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The superfluid state in bulk liquid 3He is realized in the form of A or B phases. Uniaxially
anisotropic aerogel (nafen) stabilizes transition from the normal to the polar superfluid state which
on further cooling transitions to the axipolar orbital glass state (Phys. Rev. Lett. 115, 165304
(2015)). This is the case in nafen aerogel preplated by several atomic layers of 4He. When pure
liquid 3He fills the same nafen aerogel a solid-like layer of 3He atoms coats the aerogel structure.
The polar state is not formed anymore and a phase transition occurs directly to the axipolar phase
(Phys. Rev. Lett. 120, 075301 (2018)). The substitution of 4He by 3He atoms at the aerogel
surface changes the potential and adds the exchange scattering of quasiparticles on the aerogel
strands. A calculation shows that both of these effects can decrease the degree of anisotropy of
scattering and suppress the polar phase formation. The derived anisotropy of the spin diffusion
coefficient in globally anisotropic aerogel is determined by the same parameter which controls the
polar state emergence which allows one to check the effect of anisotropy change for different types
of covering.

I. INTRODUCTION.

The superfluid state of liquid 3He is formed by means
the Cooper pairing with spin and orbital angular momen-
tum equal to 1. In isotropic space the phase transition
depending on pressure occurs in either the A or B super-
fluid phase1. Investigation of superfluid phases in high
porosity aerogel allows one to study the influence of im-
purities on superfluidity with nontrivial pairing2,3. It has
been found that similar to bulk 3He two superfluid A-like
and B-like phases exist in 3He in aerogel4. However, both
the superfluid fraction and the temperature at which the
superfluid is manifested are suppressed from their bulk
values2. The interesting possibility is opened in globally
anisotropic aerogel of lifting the degeneracy between the
different superfluid phases with p-pairing. It was shown5

that in the case of easy-axis anisotropy a new superfluid
phase of 3He, the polar phase, is stabilized below the
transition temperature. It was also predicted5 that on
further cooling a second-order transition into a polar-
distorted A phase should occur. Indeed, quite recently,
the first observation of the polar phase was reported6.
This phase appears in 3He confined in new type of ”ne-
matically ordered” aerogel called ”nafen” with a nearly
parallel arrangement of strands which play the role of
ordered impurities. It was shown that in nafen the tran-
sition to the superfluid state always occurs to the polar
phase and the region of its existence increases with den-
sity of strands. In another type of nematically ordered
but less dense and much less anisotropic aerogel called
”Obninsk aerogel”6 the superfluid state is always formed
in the orbital glassy A-like state.

To avoid a paramagnetic signal from surface solid 3He,
the nafen samples in the measurements6 were preplated
by ∼ 2.5 4He monolayers. Then the new experiment
series was performed with the same samples filled by
pure 3He7. In this case the temperature of the super-
fluid transition is suppressed more strongly and this ef-

fect increases with strands density such that in the most
dense nafen the superfluid transition was not detected
down to the lowest attained temperatures. The super-
fluid transition occurs directly to the polar-distorted A-
phase without the formation of an intermediate region of
polar-state. The small addition of 3He in the surface 4He
layer, corresponding to 0.1 monolayer, also completely
kills superfluidity at 29,3 bar in the most dense nafen,
and in the less dense aerogel noticeably suppresses the
critical temperature. In this case also, the transition oc-
curs directly to the distorted A-state. Thus, the situation
looks as if the 3He covering suppresses anisotropy neces-
sary for the existence of the polar phase.

There was pointed out in Ref.7 : ”The observed phe-
nomena cannot be explained by a change of the scattering
specularity because they are observed also at high pres-
sures where the scattering should be diffusive regardless
of the presence or absence of solid 3He”. This statement
is based on previous studies (see references 5-9 in the
paper7) of the degree of specularity of 3He quasiparti-
cles scattering on metallic surfaces with different cover-
ings. The corresponding information for liquid 3He filling
nafen aerogel is absent. But, generally speaking, the sub-
stitution of 4He by 3He atoms at aerogel surface changes
the potential and adds the exchange scattering of quasi-
particles on the aerogel strands.

I study this problem taking into account both the po-
tential and the exchange scattering of quasiparticles of
liquid 3He on 3He atoms localized at the strands sur-
face. In Section II I show that 3He covering changes the
intensity and the anisotropy of scattering. In the Sec-
tion III the presented derivation of spin diffusion current
shows that the anisotropy of the spin diffusion coefficient
in globally anisotropic aerogel is expressed through the
same parameter which determines the polar state emer-
gence. Thus, being measured, the anisotropy decrease
of spin diffusion in nafen filled by pure 3He can serve
as a direct indication of suppression of the temperature
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interval of polar state existence.

II. SUPERFLUID 3HE IN UNIAXIALLY

ANISOTROPIC AEROGEL WITH MAGNETIC

SCATTERING.

The order parameter of superfluid phases of 3He is
given1 by the complex 3 × 3 matrix Aαi, where α and
i are the indices numerating the Cooper pair wave func-
tion projections on spin and orbital axes respectively. All
the phases with different order parameters Aαi have the
same critical temperature. The degeneracy is lifted by
the fourth-order terms with respect to Aαi in the Landau
expansion of the free energy density. The most energeti-
cally profitable are the B-phase with the order parameter
AB

αi = ∆Rαie
iϕ, where Rαi is a rotation matrix, and (in

the high pressures region) the A-phase with the order
parameter

AA
αi = ∆Vα(mi + ini), (1)

where V is the unit spin vector and m and n are the or-
thogonal unit vectors such that m×n=l is the unit vector
directed along the Cooper pair angular momentum.
The different pairing states of superfluid 3He in a ran-

dom medium with global uniaxial anisotropy can be com-
pared by making use the second-order terms in the Lan-
dau free energy density. They consist of an isotropic part,
common to all the superfluid phases with p-pairing, and
the anisotropic part

F (2) = F
(2)
i + F (2)

a

= α0

(

T

Tc
− 1

)

AαiA
⋆
αi + ηijAαiA

⋆
αj , (2)

where Tc = Tc(P ) is the transition temperature in the su-
perfluid state suppressed with respect of transition tem-
perature in the bulk liquid Tc0(P ). The medium uniaxial
anisotropy with anisotropy axis parallel to ẑ direction co-
incident in our case with the average direction of aerogel
strands is given by the traceless tensor

ηij = η





1 0 0
0 1 0
0 0 −2



 . (3)

In the absence of global anisotropy (η = 0) all p-wave
phases have the same critical temperature. At positive
η > 0 the polar state with the order parameter of the
form

Aαi = aVαzi, (4)

where Vα is the unit spin vector, has the lowest energy
of anisotropy8,

Fa = −2η|a|2. (5)

Hence, it has the highest critical temperature Tc1 of tran-
sition from the normal state. At some lower temperature
Tc2 the polar state passes to the more energetically prof-
itable distorted A-state9 with the order parameter

Aαi = Vα [aẑi + ib(x̂i cosϕ+ ŷi sinϕ)] (6)

intermediate between the polar state at b = 0 and the
A-state at a = b. This state has the Cooper pair angu-

lar momentum l̂ = −x̂ sinϕ(r) + ŷ cosϕ(r) lying in the
basal plane and locally ordered (ϕ(r) = const) on the
scales L exceeding the coherence length ξ0 but smaller
than the dipole length ξd and randomly distributed on
scales larger than L. The pure polar state exists in the
temperature interval roughly determined by the energy
of anisotropy difference between of the polar and the dis-
torted A-states9,

Tc1 − Tc2 ≈
η

α0
Tc. (7)

Hence, at small η parameter the temperature interval of
the polar state existence is small and hardly observable.
The quasiparticle interaction with the nafen strands

is modelled by the interaction with the randomly dis-
tributed impurities including the globally anisotropic po-
tential and the globally anisotropic exchange part,

Hint =
∑

i

∫

d3rψ†
α(r) [u(r− ri)δαβ

+J(r− ri)σαβS]ψβ(r), (8)

where S is the spin of the impurity and σ are the 3He
quasiparticles spin matrices. The exchange scattering in
an isotropic aerogel has been considered by Sauls and
Sharma10 and by Baramidze and Kharadze11. They have
shown that if the scattering amplitude on impurities in-
cludes an exchange part then the critical temperatures
splitting of A1 and A2 transitions under an external field
H decreases in comparison with the impurity free case:

TA1
− TA2

= (γ0 − γimp)H.

The effect arises due to an interference between scalar
and exchange scattering such that

γimp ∝ uJ

is proportional to the product of the corresponding am-
plitudes. In the NMR experiments6,7 the field is small
and this effect is negligible, but one needs to consider an
influence of the globally anisotropic scattering on critical
temperature.
To find the critical temperature of superfluid transi-

tion in globally anisotropic aerogel one must calculate
the second-order terms in the Landau free energy den-
sity
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F (2) =
1

3

{

1

g
δij − T

∑

ω

∫

d3p

(2π)3
p̂iΓj(p, ω, )G(p, ω)G(−p,−ω)

}

A⋆
µiAµj , (9)

where g is the constant of p-wave triplet pairing. Here,

G(p, ω) =
1

iω − ξp − Σp(ω)
(10)

is the normal state quasiparticle Green function and
Γµν
j (p, ω) is the vertex part. ξp = εp − µ is the quasi-

particles energy counted from the chemical potential, and
ω = πT (2n+1) is the fermion Matsubara frequency. The
Planck constant ~ was everywhere put equal to 1. The
self-energy part is given by the equation

Σp(ω) =

∫

d3p′

(2π)3
U2
p−p′G(p′, ω). (11)

Here, according to Abrikosov and Gor’kov12, the ”im-
purity line” U2

p−p′ arises after averaging over impurity
positions and also over the orientation of the spins of
all impurity atoms, 〈SiSk〉 = 1

3S(S + 1)δik, where in
our particular case S = 1/2. Then taking into account
σi
αγσ

i
γα = 3

4 we obtain

U2
p
= ni

[

u2
p
+ 〈Siσ

i
αγSkσ

k
γα〉J

2
p

]

= ni

[

u2
p
+

1

4
S(S + 1)J2

p

]

, (12)

where ni is impurity concentration and u(p) and J(p)
are the Fourier transforms of the amplitudes of poten-
tial and exchange scattering from Eq.(8). According to
assumption about global anisotropy they depend on the
momentum direction such that

niu
2
p
=

1

2πN0τp

{

1− δp

[

p̂2z −
1

2
(p̂2x + p̂2y)

]}

, (13)

niJ
2
p
=

1

2πN0τex

{

1− δex

[

p̂2z −
1

2
(p̂2x + p̂2y)

]}

, (14)

where N0 is the density of states per one spin projec-
tion, p̂i are the projections of momentum unit vector p

|p|

on the i = (x, y, z) coordinate axis, τp, and τex are the
isotropic parts of mean free time of potential and ex-
change scattering and δp and δex are the corresponding
degree of anisotropy. The anisotropic part of U2

p
is taken

with the sign opposite to that in Ref.5 and chosen such
that

∫

dΩ
4πU

2
p

is independent of the anisotropic part of
scattering.

So, the self energy obtained from Eqs.(11)-(14) is

Σp(ω) = −
i

2τ

{

1− δ

[

p̂2z −
1

2
(p̂2x + p̂2y)

]}

sign ω. (15)

Along with the isotropic term it includes a term describ-
ing the global uniaxial anisotropy. Each of these terms
consists of two independent parts: the potential part and
the exchange one determined in the following way

1

τ
=

1

τp
+

1

τex
,

δ

τ
=
δp
τp

+
δex
τex

. (16)

The vertex part must be found from the integral equa-
tion

Γj(p, ω) = p̂j + n

∫

d3p′

(2π)3

[

u2
p−p′ +

1

3
S(S + 1)(g†)µαβσ

i
λασ

i
ρβg

µ
λρJ

2
p−p′

]

Γj(p
′, ω)G(p′, ω)G(−p′,−ω). (17)

It is known12 that for the case of singlet superconduc-
tivity the exchange part of scattering in this equation is
given by

1

3
S(S + 1)gtαβσ

i
λασ

i
ρβgλρJ

2
q
= −

1

4
S(S + 1)J2

q
, (18)

where the matrix ĝ =

(

0 1
−1 0

)

, and the superscript t

indicates transposition. As result, there are two different

”scattering time” originating from the self-energy and the
vertex12. The corresponding combination for the triplet
pairing is

1

3
S(S + 1)(g†)µαβσ

i
λασ

i
ρβg

ν
λρJ

2
q
=

1

4
S(S + 1)J2

q
δµν , (19)

where gνλρ = (−σz
λρ, iδλρ, σ

x
λρ), such that the ”scattering

time” originating from the self-energy and the vertex are
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equal to each other. Thus, the Eq.(17) is

Γj(p, ω) = p̂j

+

∫

d3p′

(2π)3
U2
p−p′Γj(p

′, ω)G(p′, ω)G(−p′,−ω) (20)

and its solution has the form

Γµν
j (ω,p) =

{

p̂j + Γω

[

p̂z ẑj −
1

2
(p̂xx̂j + p̂y ŷj)

]}

, (21)

where for the δ ≪ 1

Γω =
δ

3τ
∣

∣ω + 1
2τ sign ω

∣

∣

+O(δ2). (22)

Substitution of the vertex Γµν
j (ω,p) and the Green func-

tion G(p, ω) into Eq.(9) yields

F2 = αA⋆
µiAµi − 2η

[

A⋆
µzAµz −

1

2
(A⋆

µxAµx +A⋆
µyAµy)

]

,(23)

where

α =
N0

3

[

ln
T

Tc0
+ ψ

(

1

2
+

1

4πTτ

)

− ψ

(

1

2

)

−
1

5

δ

4πTτ
ψ(1)

(

1

2
+

1

4πTτ

)]

, (24)

η =
8N0

45

δ

4πTτ
ψ(1)

(

1

2
+

1

4πTτ

)

. (25)

Here, ψ(z), and ψ(1)(z) are the digamma function and
its first derivative.
At δ > 0 the critical temperature of the phase transi-

tion to the superfluid state is maximal for the polar phase
Eq.(4), and is determined by the equation

α− 2η = 0. (26)

In the limit of weak scattering 4πTτc >> 1 the transition
to the polar state occurs at

Tc1 = Tco −
π

8τ
+

11π

60τ
δ. (27)

It is worthwhile to recall that at small degrees of
anisotropy the temperature interval of the polar state
existence is small and hardly observable.
According to Eq.(16) the degree of global anisotropy δ

is determined by two independent terms originating from
the potential and the exchange scattering. The latter can
in principle suppress the anisotropy. However, the quasi-
particle self-energy and the vertex part due to exchange
scattering have the same structure as for pure potential
scattering. Hence, the anisotropy suppression can also
originate from the potential scattering which is different
for the covering of aerogel stands by a solid 3He layer.
The change in anisotropy of scattering for different

types of covering must also reveal itself in the changes
of spin diffusion anisotropy. In the next section I de-
rive the normal liquid 3He spin diffusion current flowing
through the media filled by the randomly distributed im-
purities with globally anisotropic potential and exchange
scattering.

III. SPIN CURRENT

The spin current in neutral Fermi liquid is
calculated13,14 as the response to the gradient of angle
of rotation of the spin space ωi = ∇iθ,

ji = −
δH

δωi

, (28)

where

H =
1

2m

∫

d3r(Dαλ
i ψλ)

†Dαµ
i ψµ +Hint, (29)

Dαβ
i = −iδαβ∇i +

1

2
σαβωi, (30)

and Hint includes the Fermi liquid interaction and the
interaction with impurities, Eq.(8).
At low temperatures the collisions between the Fermi

liquid quasiparticles induce negligibly small correction to
the spin diffusion due to the scattering on aerogel strands.
On the other hand, we are mainly interested in the spin
current anisotropy in the anisotropic media and will ig-
nore the temperature dependence of exchange amplitude
of scattering due to the Kondo effect15. In this case
one can work with the field theory technique for T=0.
The response of the gauge field ωi is calculated in com-
plete analogy with response to the usual vector potential
Ai in the calculation of electric current in an isotropic
metal with randomly distributed impurities performed
in16. The spin current at finite wave vector k and exter-
nal frequency ω is

ji(k, ω) =

i

4m
Tr

∫ +∞

−∞

dε

2π

∫

d3p

(2π)3
piσαβ(σβαωj)Πj −

1

4
nωi,(31)

where n is the number of liquid 3He atoms in the unit
volume, function Πj is determined by the equation

Πj(p, p− k) = G(p, ε)G(p − k, ε− ω)

×

[

pj +

∫

d3p′

(2π)3
U2(p− p′)Πj(p

′, p′ − k)

]

, (32)

p = (p, ε), k = (k, ω),

G(p, ε) =
1

ε− ξp − Σp(ε)
, (33)

U2(p) is determined by Eq.(12), and Σp(ε) is given
by Eq.(15). The vertex correction does not introduce
changes in the spin structure of Eq.(31) due to the iden-

tity σi
αλσ

p
λµσ

p
ρασ

j
µρ = σi

αβσ
j
βα.

At k = 0, ω = 0 the first term in the current expression
(31) cancels out the second ”diamagnetic” term. We are
interested in calculating the current at k = 0, ω 6= 0. In
this case,

ji =
i

4m
Tr

∫ ω

0

dε

2π

∫

d3p

(2π)3
piσαβ(σβαωj)Πj(k = 0)

(34)
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and the solution of Eq.(32) in a linear approximation
with respect to δ and at ωτ ≪ 1 is

Πj(k = 0) = G(p, ε)G(p, ε− ω)

×

{

pj +
2

3
δ

[

p̂z ẑj −
1

2
(p̂xx̂j + p̂y ŷj)

]}

. (35)

Substituting this into Eq.(34), we obtain

ji =
1

6

{

δij +
16

15
δ

[

ẑiẑj −
1

2
(x̂ix̂j + ŷiŷj)

]}

iωτN0v
2
Fωj . (36)

Here vF is the Fermi velocity. Making use of the Larmor theorem

γH =
∂θ

∂t
= −iωθ, (37)

where γ = 2µ is the gyromagnetic ratio, and µ is the magnetic moment of 3He atoms, one can rewrite the expression
for current as

ji = −
1

3

{

δij +
16

15
δ

[

ẑiẑj −
1

2
(x̂ix̂j + ŷiŷj)

]}

τN0v
2
Fµ∇jH. (38)

To rewrite the spin current as the magnetic diffusion current one should multiply both sides of this equation by 2µ
to obtain

jMi = −
1

3

{

δij +
16

15
δ

[

ẑiẑj −
1

2
(x̂ix̂j + ŷiŷj)

]}

τv2F∇jM, (39)

where the Fermi-liquid magnetization is M = 2µ2N0H.
Thus, the spin diffusion currents along the direction of
nafen strands and in the direction perpendicular to them
are

jMz = −
1

3

{

1 +
16

15
δ

}

τv2F∇zM, (40)

jMx = −
1

3

{

1−
8

15
δ

}

τv2F∇xM (41)

respectively. One can demonstrate that a similar calcula-
tion taking into account the Fermi liquid renormalization
adds in these formulas the pre-factor (1+F a

0 )(1+F
a
1 /3).

Thus, the anisotropy of the spin diffusion coefficient
is expressed through the same parameter of anisotropy
δ that determines the temperature interval of the polar
state existence.

IV. CONCLUSION

It was shown that the degree of global anisotropy re-
sponsible for polar state stability is determined by two
mechanisms, originating from the potential and the ex-
change scattering. The suppression of anisotropy nar-
rows the temperature interval of the polar state existence,
making it hardly observable. The anisotropy decrease
can be controlled by the measurements of spin diffusion

because the difference in the spin diffusion coefficients
in directions parallel and perpendicular to nafen strands
is found to be proportional to the same parameter that
determines the polar state emergence.

The authors of the paper7 have pointed out the dom-
inate role of the exchange scattering in the anisotropy
suppression (see the citation of Ref.7 in the Introduc-
tion). However, according to the presented results, the
exchange interaction yields the quasiparticle self-energy
and the vertex part of the same structure as for pure po-
tential scattering. Hence, although the exchange mecha-
nism works only in the case of coating of aerogel strands
by a solid 3He layer it is possible that the main role in
the anisotropy decrease is played by the change of poten-
tial scattering with aerogel strands covered by 3He in-
stead of 4He. The problem of choosing between the two
mechanisms of anisotropy suppression will be addressed
in future investigations.

Being mainly interested in the role of anisotropy of ex-
change scattering, I neglect throughout this paper the
possible temperature dependence of the amplitude of ex-
change scattering due to the Kondo effect. The logarith-
mic increase of positive ion mobility starting at T=50
mK up to the superfluid transition temperature ( see
the paper15 and references therein) means that the ex-
change scattering has a ferromagnetic character, in agree-
ment with the notion that 3He is an almost ferromagnetic
Fermi liquid. Thus, the Kondo effect weakens the mag-
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nitude of the pair breaking by magnetic scattering.
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