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1. Introduction

ABSTRACT 

Flexible and miniaturized energy storage devices are necessary for the development of wearable ap
plications. Hence, micro-supercapacitors, which offer good compromise between energy densities, high 
power capabilities and long cycle life, have ta be integrated on flexible substrates. Laser-writing tech
niques are suitable for engineering multiple materials within short times. The integration of RuO2 onto 
flexible substrates usually relies on the irradiation of ruthenium salts displaying an oxidation state of the 
metal varying from +Il ta +IV, and for which additives are necessary in the electrode ta compensate the 
Jack of adherence of the resulting large ruthenium grains. Here, we report a facile and scalable prepa
ration of RuO2 flexible electrodes from direct laser-writing of a spin-coated solution of ruthenium mo
lecular precursor, the Ru(COD)(COT) (COD= 1,5-cyclooctadiene, COT = 1,3,5-cyclooctatriene) and 
cellulose acetate, without the addition of any other capacitive material in the electrode. The obtained Ru/ 
RuO2 deposit showed good adherence on a Au thin film deposited on either silicon or polyimide (Kap
ton™) substrates, and delivered up ta 16 mF cm-2 at 100 mV ç1 in 1 M H2SO4. Furthermore, the flexible 
electrodes exhibited good capacitance retention, with more than 60% of the initial capacitance recorded 
at high scan rate of 10 V ç 1. Laser-writing using this original ruthenium metallic precursor offers an easy 
and scalable fabrication method for preparing additive-free RuO2-based micro-supercapacitor electrodes.  

The current technological development towards miniaturized
and flexible electronics for wearable applications requires new 
designs for energy storage devices [1 ]. While energy delivery is 
mainly ensured by batteries and supercapacitors, these are actually 
assembled in a sandwich configuration with metallic current col
lectors, thus making impossible their integration in roll-up dis
plays, electronic papers, smart cloth, sensors and biomedical 
devices. To tackle the need for flexible, lightweight, high power and 

long cycle life systems, carbon-based micro-supercapacitors (MSCs) 
have been integrated onto flexible substrates. Therefore, carbon 
nanotubes (CNT) [2], graphene [3-6], reduced graphite oxide (r
GO) [7] and porous carbon [8] have been explored in the past five 
years. Another strategy to improve the electrochemical perfor
mance of flexible devices consists in the use of pseudocapacitive 
materials, which store energy via fast and reversible redox re
actions occurring mainly at their surface. Meta! oxides, such as 
Mn02 [9.10], Ru02 [11], or MXenes [12], as well as conductive 
polymers [13], have been integrated on flexible substrates via many 
fabrication processes. 
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Laser-writing has attracted particular research interest as it 
provides a facile and scalable one-step process under ambient 
conditions to manufacture bendable MSCs [14-16]. Based on the 
pioneer work from Arnold 's and Kaner's groups [ 14,15 ], direct laser
writing was used to embed pseudocapacitive materials in poly
imide [17]. Ruthenium oxide is a good candidate for the preparation 
of MSCs thanks to its extremely high theoretical pseudocapacitance 



(> 1300 F g-1), its acceptable electronic conductivity and long-term 
cyclability [18]. Besides, the low RuO2 loadings used in micro
supercapacitor electrodes do not make the cost of RuO2 pre
cursors a major issue [19]. Recently, Kaner's group prepared laser
scribed graphene (LSG)/RuO2 based MSCs from a graphene oxide 
(GO)/RuCh mixture drop-casted on PET [20]. Laser irradiation 
allowed both GO conversion into graphene and RuCl3 oxidation 
into RuO2. However, RuCIJ·3H2O, used as a soluble precursor, is an 
ill-defined compound displaying Ru centers adopting the +II 
and +IV oxidation states, which can further leave chloride con
taminants in the material. Aside, GO is needed to ensure a good 
adherence of the laser-scribed RuO2. In search for precursors able at 
providing a proof of concept of the deposition of thin RuO2 layers 
on a flexible substrate by laser writing technology, we turned to 
ruthenium 1,5-cyclooctadiene 1,3,5-cyclooctatriene (Ru(COD)(
COT)) known to decompose in mild conditions without leaving any 
residues [21 ]. 

In this communication, we describe, as a proof of concept, the 
preparation of adherent pseudocapacitive electrodes for micro
supercapacitor applications starting from the above mentioned 
organometallic complex in which ruthenium is zerovalent (Ru(0)), 
using a simple laser-writing process. Thus, RuO2-based electrodes 
were obtained from direct laser-writing of a Ru(COD)(COT)/cellu
lose acetate mixture, supported on a flexible Kapton™/Ti/Au sub
strate, without using any additional capacitive material or 
nanostructuration step. Different from Atomic Layer Deposit (ALD) 
or sputtering techniques, the laser-writing of this original ruthe
nium metallic precursor provided a facile and scalable fabrication 
of thin-films RuO2-based electrodes for designing flexible MSCs. 

2. Experimental

2.1. Electrodes preparation 

The Ru(COD)(COT)/cellulose acetate mixture was obtained ac
cording to previous work [21 ]. Briefly, in a glove box ( 02 and H2O 
contents lower than 0.1 ppm), 67.4 mg of cellulose acetate were 
dissolved in 3 ml of tetrahydrofuran (THF, Sigma Aldrich). In a 
different recipient, 125 mg of Ru(COD)(COT) (NanoMePS, France) 
were dissolved in 1 ml of THF. Then, the Ru(COD)(COT) solution 
was added into the cellulose acetate solution, resulting in a yellow 
solution (Ru/polymer 60% wt). 

Prior to Ru(COD)(COT)/cellulose acetate mixture deposition, Ti/ 
Au(S0 nm/200 nm) was evaporated onto a Kapton™ foi! (75 µm, 
RadioSpare, UK) to insure the current collection during the elec
trochemical characterizations. Polyimide was chosen for its ther
mal stability [22]. The as-prepared Ru(COD)(COT)/cellulose acetate 
mixture was then spin-coated on the flexible substrate (500 rpm, 
30 s) to achieve a homogeneous deposit of the ruthenium precursor 
(thickness of 1.50 ± 0.25 µm). The use of cellulose acetate allows the 
smooth and homogeneous deposition of the Ru(COD)(COT) pre
cursor during spin-coating, which is not the case when spin
coating is performed without cellulose acetate. Finally, the Kap
ton™/Ti/Au/Ru( COD)( COT)/cellulose acetate mixture was irradi
ated with a UV laser ( 405 nm, power up to 285 mW on the sample, 
DILASE 250, KLOÉ, France, designed for direct laser-writing), con
verting the Ru precursor into RuO2 through combustion of the 
organic parts of the precursor and the cellulose acetate, and 
oxidation of the Ru(0). The best results were obtained with the 
irradiation parameters: 40% of the full power (116 mW), a spot size 
of 1 µm, a distance between two adjacent lines of 1 µm and a 
writing speed of 2 mm ç 1. The area that was not irradiated by the 
laser was easily removed by washing the non-laser-scribed 
Ru(COD)(COT)/cellulose acetate with acetone and ethanol. The 
procedure could be repeated several times to increase the amount 

of coated RuO2, with a short 20 min annealing at 250 °C after each 
deposition step. 

2.2. Structural and electrochemical characterizations 

The chemical composition and morphology of the electro
chemically active deposit were investigated by X-ray photoelectron 
spectroscopy (XPS). The analyses were carried out with a Kalpha 
XPS Thermoscientific (Thermo fisher scientific, USA) using a 
monochromatic AlKa source (1486.6 eV). The pressure in the 
analysis chamber was close to 10-9 mbar. Constant passed energy 
was kept at 30 eV with 0.1 eV energy steps for the high resolution 
scans. Ali the binding energies refer to a C (ls) peak binding energy 
of 284.5 eV. 

The structure of the laser-scribed RuO2 was observed through 
Scanning Electron Microscopy (SEM) with a JSM 7100 F üEOL, 
Japan), and the thickness of the coating was estimated from the 
cross-sectional view of the layered Kapton™/Ti/Au/laser-scribed 
Ru(COD)(COT). 

The electrochemical characterizations of the as-prepared elec
trodes were carried out using a Biologie VMP3 Potentiostat in 
1 M H2SO4 in a three-electrode configuration. A Hg/Hg2SO4 elec
trode was used as reference electrode and a 0.64 cm2 Pt foi! as 
counter electrode. Cyclic voltammetry was performed at several 
scan rates and the areal capacitance (C, in F cm-2) was calculated 
from equation (1 ): 

j IdV 

C=-
A.v . ..:::JV (1) 

where I stands for the discharge current (A), v the scan rate (V ç 1 ), 

/1 V the potential window (V) and A the footprint area of the active 
material (cm2). 

3. Results and discussion

3.1. Laser-scribed ruthenium oxide 

An optical view of a 0.25 cm2 laser-scribed Ru(COD)(COT) film 
(center) deposited onto a Kapton™ foi! covered with a conducting 
Ti/Au thin layer (border) is presented in Fig. 1A. The RuO2 layer 
grown on the gold layer looks homogeneous and exhibits a gran
ular structure (magnification Fig. 1A). In addition, the material 
resulting from Ru(COD)(COT) after laser-writing remained onto the 
flexible substrate even after a scotch scratch test. A thickness of 
100 nm was first estimated with an optical profiler (SENSOFAR, 
Spain) (Fig. Sl ). 

The conversion of the Ru(COD)(COT) precursor into RuO2 was 
monitored by XPS, since the diffraction peaks related to RuO2 were 
not clearly visible from X-Ray diffraction analyses (Figs. S2 and S3). 
As important information can be missed on the Ru(3p) spectra, the 
Ru(3d) core level was first studied. A deconvolution was necessary 
as the Ru(3d) core level overlaps the C(ls) core level. The presence 
of carbon ( detailed in Supplementary Materials) is assumed to be a 
surface contamination layer formed on the electrode surface during 
storage, since the C-bindings are no longer visible after a 30s Ar+ 

erosion of the surface (Figs. S4A and S4B). Also, the possible pres
ence of carbon coming from the laser-writing of cellulose acetate 
was definitely excluded by performing cyclic voltammetry on laser
scribed cellulose acetate, where no additional capacitive current 
was evidenced (Fig. SS). Fig. 1B (left) shows the Ru(3d) core level 
recorded for the laser-scribed Ru(COD)(COT). The Ru(3d) peaks are 
resolved as two 3d512 and 3d312 doublets, with a spin-orbit splitting 
of 4.2 eV. The Ru 3ds12 binding energy is determined as 280.9 eV, 
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Fig. 1. Chemical composition of the as-prepared electrode material. (A) Optical view of the as-prepared Kapton™{Ti/Au/laser-scribed Ru(COD)(COT) electrode (right) and mi
croscope observation of the laser-scribed Ru(COD)(COT) (left). (B) Corresponding high resolution XPS spectra of the Ru(3d) and Ru(3p) regions. 

which is characteristic for Ru(IV) [23]. The presence of a second 
lower binding energy spin-orbit doublet, with a Ru 3d512 compo
nent located at 279.7 eV, shows that the electrode contains zer
ovalent Ru [24]. The corresponding satellites were added 
accordingly. Hence, the laser-writing of Ru(COD)(COT) leads to a 
mixture of metallic ruthenium and ruthenium oxide, arising either 
from a spontaneous oxidation or induced by the temperature 
reached upon laser irradiation. This supports the assumption that 
the laser irradiation removes the organic chains of the Ru precursor 
under ambient atmosphere. Then, the Ru(3p) core level spectrum 
shown Fig. 1B (right) was deconvoluted accordingly [23]. The 
atomic ratio between metallic Ru(0) and Ru(IV) is calculated to be 
1:2 from both Ru(3d) and Ru(3p) core level analysis. 

To further characterize the as-prepared electrode material, SEM 
observations were carried out. Fig. 2A is a top view SEM image of 
the RuO2 coating (left) deposited onto a Kapton™/Ti/Au substrate 
(right). While focusing on the laser-scribed area (Fig. S6A), it is seen 
that the deposited material grown on the Kapton™/Ti/Au (Fig. 2B) 
consists in 5 µm-length Ru containing elongated islands ( evidenced 
by EDX as shown Fig. S6B) presenting a flake-like open porous 
structure for the coating. Cross-sectional observations of the 
layered Kapton™/Ti/Au/RuO2 electrode (Fig. 2C) were used to es
timate an average thickness of 210 ± 50 nm for the RuO2 deposit 
(Fig. 2D). 

3.2. Electrochemical characterization 

To investigate the electrochemical performance of the as
prepared RuO2, laser writing was performed on both Si/Ti/Au and 
Kapton™/Ti/Au. Electrochemical characterizations were carried out 
in 1 M H2SO4 from cyclic voltammetry at different scan rates. Fig. 3A 
shows the cyclic voltammogram recorded at 100 mV ç 1 for a Si/Ti/ 
Au/RuO2 electrode. The current was normalized to the RuO2 area. 
The electrode exhibits the electrochemical signature expected for 
RuO2 [25] and delivers 24.5 mF cm-2, which is comparable to the
values reported for planar design [26,27]; however, a deviation 
from the ideal response is observed at low potentials. This devia
tion has already been observed for hydrated RuO2. xH2O [25]. The 
current arising from reversible ion adsorption on the bare Si/Ti/Au 
substrate is negligible (dashed line). 

A pseudocapacitive signature is still observed with the flexible 
Kapton™/Ti/Au/RuO2 electrode, although only 6.5 mF cm-2 are 
delivered. This difference is assumed to originate from the heat 
diffusion, which depends on the nature of the substrate used, thus 
influencing the growth of the deposit during laser-writing. Since 
such a low areal capacitance is likely due to a low mass of active 
material, five successive Ru(COD)(COT)/cellulose acetate spin
coating and laser writing cycles were performed on Kapton™/Ti/ 
Au, leading to a labeled 5-Kapton™/Ti/Au/RuO2 electrode. The 



Fig. 2. SEM observation of the Kapton™/fi/Au/Ru02 electrode. (A) Tilted view of the Ru02/substrate interface. (B) Observation offlake-like Ru02 (inset) present within the 5 µm
long islands. (C) Cross-sectional view of the flexible electrode with (D) a 210 nm-thick Ru02 deposit. 
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Fig. 3. Electrochemical characterization of the laser-scribed Ru02. (A) Cyclic voltammograms of a Si{fi/Au/Ru02 electrode and (B) Kapton™{fi/Au/Ru02 electrode recorded at 
100 mV ç1 in 1 M H2S04• The current represented as dashed line is attributed to the substrate. (C) lmprovement of the areal capacitance after five successive spin-coating/laser
writing cycles performed on the flexible substrate and (D) performances of the 5-Kapton™/Ti/Au/Ru02 electrode. 



corresponding CV curve recorded at 100 mV ç 1 in 1 M H2SO4 is 
presented in Fig. 3C (solid circles). Again, the electrochemical 
signature of pseudocapacitive RuO2 is visible, delivering an areal 
capacitance value of 16 mF cm-2, which is about three times higher 
than that of the RuO2 active layer previously obtained. The areal 
capacitance does not increase linearly with the number of layers; 
this was ascribed to a change of the hydration number of the RuO2 

during the annealing steps, as confirmed by the shape of the cyclic 
voltammogram obtained such as previously reported by Zheng 
et al. [25]. This moderate areal capacitance value is similar to most 
of the capacitance reported for interdigitated micro-supercapacitor 
electrodes [2,3,16], although hybrid LSG/RuO2 electrodes deliver 
higher capacitance of 171 mF cm-2 [20]. However, this method al
lows to prepare thin layers of active materials using a wet synthesis 
route that avoids the use of complex Atomic Layer Deposition (ALD) 
or sputtering techniques [27]. Besides, a loading of 25 µg cm-2 was 
calculated from !CP-MS measurements, thus corresponding to a 
gravimetric capacitance of 640 F g-1, which is consistent with the 
values reported in the literature [25]. 

The rate performances of the laser-scribed RuO2 electrodes were 
assessed from the CVs performed at different scan rates. Fig. 3D 
shows the change of the areal capacitance, calculated from the 
integration of the CVs during discharge, with the scan rate. At a 
high scan rate of 10 V ç 1, the Kapton™/Ti/Au/RuO2 electrode still 
delivers 11 mF cm-2, which is more than 60% of the initial capaci
tance at the low scan rate of 10 mV ç 1

• Thus, the thin RuO2 coating 
ensures high rate performances, as well as its binder-free structure. 

4. Conclusion

Ruthenium oxide was successfully deposited as a thin layer on 
both gold-coated silicon and Kapton™ substrates with good 
adherence by UV laser irradiation of an organometallic Ru(COD)(
COT) precursor, dispersed in a cellulose acetate film. Laser-writing 
led to the release of the Ru(0) atoms from the organometallic 
complex, which were partially oxidized under air. Although a 
modest capacitance value of 6.5 mF cm-2 was recorded in sulfuric 
acid, the I<apton™/Ti/Au/RuO2 electrodes exhibited a pseudocapa
citive ruthenium oxide signature, despite the fact that no additional 
material was used to improve the adherence and the electronic/ 
protonic conductivity of the laser-scribed RuO2. The amount of 
active material could be further increased by repeating the fabri
cation process several times. Doing so, an areal capacitance of 
16 mF cm-2 was obtained at 100 mV ç 1 with a flexible RuO2 elec
trode prepared from five repetitions of spin coating/laser scribing 
cycles. In addition, more than 60% of the initial capacitance was still 
delivered at a high scan rate of 10 V ç 1. Spin-coating and laser 
writing constitute a facile and scalable route to design thin films 
RuO2 electrodes under ambient conditions. 
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