ] is the unknown flux matrix, [∆V M ean ] is the magnetic potential jump between two reluctances and [V 0 ] contains the f mm sources. Besides the matrix system is stated, ( 2) is not solved yet. Nevertheless, the B free divergence is constrained solving (12) as a circuit system , where the Kirchhoff's current law is imposed. It suggests that the solution can be obtained by the use of a 0D circuit solver.

III. MODEL AND RESULTS

In order to compare the results obtained with the proposed methodology, a simple magnetic circuit with an air gap is analyzed using the well established nodal first order FEM, based on magnetic vector potential A. The magnetic induction distribution is presented in Fig. 1.

Fig. 1: Magnetic induction distribution obtained with classical FEM

Then, this model is reduced to a 0D model, i.e most of the magnetic circuit is modeled by an classical reluctance network and just the air gap region is meshed (i.e. the region where the equivalent reluctance network is not so easy to define), as presented in Fig. 2. Then the problem is solved by a circuit solver and magnetic induction is interpolated using [START_REF] Tang | Analytical modeling of flux-switching machines using variable global reluctance networks[END_REF], resulting in Fig. 3.

The maximum magnetic induction in the air gap obtained with the proposed methodology is 0.625 T and with the classical FEM is 0.606 T, that represents a difference of 3.13%. 

IV. CONCLUSION

This paper has presented a methodology capable to convert a FEM mesh into a reluctance network, allowing its easy coupling with a classical network obtained analytically. The original model was reduced to a 0D system keeping coherent results.
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 2 Fig. 2: Networks coupling