Rotation-invariant NN for learning naturally un-oriented

6 1. Random oriented data: 2.69% error rate 2. Normally up-right data: 17.21% error rate

The existing approaches to encode rotation equivariance into CNNs can be divided in two families:

1. Transform the representation on input image or feature maps.

Filter rotation.
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Transform the representation on input image 7 These methods have the advantages of exploiting conventional CNN implementations, one of the most popular approach is contained here: data augmentation1 .

The main limitations of these methods:

• The algorithm still need to learn feature representation separately for different variations of the original data. E.g. Edge-detecting features 2 under rotation-invariance setting still need to learn separately vertical and horizontal edges.

• Some transformations of the data can actually result in the algorithm learning from noise samples or wrong labels. E.g. random crops applied to the input can capture a non-interest region.

• The more variations are considered in the data, the more flexible the model needs to be to capture all the variations in the data.
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Rotating the filters 8 Multiple existing approaches seek to encode rotational equivariance into CNNs. Many of these follow a broad approach of introducing filter or feature map copies at different rotations.

Some approaches included are:

• Steerable filters : "An efficient architecture that synthetizes filters of arbitrary orientations from linear combinations of basis filters, allowing one to adaptatively "steer" a filter to any orientation. "1 Harmonic Networks2 capture explicitly the underlying orientations with complex circular harmonics, finding the orientation by the conjunction of multiple discrete filters.

• Encode equivariance to discrete rotations:

These approaches try to find a compromise between computational resources required and the amount of information kept by the layers, by keeping the model shallow or accounting for a limited amount of orientations.

Other approaches include feeding in multiple copies of the CNN input and merge the output predictions, or trying to solve the problem by copying each feature map at four 90°rotations3 .

While the results of this approaches are good, all of them are trained on the commonly used variation of MNIST that is used for validating rotation-invariant algorithms, MNIST-rot. This dataset contains 12000 training images and 50000 test samples.

All the samples are rotated by a random angle from 0 to 2π. Expected results
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The network should learn the rotation invariance without the use of data augmentation techniques.

The main challenge of this work is to design a deep learning network architecture capable of : 1) Classifying rotated data with unlabeled orientation.

2) Training from a database with all "up-right" images and testing on randomly rotated samples.

Oriented scan order wavelet behavior

• Letter X has two strokes separated by 112°and 68°• The magnitude of this values is translated to linear separation between the angular filters.

• This magnitude remains constant for each rotation. Oriented scan order wavelet behavior

• A covariance can be observed between the angular difference int the input image (letter X) and the translation over the channels.

• The angular information of the features in the input is preserved as the separation between channels and remains constant over different angular inputs.

Co-variance between angular input and shift over the output vector Rotation-invariant NN for learning naturally un-oriented data 13-Nov-2018 17

Periodic padding

To achieve the rotation invariance the feature matrix should contain information of every possible shift over the channels, this was solved by periodic padding.

Oriented convolutional predictor

• A series of 3D Convolution predictors find the relation between the filter layers, each one of this five predictors has 10 filters.

• A shared weights Dense layer scans over the 16 angular channels and outputs the prediction of each one.

• The predictor have 7,022 trainable parameters.
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Deep neural network proposal
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Deep neural network proposal
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State of the art 10

Results when trained only with upright oriented samples and validated on randomly rotated samples. The accuracy is lower. Some of these methods use more than 1 million of trainable parameters and can not reach higher accuracy. 

Method

Error rate (in %)

ORN-8(ORPooling) 

Scattering transform
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• A wavelet scattering network computes a translation invariant image representation which is stable to deformations and preserves high frequency information for classification.*

• Is an orthogonal transform based on wavelets that provides a roto-translational space

• The angular sampling can be modified to achieve better angular sub-sampling 

Scattering transform example wavelets
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• To achieve the invariance to the rotation the scan order of the images should have the same angle of the feature.

• This problem was solved by re-indexing the input data on custom bilinear scanning dense layer.

Custom scan order for angular features Scattering transform output Probability matrix 0 1 2 3 4 5 6 7 8 9 0°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.00 11°0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.96 0.00 22°0.00 0.00 0.00 1.75 0.00 0.00 0.00 0.00 0.70 0.00 33°0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 0.42 0.00 44°0.00 0.00 0.00 2.21 0.00 0.00 0.00 0.00 0.41 0.00 55°0.00 0.00 0.00 1.22 0.00 0.00 0.00 0.00 0.39 0.00 66°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 77°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 88°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -77°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -66°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -55°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -44°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -33°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -22°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -11°0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00

Angles Classes

• All the results from the convolutional predictor are condensed in a single matrix.

• In every column we should have only a maximum (predicted class maximum).

• The expected behavior on a successful training is to have good prediction values in the corresponding angle, upper and down rows. 

Study cases results

The proposed architecture comparison: 

Study cases results

The output exhibits a self-organizing behavior of mapping consecutive angular values as consecutive rows in the table.

This comes as a result of non-zero class probability on with maximum probability on and lower on the previous and next angular steps.

When the absolute angular reference is unknown (e.g. for plankton upright position does not exist) the network maps one of the rotation values to one point of the linear space and then the consecutive angles are linearly mapped.

Future works

Trainable convolution filters

• The scattering transform has the rotation invariant capabilities but is not able to fully describe the input, the next step is to generate a series of trainable rotation invariant convolution predictors.

• Test in other kind of datasets like food, plankton and rotated people faces.

Replace
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