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FOCUS: A Recommender System for Mining API
Function Calls and Usage Patterns
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L’ Aquila, Italy
{firstname.lastname } @univagq.it

Abstract—Software developers interact with APIs on a daily
basis and, therefore, often face the need to learn how to use
new APIs suitable for their purposes. Previous work has shown
that recommending usage patterns to developers facilitates the
learning process. Current approaches to usage pattern recom-
mendation, however, still suffer from high redundancy and poor
run-time performance. In this paper, we reformulate the problem
of usage pattern recommendation in terms of a collaborative-
filtering recommender system. We present a new tool, FOCUS,
which mines open-source project repositories to recommend API
method invocations and usage patterns by analyzing how APIs
are used in projects similar to the current project. We evaluate
FOCUS on a large number of Java projects extracted from
GitHub and Maven Central and find that it outperforms the state-
of-the-art approach PAM with regards to success rate, accuracy,
and execution time. Results indicate the suitability of context-
aware collaborative-filtering recommender systems to provide
API usage patterns.

I. INTRODUCTION

Leveraging the time-honored principles of modularity and
reuse, modern software systems development typically entails
the use of external libraries. Rather than implementing new
systems from scratch, developers look for, and try to integrate
into their projects, libraries that provide functionalities of in-
terest. Libraries expose their functionality through Application
Programming Interfaces (APIs) which govern the interaction
between a client project and the libraries it uses.

Developers therefore often face the need to learn new APIs.
The knowledge needed to manipulate an API can be extracted
from various sources: the API source code itself, the official
website and documentation, Q&A websites such as StackOver-
flow, forums and mailing lists, bug trackers, other projects
using the same API, etc. However, official documentation often
merely reports the API description without providing non-
trivial example usages. Besides, querying informal sources
such as StackOverflow might become time-consuming and
error-prone [32]. Also, API documentation may be ambiguous,
incomplete, or erroneous [42], while API examples found on
Q&A websites may be of poor quality [18].

Over the past decade, the problem of API learning has
garnered considerable interest from the research community.
Several techniques have been developed to automate the
extraction of API usage patterns [33] in order to reduce devel-
opers’ burden when manually searching these sources and to
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provide them with high-quality code examples. However, these
techniques, based on clustering [23], [43], [45] or predictive
modeling [10], still suffer from high redundancy [10] and—as
we show later in the paper—poor run-time performance.

To cope with these limitations, we propose a new approach
for API usage patterns mining that builds upon concepts emerg-
ing from collaborative-filtering recommender systems [36].
The fundamental idea of these systems is to recommend to
users items that have been bought by similar users in similar
contexts. By considering API methods as products and client
code as customers, we reformulate the problem of usage
pattern recommendation in terms of a collaborative-filtering
recommender system. Informally, the question the proposed
system can answer is:

“Which API methods should this piece of client code
invoke, considering that it has already invoked these
other API methods?"

Implementing a collaborative-filtering recommender system
requires to assess the similarity of two customers, i.e., two
projects. Existing approaches assume that any two projects
using an API of interest are equally valuable sources of
knowledge. Instead, we postulate that not all projects are equal
when it comes to recommending usage patterns: a project that
is highly similar to the project currently being developed should
provide higher quality patterns than a highly dissimilar one.
Our recommender system attempts to narrow down the search
scope by considering only the projects that are the most similar
to the active project. Thus, methods that are typically used
conjointly by similar projects in similar contexts tend to be
recommended first.

We incorporate these ideas into a recommender system that
mines open-source software (OSS) repositories to provide
developers with APl FunctiOn Calls and USage patterns:
FOCUS. Our approach represents mutual relationships between
projects using a 3D matrix and mines API usage from the most
similar projects.

We evaluated FOCUS on different datasets comprising 610
Java projects from GitHub and 3,600 JAR archives from the
Maven Central Repository. In the evaluation, we simulate
different stages of a development process, by removing portions
of client code and assessing how FOCUS can recommend
snippets with API invocations to complete them. We find that



public List<Boekrekening> findBoekrekeningen() {
CriteriaBuilder cb = entityManager.getCriteriaBuilder();
CriteriaQuery<Boekrekening> criteriaQueryBoekrekening = cb
.createQuery (

Boekrekening.class
)i
Root<BoekrekeningPO> boekrekeningFrom = criteriaQueryBoekrekening

.from(BoekrekeningPO.class) ;

(a) Initial version

public List<Boekrekening> findBoekrekeningen() {

CriteriaBuilder cb = entityManager.getCriteriaBuilder();

CriteriaQuery<Boekrekening> criteriaQueryBoekrekening = cb
.createQuery(
Boekrekening.class
)i

Root<BoekrekeningPO> boekrekeningFrom = criteriaQueryBoekrekening

.from(BoekrekeningPO.class) ;

criteriaQueryBoekrekening.select (boekrekeningFrom) ;
criteriaQueryBoekrekening.orderBy (cb.asc (boekrekeningFrom

.get (BoekrekeningPO_.rekeningnr))) ;
return entityManager.createQuery(criteriaQueryBoekrekening).getResultList() ;

}
(b) Final version

Fig. 1. Motivating example

FOCUS outperforms PAM, a state-of-the-art tool for API usage
patterns mining [10], with regards to success rate, accuracy,
and execution time.

This paper is organized as follows. Section II introduces a
motivating example and background notions. Our recommender
system for API mining, FOCUS, is introduced in Section III.
The evaluation is presented in Section IV, with the key results
being analyzed in Section V. Section VI discusses the threats to
validity. In Section VII, we present related work and conclude
the paper in Section VIIL

II. BACKGROUND

This section presents a motivating example for introducing
the problem addressed by this paper and the main components
of the proposed solution. Then, we introduce the main notions
underpinning our approach, mostly originating from Schafer
et al. [37] and Chen [4].

A. Motivating Example

The typical setting considered in the paper is as shown in
Fig. 1: (a) developer is implementing some method to satisfy the
requirements of the system being developed. In the specific case
shown in Fig. 1 (b), the findBoekrekeningen method queries
the available entities and retrieve those of type Boekrekening.
To this end, the Criteria API library1 is used.

Fig. 1 (a) depicts the situation where the development is at
an early stage and the developer already used some methods of
the chosen API to develop the required functionality. However,
she is not sure how to proceed from this point. In such cases,
different sources of information may be consulted, such as
StackOverflow, video tutorials, API documentation, etc. In this
paper, we propose an approach aiming at providing developers
with recommendations consisting of a list of API method calls
that should be used next, and with usage patterns that can be
used as a reference for completing the development of the
method being defined (e.g., code snippets that could support

Thttps://docs.oracle.com/javaee/6/tutorial/doc/gjivm.html

developers in completing the method definition with the framed
code in Fig. 1 (b)).

B. API Function Calls and Usage Patterns

A software project is a standalone source code unit that
performs a set of tasks. Furthermore, an API is an interface that
abstracts the functionalities offered by a project by hiding its
implementation details. This interface is meant to support reuse
and modularity [24], [32]. An API X built in an object-oriented
programming language (e.g., the Criteria API in Fig. 1)
consists of a set T'x of public types (e.g., CriteriaBuilder and
CriteriaQuery). Each type in T'x consists of a set of public
methods and fields that are available to client projects (e.g.,
the method createQuery of the type CriteriaQuery).

A method declaration consists of a name, a (possibly empty)
list of parameters, a return type, and a (possibly empty) body
(e.g., the method findBoekrekeningen in Fig. 1). Given a set of
declarations D in a project P, an API method invocation 1 is a
call made from a declaration d € D to another declaration m.
Similarly, an API field access is an access to a field f € F from
a declaration d in P. API method invocations M and field
accesses F'A in P form the set of API usages U = MIU FA.
Finally, an API usage pattern (or code snippet) is a sequence
(u1, ug, ..., up), Yug € U [19].

C. Context-aware Collaborative Filtering

As stated by Schafer et al. [37] “Collaborative Filtering
(CF) is the process of filtering or evaluating items through the
opinions of other people.” In a CF system, a user who buys or
uses an ifem attributes a rating to it based on her experience
and perceived value. Therefore, a rating is the association of
a user and an item through a value in a given unit (usually in
scalar, binary, or unary form). The set of all ratings of a given
user is also known as a user profile [4]. Moreover, the set of all
ratings given in a system by existing users can be represented
in a so-called rating matrix, where a row represents a user and
a column represents an item.

The expected outcome of a CF system is a set of predicted
ratings (aka. recommendations) for a specific user and a subset
of items [37]. The recommender system considers the most
similar users (aka. neighbors) to the active user to suggest
new ratings. A similarity function sim,s,(uq,u;) computes
the weight of the active user profile u, against each of the user
profiles u; in the system. Finally, to suggest a recommendation
for an item ¢ based on this subset of similar profiles, the CF
system computes a weighted average r(ug,¢) of the existing
ratings, where r(uq, ¢) varies with the value of simysy(Ua, u;)
obtained for all neighbors [4], [37].

Context-aware CF systems compute recommendations based
not only on neighbors’ profiles but also on the context where
the recommendation is demanded. Each rating is associated
with a context [4]. Therefore, for a tuple C' modeling different
contexts, a context similarity metric sim;;(cq, ¢;), for cq,¢; €
C is computed to identify relevant ratings according to a
given context. Then, the weighted average is reformulated as

r(Ug, i, cq) [4].
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ITI. PROPOSED APPROACH

To tackle the problem of recommending API function calls
and usage patterns, we leverage the wisdom of the crowd
and existing recommender system techniques. In particular,
we hypothesize that API calls and usages can be mined from
existing codebases, prioritizing the projects that are similar to
the one from where the recommendation is demanded.

More specifically, our tool FOCUS adopts a context-aware
CF technique to search for invocations from closely relevant
projects. This technique allows us to consider both project and
declaration similarities to recommend API function calls and
usage patterns. Following the terminology of recommender
systems, we treat projects as the enclosing contexts, method
declarations as users, and method invocations as items. Intu-
itively, we recommend a method invocation for a declaration in
a given project, which is analogous to recommending an item
to a user in a given context. For instance, the set of method
invocations and the usage pattern (cf. framed code in Fig. 1 (b))
recommended for the declaration findBoekrekeningen can be
obtained from a set of similar projects and declarations in a
codebase. The collaborative aspect of the approach enables
to extract recommendations from the most similar projects,
while the context-awareness aspect enables to narrow down
the search space further to similar declarations.

A. Architecture

The architecture of FOCUS is depicted in Fig. 2. To provide
its recommendations, FOCUS considers a set of OSS Repos-
itories (1. The Code Parser (2) component extracts method
declarations and invocations from the source code or bytecode
of these projects. The Project Comparator, a subcomponent of
the Similarity Calculator (3), computes the similarity between
projects in the repositories and the project under development.
Using the set of projects and the information extracted by the
Code Parser, the Data Encoder (4) component computes rating
matrices which are introduced later in this section. Afterwards,
the Declaration Comparator computes the similarities between
declarations. From the similarity scores, the Recommendation
Engine (5) generates recommendations, either as a ranked list
of API function calls using the API Generator, or as usage
patterns using the Code Builder, which are presented to the
developer. In the remainder of this section, we present in greater
details each of these components.

1) Code Parser: FOCUS relies on Rascal M3 [2], an inter-
mediate model that performs static analysis on the source code,
to extract method declarations and invocations from a set of

Project Comparator

Declaration
Comparator

Similarity Calculator

Developer

Repositories Code Parser

Recommendation
Engine

Fig. 2. Overview of the FOCUS architecture

projects. This model is an extensible and composable algebraic
data type that captures both language-agnostic and Java-specific
facts in immutable binary relations. These relations represent
program information such as existing declarations, method
invocations, field accesses, interface implementations, class
extensions, among others [2]. To gather relevant data, Rascal
M? leverages the Eclipse JDT Core Component?® to build and
traverse the abstract syntax trees of the target Java projects.
In the context of FOCUS, we consider the data provided
by the declarations and methodInvocation relations of the M3
model. Both of them contain a set of pairs (v, vs2), where vq
and vy are values representing locations. These locations are
uniform resource identifiers that represent artifact identities
(aka. logical locations) or physical pointers on the file system
to the corresponding artifacts (aka. physical locations). The
declarations relation maps the logical location of an artifact
(e.g., a method) to its physical location. The methodInvocation
relation maps the logical location of a caller to the logical
location of a callee. We refer the reader to a dedicated paper
for the technical details of the inference of Java M3 models [2].

Listing 1. Excerpt of the M® model extracted from Fig. 1
m3.declarations = {
<|java+method://StandaardBoekrekeningService/findBoekrekeningen]|,

|file:// ... /StandaardBoekrekeningService.java
(501,531,<17,4>,<33,5>) |>,
S[...1}

m3.methodInvocation = {
<|java+method://StandaardBoekrekeningService/findBoekrekeningen]|,
| java+method://EntityManager/getCriteriaBuilder|>, [...]}

Listing 1 depicts an excerpt of the M® model extracted from
the code presented in Fig. 1 (a). The declarations relation links
the logical location of the method findBoekrekeningen, to its
corresponding physical location in the file system. The method-
Invocation relation states that the getCriteriaBuilder method
of the EntityManager type is invoked by the findBoekrekeningen
method in the current project.

2) Data Encoder: Once method declarations and invocations
are extracted, FOCUS represents the relationships among them
using a rating matrix. For a given project, each row in the matrix
represents a method declaration and each column represents
a method invocation. A cell is set to 1 if the declaration in
the corresponding row contains the invocation in the column,
otherwise it is set to 0. For example, Fig. 3 shows the rating
matrix of a project with four declarations p; > (dy, da,ds, ds)
and four invocations (i1, 42,13, 14).

W kN2 W >
dy 1 0 1 1
da 0 1 1 0
ds 1 0 0 1
dy 0 1 0 0

Fig. 3. Rating matrix for a project with 4 declarations and 4 invocations

To capture the intrinsic relationships among various projects,
declarations, and invocations, we come up with a 3D context-
based rating matrix [21]. The third dimension of this matrix

Zhttps://www.eclipse.org/jdt/core/
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Fig. 4. 3D context-based rating matrix

represents a project, which is analogous to the so-called context
in context-aware CF systems. For example, Fig. 4 depicts three
projects P = (pa, p1, p2) represented by three slices with four
method declarations and four method invocations. Project p;
has already been introduced in Fig. 3 and for the sake of
readability, the column and row labels are removed from all
slices in Fig. 4. There, p, is the active project and it has an
active declaration. Active here means the artifact (project or
declaration), being considered or developed. Both p; and p»
are complete projects similar to the active project p,. The
former projects (i.e., p; and po) are also called background
data since they are already available and serve as a base for the
recommendation process. In practice, the higher the number of
complete projects considered as background data, the higher
the probability to recommend relevant invocations.

3) Similarity Calculator: Exploiting the context-aware CF
technique, the presence of additional invocations is deduced
from similar declarations and projects. Given an active declara-
tion in an active project, it is essential to find the subset of the
most similar projects, and then the most similar declarations in
that set of projects. To compute similarities, we derive from [20]
a weighted directed graph that models the relationships among
projects and invocations. Each node in the graph represents
either a project or an invocation. If project p contains invocation
i, then there is a directed edge from p to ¢. The weight of
an edge p — ¢ represents the number of times a project p
performs the invocation ¢. Fig. 5 depicts the graph for the
set of projects introduced in Fig. 4. For instance, p, has four
declarations and all of them invoke 74. As a result, the edge
Pa — t4 has a weight of 4. In the graph, a question mark
represents missing information. For the active declaration in
Pa, it is not known yet whether invocations 41 and i should
be included.

The similarity between two project nodes p and ¢ is
computed by considering their feature sets [7]. Given that
p has a set of ngghbor nodes (41,42, ..,4;), the feature set of
p is the vector ¢ = (¢1, @2, .., ¢1), with ¢y, being the weight
of node ;. This weight is computed as the rerm-frequency
inverse document frequency value, i.e., ¢ = f;, * log( |P‘)

where f;, is the weight of the edge p — ix; | P| is the number

Fig. 5. Graph representation of projects and invocations

of all considered projects; and a;, is the number of projects
connected to i;. Eventually, the similarity between p and ¢

with their corresponding feature vectors ¢ = {¢y}x=1,.; and
& = {wj}j=1,.m is:
n X
sima(p, q) = iz O X (1)

\/Zt 1(90)? \/Zt 1 (wr)?

The similarities among method declarations are calculated
using the Jaccard similarity index [15] as follows:

[F(d) N E(e)]|
[F(d) UF(e)|

where F(d) and F(e) are the sets of invocations made from
declarations d and e, respectively.

4) API Generator: This component, which is part of the
Recommendation Engine, is in charge of generating a ranked
list of API function calls. In Fig. 4, the active project p, already
includes three declarations, and the developer is working on
the fourth declaration, which corresponds to the last row of
the slice. p, has only two invocations, represented in the last
two columns of the matrix (i.e., cells filled with 1). The first
two cells are marked with a question mark (?), indicating that
it is unclear whether these two invocations should also be
added into p,. The recommendation engine attempts to predict
additional invocations for the active declaration by computing
the missing ratings using the following formula [4]:

simg(d, e) = 2)

Zeetopsi'm(d) (Re,i,p - FE) ’ Slmg (d7 6)

Zeetopsim(d) Simﬁ(dv e)

Eq. 3 is used to compute a score for the cell represent-
ing method invocation 4, declaration d of project p, where
topsim(d) is the set of top similar declarations of d; simg(d, e)
is the similarity between d and a declaration e, computed using
Eq. 2; 74 and 7, are the mean ratings of d and e, respectively;
and R.; , is the combined rating of declaration d for 7 in all
similar projects, computed as follows [4]:

=Tq+ 3)

Td,i,p

qutopsim(p) Teyi,q * 5iMa (pa q)

qutopsim(p) sima(p; q)

R€7i,p = (4)
where topsim(p) is the set of top similar projects of p;
and simq(p,q) is the similarity between p and a project g,
computed using Eq. 1. Eq. 4 implies that a higher weight
is given to projects with higher similarity. In practice, it is
reasonable since, given a project, its similar projects contain



public lAsl<UuesLAonsbLaged> rmdﬁyldenuner(sumg identifier) {

1oq fine (" fier: " + identifier);

try {
CriteriaBuilder cb = entityManager.getCriteriaBuilder();
CriteriaQuery<QuestionsStaged> criteria = cb.createQuery (QuestionsStaged.class);
Root<QuestionsStaged> gs = criteria.from(QuestionsStaged.class);
criteria.select(gs) . where(rn equal(qq -get ("identifier"), identifier));
log.fine(" ! x
return entityManager. createQuery(cmtema) getResultList () ;

catch (RuntuneExLeptlon re) {
log.severe ("c i r
throw re;

ed" + re);

Fig. 6. Real source code recommended by FOCUS

more relevant API calls than less similar projects. Using Eq. 3
we compute all the missing ratings in the active declaration
and get a ranked list of invocations with scores in descending
order, which is then suggested to the developer.

5) Code Builder: This subcomponent is also part of the
Recommendation Engine, and it is responsible for recommend-
ing usage patterns to developers. From the ranked list, fop-N
method invocations are used as a query to search the database
for relevant declarations. To limit the search scope, only the
most similar projects are considered. The Jaccard index is used
to compute similarities between the selected invocations and a
given declaration. For each query, we search for declarations
that contain as many invocations of the query as possible. Once
we identify the corresponding declarations we retrieve their
source code using the declarations relation of the Rascal M?
model. The resulting code snippet is then recommended to the
developer.

For the sake of illustration, we now present an example
of how FOCUS suggests real code snippets, considering the
declaration findBoekrekeningen in Fig. 1 (a) as input. The invo-
cations it contains are used together with the other declarations
in the current project as query to feed the Recommendation
Engine. The final outcome is a ranked list of real code snippets.
The top one, named findByIdentifier, is depicted in Fig. 6.
By carefully examining this code and the original one in
Fig. 1 (b), we see that although they are not exactly the
same, they indeed share several method calls and a common
intent: both exploit a CriteriaBuilder object to build, perform
a query and eventually get back some results. Furthermore, the
outcome of both declarations is of the List type. Interestingly,
compared to the original one, the recommended code appears
to be of higher quality since it includes a try/catch construct
to handle possible exceptions. Thus, the recommended code,
coupled with the corresponding list of function calls (i.e., get,
equal, where, select, etc.), provides the developer with helpful
directions on how to use the API at hand to implement the
desired functionality.

IV. EVALUATION

The goal of this study is to evaluate FOCUS, and compare
it with another state-of-the-art tool (PAM [10]), with the aim
of assessing its capability to recommend API usage patterns
to developers, while they are writing code. The quality focus
is twofold: studying the API recommendation accuracy and
completeness, as well as the time required by FOCUS and PAM
to provide a recommendation. The context consists of 610 Java
open source projects, and 3,600 JAR archives from the Maven

Central repository.® For the sake of reproducibility and ease of
reference, all artifacts used in the evaluation, together with the
tools are available online [22]. We choose PAM as a baseline
for comparison, as it has been shown to outperform [10] other
similar tools such as MAPO [45] and UP-Miner [43]. To
conduct the comparison with PAM, we leverage its original
source code made available online by its authors [9].

In the following, we detail our research questions, datasets,
evaluation methodology, and metrics.

A. Research Questions
Our research questions are as follows:

RQ;: To what extent is FOCUS able to provide accurate and
complete recommendations? This research question relates to
the capability of FOCUS to produce accurate and complete
results. Having too many false positives would end up being
counterproductive, whereas having too many false negatives
would mean that the tool is not able to provide recommenda-
tions in many cases where this is needed.

RQs What are the timing performances of FOCUS in building
its models and in providing recommendations? This research
question aims at assessing whether, from a timing point of
view, FOCUS—compared to PAM—could be used in practice.
We evaluate the time required by both tools to provide a
recommendation. We mainly focus on the recommendation
time because, while it is acceptable that the model training
phase is relatively slow (i.e., the model could be built offline),
the recommendation time has to be fast enough to make the
tool applicable in practice.

RQs How does FOCUS perform compared with PAM? Finally,
this research question directly compares the recommendation
capabilities of FOCUS and PAM.

B. Datasets

To answer our research questions, we relied on four different
datasets. The first dataset, SH;, has been assembled starting
from 5, 147 randomly selected Java projects retrieved from
GitHub via the Software Heritage archive [6]. To comply with
the requirements of PAM, we first restricted the dataset to
the list of projects that use at least one of the third-party
libraries listed in Table I. Most of them were used to assess
the performance of PAM [10]. Each row in Table I lists a third-
party library, the number of projects that depend on it, and
the number of classes that invoke methods of this library. To
comply with the requirements of FOCUS, we then restricted the
dataset to the list of projects containing at least one pom.xml,
as it eases the creation of the M? models. We thus obtained
our first dataset consisting of 610 Java projects.

From sH;, we extracted a second dataset SHg consisting of
the 200 smallest (in size) projects of SHy.

As a third dataset, we randomly collected a set of 3,600
JAR archives from the Maven Central repository, which we
name MVy. Through a manual inspection of Mv;, we noticed

3https://mvnrepository.com
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TABLE I
EXCERPT OF THE THIRD-PARTY LIBRARIES USED BY DATASET SHy,

Project Name # of Client Projects # of Client Classes

com.google.gson 51 337
io.netty 105 13,456
org.apache.camel 36 1,017
org.apache.hadoop 158 14,596
org.apache.lucene 15 397
org.apache.mahout 25 8,541
org.apache.wicket 44 3,360
org.drools 27 886
org.glassfish.jersey 105 3,811
org.hornetq 15 123
org.jboss.weld 39 1,875
org.jooq 16 243
org.jsoup 23 55
org.neodj 28 4,983
org.restlet 19 326
org.springside 16 821
twitterd;j 45 597

610 55,425

that many projects only differ in their version numbers (ant-
1.6.5.jar and ant-1.9.3.jar, for instance, are two versions of the
same project ant). These cases are interesting as we assume
two versions of the same project share many functionalities
[39]. The collaborative-filtering technique works well given that
highly similar projects exist, since it just “copies” invocations
from similar methods in the very similar projects (see Eq. 3 and
Eq. 4). However, a dataset containing too many similar projects
may introduce a bias in the evaluation. Thus, we decided to
populate one more dataset. Starting from Mvy, we randomly
selected one version for every project and filtered out the other
versions. The removal resulted in a fourth dataset consisting
of 1,600 projects, which we name Mvg.

Three datasets, i.e., SHz, MV, and Mvg are used to assess the
performance of FOCUS (RQ;). The smallest dataset SHg is
used to compare FOCUS and PAM (RQ- and RQ3).

Eventually, the process of creating required metadata consists
of the following main steps:

« for each project in the dataset the corresponding Rascal
M? model is generated;

« for each M? model, the corresponding ARFF represen-
tations* are generated in order to be used as input for
applying FOCUS and PAM during the actual evaluation
steps discussed in the next sections.

C. Study Methodology

Performing a user study has been accepted as the standard
method to validate an API usage recommendation tool [17],
[45]. While user studies are valuable, they are limited in the size
of the task a participant can conduct and are highly susceptible
to individual skills and subjectiveness. In this paper, to study
if FOCUS is applicable in real-world settings we perform a
different, offline evaluation, by simulating the behavior of a
developer working at different stages of a development project
on partial code snippets.
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More specifically, we consider a programmer who is devel-
oping a project p. To this end, some parts of p are removed
to mimic an actual development. Given an original project
p, the total number of declarations it contains is called A.
However, only ¢ declarations (0 < A) are used as input for
recommendation and the rest is discarded. In practice, this
corresponds to the situation when the developer already finished
¢ declarations, and she is now working on the active declaration
dg. For d,, originally there are II invocations, however only the
first 7 invocations (7w < II) are selected as query and the rest is
removed and saved as ground-truth data for future comparison.
In practice, § is small at an early stage and increases over
the course of time. Similarly, 7 is small when the developer
just starts working on d,. The two parameters §, 7 are used
to stimulate different development phases. In particular, we
consider the following configurations.

Configuration c1.1 (0 = A/2 — 1,7 = 1): Almost the first
half of the declarations is used as testing data and the second
half is removed. The last declaration of the first half is selected
as the active declaration d,. For d,, only the first invocation
is provided as a query, and the rest is used as ground-truth
data which we call 6T(p). This configuration mimics a scenario
where the developer is at an early stage of the development
process and, therefore, only limited context data is available
to feed the recommendation engine.

Configuration 1.2 (6 = A/2—1, 7 = 4): Similarly to 1.1,
almost the first half of the declarations is kept and the second
half is discarded. d, is the last declaration of the first half of
declarations. For d,, the first four invocations are provided as
query, and the rest is used as GT(p).

Configuration 2.1 (§ = A — 1,7 = 1): The last method
declaration is selected as testing, i.e., d, and all the remaining
declarations are used as training data (A — 1). In d, the first
invocation is kept and all the others are taken out as ground-
truth data GT(p). This represents the stage where the developer
almost finished implementing p.

Configuration c2.2 (6 = A — 1,7 = 4): Similar to 2.1,
d, 1is selected as the last method declaration, and all the
remaining declarations are used as training data (A — 1). The
only difference with 2.1 is that in d,, the first four invocations
are used as query and all the remaining ones are used as GT(p).

When performing the experiments, we split a dataset into
two independent parts, namely a training set and a testing set.
In practice, the training set represents the OSS projects that
have been collected a priori. They are available at developers’
disposal, ready to be exploited for mining purposes. The testing
set represents the project being developed, or the active project.
This way, our evaluation mimics a real development scheme: the
system should produce recommendations for the active project
based on the data from a set of existing projects. We opt for
k-fold cross validation [16] as it is widely chosen to evaluate
machine learning models. Depending on the availability of
input data, the dataset with n elements is divided into k& equal
parts, so-called folds. For each validation round, one fold is
used as testing data and the remaining k£ — 1 folds are used
as training data. For our evaluation, we select two values,
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i.e., k = 10 and k = n. The former corresponds to fen-fold
cross validation and the latter corresponds to leave-one-out
cross validation [44].

D. Evaluation Metrics

For a testing project p, the outcome of a recommendation
process is a ranked list of invocations, i.e., REC(p). It is our
firm belief that the ability to provide accurate invocations
is important in the context of software development. Thus,
we are interested in how well a system can recommend API
invocations that eventually match with those stored in GT(p).
To measure the performance of the recommender systems, i.e.,
PAM and FOCUS, we utilize two metrics, namely success rate
and accuracy [7]. Given a ranked list of recommendations,
a developer typically pays attention to the fop-N items only.
Success rate and accuracy are computed by using N as the
cut-off value. Given that RECy (p) is the set of top-N items
and matchy (p) = GT(p) (N RECy (p) is the set of items in
the top-N list that match with those in the ground-truth data,
then the metrics are defined as follows.

Success rate: Given a set of P testing projects, this metric
measures the rate at which a recommendation engine can return
at least a match among fop-N recommended items for every
project p € P.
count,e p(|matchn(p)| > 0)

1P|

x 100%
&)

where count() counts the number of times the boolean
expression given as parameter evaluates to frue.

Accuracy: Precision and recall are employed to measure ac-
curacy [7]. Precision@N is the ratio of the top-N recommended
items belonging to the ground-truth dataset:

success rateQN =

|matchy (p)]
N

and recall@N is the ratio of the ground-truth items being
found in the fop-N items:

(6)

precision@QN =

|matchn (p)]
|GT (p)|

Recommendation time: As mentioned in RQ5, we measure
the time needed by both PAM and FOCUS to perform a
prediction on a given infrastructure, which is a laptop with
Intel Core i5-7200U CPU @ 2.50GHz x 4, 8GB RAM, and
Ubuntu 16.04.

recallQN = @)

V. RESULTS

RQ;: To what extent is FOCUS able to provide accurate and
complete recommendations?

To answer this research question, we use the dataset SHj
and vary the length of the input data for every testing project.
Two main configurations are taken into account, with two
sub-configurations for each as introduced in Section IV-C.
Table II shows the success rate for all the configurations. For
a small N, i.e., N = 1 (the developer expects a very brief
list of items) FOCUS is still able to provide matches. For
example, the success rates of €1.1 and c1.2 are 24.59% and
30.65%, respectively. When the cut-off value N is increased,

TABLE 11
SUCCESS RATE FOR SHy,, N = {1, 5,10, 15,20}

SH
N c1.1 (C1.2 (C2.1 C2.2
1 2459 30.65 2344 29.83
5 3196 40.00 3131 39.01
10 3590 43777 3573 43.77
15 3934 4721 3770 45.57
20 4098 4770 39.34  46.88

the corresponding success rates improve linearly. For example,
when N = 20, FOCUS obtains 40.98% success rate for
c1.1 and 47.70% for c1.2. By comparing the results obtained
for c1.1 and c1.2, we see that when more invocations are
incorporated into the query, FOCUS provides more precise
recommendations. In practice, this means that the accuracy of
recommendations improves with the maturity of the project.

We now consider the outcomes obtained for 2.1 and c2.2.
In these configurations, more background data is available for
recommendation. For 2.1 (6 = A—1, m = 1), the success rates
for the smallest values of V,i.e., N = 1and N = 5 are 23.44%
and 31.31%, respectively. In other words, it improves with
N. The same trend can be observed with other cut-off values,
ie., N = 10, 15, 20: the success rates for these settings increase
correspondingly. We notice the same pattern considering C2.1
and 2.2 together, or C1.1 and C1.2 together: if more invocations
are used as query, FOCUS suggests more accurate invocations.

Fig. 7 and Fig. 8 depict the precision and recall curves
(PRCs) for the above mentioned configurations by varying N
from 1 to 30. In particular, Fig. 7 represents the accuracy when
almost the first half of the declarations (6 = A/2 — 1) together
with one (C1.1) and four invocations (C1.2) from the testing
declaration d,, are used as query. As a PRC close to the upper
right corner indicates a better accuracy [7], we see that the
accuracy of C1.2 is superior to that of c1.1. Similarly with
€2.1 and 2.2, as depicted in Fig. 8, the accuracy improves
substantially when the query contains more invocations. These
facts further confirm that FOCUS is able to recommend
more relevant invocations when the developer keeps coding.
This improvement is obtained since the similarity between
declarations can be better determined when more invocations
are available as comprehended in Eq. 4.

The results reported so far appear to be promising at the
first sight. However, by considering Table II, Fig. 7, and Fig. 8
together, we realize that both success rate and accuracy are
considerably low: The best success rate is 47.70% for c1.2
when N = 20, which means that more than half of the queries
do not get any matches at all. In this sense, it is necessary to
ascertain the cause of this outcome: Is FOCUS only capable of
generating such moderate recommendations, or is it because of
the data? Our intuition is that SHy, is rather small in size, which
means the background data available for the recommendation
process is limited. Thus, to further validate the performance
of FOCUS, we perform additional experiments by considering
more data, using both Mv; and Mvg. For this evaluation, we
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Fig. 8. Precision and recall for C2.1 and C2.2 on SHy,

just consider the case when only one invocation together with
other declarations are used as query, i.e., C1.1 and c2.1. This
aims at validating the performance of FOCUS, given that the
developer just finished only one invocation in d,,.

Table III depicts the success rate obtained for different
cut-off values using both datasets. The success rates for all
configurations are much better than those of SH;. The scores
are considerably high, even when N = 1, the success rates

obtained by €1.1 and 2.1 are 72.30% and 72.80%, respectively.

For mvg, the corresponding success rates are lower. However,
this is understandable since the set has less data compared to
MVL,.

The PRCs for Mv;, and Mvg are shown in Fig. 9 and Fig. 10,
respectively. We see that for Mvy, a superior performance is
obtained by configuration 2.1, i.e., when more background
data is available for recommendation compared to C1.1. For Mvg,
we witness the same trend as with success rate: the difference
between C1.1 and 2.1 is negligible. Considering both Fig. 9
and Fig. 10, we observe that the overall accuracy for Mv,, is
much better than that of Mvg. The maximum precision and recall

TABLE III
SUCCESS RATE FOR MV, AND MVg, N = {1, 5,10, 15,20}

MV, MVg
N

1.1 (2.1 Cl.1 «c2.1
1 7230 7280 4940 50.10
5 8280 8270 64.60 65.40
10 8640 8640 6930 70.10
15 88.10 8790 71.60 72.20
20 8920 89.00 7330 7430
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for mvy, are 0.75 and 0.62, respectively. Whereas, the maximum
precision and recall for Mvg are 0.52 and 0.36, respectively.
This further confirms the fact that with more similar projects,
FOCUS can provide better recommendations. Referring back
to the outcomes of SHz, we see that the performance on Mv,
and Mvg is improved substantially.

To sum up, we conclude that the performance of FOCUS
relies on the availability of background data. The system works
effectively given that more OSS projects are available for
recommendation. In practice, it is expected that we can crawl
as many projects as possible, and use them as background data
for the recommendation process.

RQs: What are the timing performances of FOCUS in building
its models and in providing recommendations?

To measure the execution time of PAM and FOCUS, for
the very first attempt we ran both systems on the SH; dataset,
consisting of 610 projects. With PAM, for each testing project,
we combined the extracted query with all the other training
projects to produce a single ARFF file provided as input for the
recommendation process [10]. Nevertheless, we then realized
that the execution of PAM is very time-consuming. For instance,
for one fold containing 1 testing and 549 training projects (i.e.,
610/10 x 9 training folds) with 80MB in size, PAM takes
around 320 seconds to produce the final recommendations.
Instead, the corresponding execution time by FOCUS is quite
faster than PAM, around 1.80 seconds. Given the circumstances,
it is not feasible to run PAM on a large dataset.

Therefore, we decided to use the SHs dataset (consisting of
200 projects) for this purpose. For the experiments, we opt for
leave-one-out cross-validation [44], i.e., one project is used
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as testing, and all the remaining 199 projects are used for
the training. The rationale behind the selection of this method
instead of ten-fold cross-validation is that we want to exploit
as much as possible the projects available as background data,
given a testing project. The validation was executed 200 times,
and we measured the time needed to finish the recommendation
process. On average, PAM requires 9 seconds to provide each
recommendation while FOCUS just needs 0.095 seconds, i.e.,
it is two orders of magnitude faster and suitable to be integrated
into a development environment.

RQ3: How does FOCUS perform compared with PAM?

For the reasons explained in RQ-, the comparison between
PAM and FOCUS has been performed on the SHs dataset.
FOCUS gains a better success rate than PAM does, i.e., 51.20%
compared to 41.60%. Furthermore, as depicted in Fig. 11, there
is a big gap between the PRCs for PAM and FOCUS, with the
one representing FOCUS closer to the upper right corner. This
implies that the accuracy obtained by FOCUS is considerably
superior to that of PAM.

A statistical comparison of PAM and FOCUS using Fisher’s
exact test [8] indicates that, for 1 < N < 20, FOCUS always
outperforms PAM: We achieved p-values < 0.001 (adjusted
using the Holm’s correction [13]) in all cases, with an Odds
Ratio between 2.21 and 3.71, and equal to 2.54 for N = 1. In
other words, FOCUS has over twice the odds of providing an
accurate recommendation than PAM.

It is worth noting that the overall accuracy of FOCUS
achieved and reported in this experiment is, although better than
that of PAM, still considerably low. Following the experiments
on Mv; and Mvg from RQq, we believe that this attributes to
the limited background data available for the evaluation, since
we only consider 200 projects.

In summary, by considering both RQ, and RQ3, we come
to the conclusion that FOCUS obtains a better performance in
comparison to PAM with regards to success rate, accuracy and
execution time. Lastly, since PAM takes considerable time to
produce the final recommendations, it might be impractical to
deploy PAM in a development environment.

VI. THREATS TO VALIDITY

The main threat to construct validity concerns the simulated
setting used to evaluate the approaches, as opposed to perform-
ing a user study. We mitigated this threat by introducing four

configurations that simulate different stages of the development
process. In a real development setting, however, the order
in which one writes statements might not fully reflect our
simulation. Also, in a real setting, there may be cases in
which a recommender is more useful, and cases (obvious
code completion) where it is less useful. This makes a further
evaluation involving developers highly desirable.

Threats to internal validity concern factors internal to our
study that could have influenced the results. One possible threat
can be seen through the results obtained for the datasets SH;,
and SHs. As noted, these datasets exhibit lower precision/recall
with respect to Mv; and Mvg due to the limited size of the
training sets. However, these datasets were needed to compare
FOCUS and PAM due to the limited scalability of PAM.

The main threat to external validity is that FOCUS is
currently limited to Java programs. As stated in Section III,
however, FOCUS makes few assumptions on the underlying lan-
guage and only requires information about method declarations
and invocations to build the 3D rating matrix. This information
could be extracted from programs written in any object-oriented
programming language, and we wish to generalize FOCUS to
other languages in the future.

VII. RELATED WORK

In this section, we summarize related work about API usage
recommendation and relate our contributions to the literature.

A. API Usage Pattern Recommendation

Acharya et al. [1] present a framework to extract API patterns
as partial orders from client code. While this approach proposes
a representation for API patterns, suggestions regarding API
usage are still missing.

MAPO (Mining API usage Pattern from Open source
repositories) is a tool that mines API usage patterns from
client projects [45]. MAPO collect API usages from source
files, groups API methods into clusters. Then, it mines API
usage patterns from the clusters, ranks them according to
their similarity with the current development context, and
recommends code snippets to developers. Similarly, UP-
Miner [43] mines API usage patterns by relying on SegSim,
a clustering strategy that reduces patterns redundancy and
improves coverage. Differently from FOCUS, these approaches
are based on clustering techniques, and consider all client
projects in the mining regardless of their similarity with the
current project.

Fowkes et al. introduce PAM (Probabilistic API Miner), a
parameter-free probabilistic approach to mine API usage pat-
terns [10]. PAM uses the structural Expectation-Maximization
(EM) algorithm to infer the most probable API patterns
from client code, which are then ranked according to their
probability. PAM outperforms both MAPO and UP-Miner
(lower redundancy and higher precision). We directly compare
FOCUS to PAM in Section IV.

Niu et al. extract API usage patterns using API class or
method names as queries [23]. They rely on the concept of
object usage (method invocations on a given API class) to



extract patterns. The approach of Niu et al. outperforms UP-
Miner and Codota,’, a commercial recommendation engine,
in terms of coverage, performance, and ranking relevance.
In contrast, FOCUS relies on context-aware CF techniques—
which favors recommendations from similar projects and uses
the whole development context to query API method calls.

The NCBUP-miner (Non Client-based Usage Patterns) [35]
is a technique that identifies unordered API usage patterns
from the API source code, based on both structural (methods
that modify the same object) and semantic (methods that
have the same vocabulary) relations. The same authors also
propose MLUP [34], which is based on vector representation
and clustering, but in this case client code is also considered.

DeepAPI [12] is a deep-learning method used to generate
API usage sequences given a query in natural language. The
learning problem is encoded as a machine translation problem,
where queries are considered the source language and API
sequences the target language. Only commented methods are
considered during the search. The same authors [11] present
CODEnn (COde-Description Embedding Neural Network),
where, instead of API sequences, code snippets are retrieved to
the developer based on semantic aspects such as API sequences,
comments, method names, and tokens.

With respect to the aforementioned approaches, FOCUS uses
CF techniques to recommend and rank API method calls and
usage patterns from a set of similar projects. In the end, not
only relevant API invocations are recommended, but also code
snippets are returned to the developer as usage examples.

B. API-Related Code Search Approaches

Strathcona [14] is a recommender system used to suggest
API usage. It is an Eclipse plug-in that extracts the structural
context of code and uses it as a query to request a set of code
examples from a remote repository. Six heuristics (associated
to class inheritance, method calls, and field types) are defined
to perform the match. Similarly, Buse and Weimer [3] propose
a technique for synthesizing API usage examples for a given
data type. An algorithm based on data-flow analysis, k-medoids
clustering and pattern abstraction is designed. Its outcome is a
set of syntactically correct and well-typed code snippets where
example length, exception handling, variables initialization and
naming, and abstract uses are considered.

Moreno et al. [17] introduce MUSE (Method USage Exam-
ples), an approach designed for recommending code examples
related to a given API method. MUSE extracts API usages
from client code, simplifies code examples with static slicing,
and detects clones to group similar snippets. It also ranks
examples according to certain properties (i.e., reusability,
understandability, and popularity) and documents them.

SWIM (Synthesizing What I Mean) [28] seeks API structured
call sequences (control and data-flows are considered), and then
synthesizes API-related code snippets according to a query
in natural language. The underlying learning model is also
built with the EM algorithm. Similarly, Raychev et al. [30]
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propose a code completion approach based on natural language
processing, which receives as input a partial program and
outputs a set of API call sequences filling the gaps of the input.
Both invocations and invocation arguments are synthesized
considering multiple types of an APL

Thummalapenta and Xie propose SpotWeb [40], an approach
that provides starting points (hotspots) for understanding a
framework, and highlights where examples finding could be
more challenging (coldspots). Other tools exploit StackOver-
flow discussions to suggest context-specific code snippets and
documentation [5], [25], [26], [27], [29], [31], [38], [41].

VIII. CONCLUSIONS

In this paper, we introduced FOCUS, a context-aware
collaborative-filtering system to assist developers in selecting
suitable API function calls and usage patterns. To validate the
performance of FOCUS, we conducted a thorough evaluation
on different datasets consisting of GitHub and Maven open
source projects. The evaluation was twofold. First, we examined
whether the system is applicable to real-world settings by
providing developers with useful recommendations as they
are programming. Second, we compared FOCUS with a well-
established baseline, i.e., PAM, with the aim of showcasing the
superiority of our proposed approach. Our results show that
FOCUS recommends API calls with high success rates and
accuracy. Compared to PAM, FOCUS works both effectively
and efficiently as it can produce more accurate recommen-
dations in a shorter time. The main advantage of FOCUS
is that it can recommend real code snippets that match well
with the development context. In contrast with several existing
approaches, FOCUS does not depend on any specific set of
libraries and just needs OSS projects as background data to
generate API function calls. Lastly, FOCUS also scales well
with large datasets by using the collaborative-filtering technique
that helps sweep irrelevant items, thus improving efficiency.
With these advantages, we believe that FOCUS is suitable
for supporting developers in real-world settings. For future
work, we plan to conduct a user study to thoroughly study
the system’s performance. Moreover, we will embed FOCUS
directly into the Eclipse IDE.
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