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Highlights 14 

A methodology to derive worldwide regionalised fragmentation indexes is developed.  15 

It was applied to all forest ecoregions included in the biodiversity hotspots. 16 

The results highlighted significant intra- and inter-ecoregions differences. 17 

These indexes can be used for land use planning or macro-scale conservation planning. 18 

Abstract 19 

The fragmentation of natural environments is a critical issue involving major challenges for 20 

biodiversity conservation and ecosystem management. Large-scale information on areas 21 

sensitive to fragmentation is needed to improve the effectiveness of planning efforts. One 22 

promising metric combining the landscape spatial configuration with species characteristics is 23 

the metapopulation capacity λ, which can be used to rank different fragmented landscapes in 24 

terms of their capacity to support viable metapopulations. A methodology to globally derive a 25 

fragmentation metric based on metapopulation capacity, at appropriate and meaningful spatial 26 

scales for fragmentation mechanisms, was developed. To illustrate the applicability and interest 27 

of the methodology, worldwide regionalised fragmentation indexes, calculated with a dispersal 28 

distance of 1 km valid for a broad range of species, were provided for all forest ecoregions 29 

included in the biodiversity hotspots. Ecoregions were divided by a virtual grid and a statistical 30 

analysis of metapopulation capacity values calculated at the grid square scale was performed to 31 

obtain a Forest Fragmentation Potential FFP at three levels of spatial aggregation within the 32 

ecoregion (highly converted forest, entire forest, and the whole ecoregion). The results 33 

highlighted significant intra- and inter-ecoregions differences, showing great potential to extend 34 
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the use of these indexes to land use planning and areas prioritisation for both ecological 35 

protection and restoration. The influence of the different parameters used in the proposed 36 

approach is discussed as well as the limitations of the main assumptions. One important result is 37 

that the derived methodology can be easily adapted to a large number of species, scales, or 38 

regions to improve the coverage of fragmentation indexes. 39 

Keywords 40 

Landscape spatial configuration; Forest loss; Metapopulation capacity; Large-scale indexes; 41 

Biological conservation; Global maps 42 

 43 

1. Introduction 44 

In December 2016, the Conference of Parties for the Convention on Biological Diversity 45 

(COP13) gathered together 196 countries in Cancún with the objective of stopping the dramatic 46 

decline of terrestrial and marine biodiversity. WWF recently estimated that by 2020, at the 47 

current biodiversity loss rate, the world will have witnessed a two-thirds decline in global 48 

wildlife populations in only half a century (WWF, 2016a). And yet, of the twenty Aichi 49 

biodiversity targets (Convention on Biological Diversity, 2016), only four are partly reached or 50 

in the process of being reached, while for all others the situation still stagnates or even worse, for 51 

five of them, deteriorates (e.g. damages to coral reefs, pollution from excess nutrients, or most 52 

endangered species protection) (Secretariat of the Convention on Biological Diversity, 2014). 53 

Increasing international trade in our globalised economy accounts for a significant share of 54 

biodiversity threats (Chaudhary and Kastner, 2016; Lenzen et al., 2012; Moran and Kanemoto, 55 

2017). In particular, consumers in developed countries cause threats to species through their 56 
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imported supplies from developing countries (Moran and Kanemoto, 2017). Similarly, numerous 57 

Life Cycle Assessment (LCA) studies showed that complex international value chains have 58 

environmental impacts, among others on biodiversity, all over the planet (de Baan et al., 2015; 59 

Hellweg and Mila i Canals, 2014). Land conversion from primary ecosystems to urban, industrial 60 

or agricultural land is a major biodiversity threat that has been studied for some years. The 61 

importance of subsequent environmental fragmentation, for which the situation is getting worse 62 

with respect to the corresponding Aichi biodiversity target (Convention on Biological Diversity, 63 

2016), has been recognised more recently. However, to date most fragmentation studies have 64 

focused on the local scale whereas there are few analyses at regional scales or they are limited to 65 

the temperate zone or the tropics (Bregman et al., 2014). Except for a pioneering work that 66 

identified global fragmentation hotspots for mammalian carnivores (Crooks et al., 2011), global 67 

patterns of habitat fragmentation and connectivity have not yet been examined, even if long-term 68 

experiments indicated that fragmentation effects are considerable and clearly consistent across a 69 

diverse range of terrestrial systems on five continents (Haddad et al., 2015). A study conducted 70 

at the biogeographical scale also showed that incorporating fragmentation metrics into large-71 

scale models may contribute for a better understanding of species distributions (Reino et al., 72 

2013). With this in mind, global maps characterising the impacts of habitat fragmentation on 73 

species with relevant ecological indicators would be very useful for taking the appropriate 74 

decisions and actions for biodiversity conservation (GEO BON, 2015).  75 

Fragmentation is commonly defined as a landscape-level process in which ‘a large expanse of 76 

habitat is transformed into a number of smaller patches of smaller total area, isolated from each 77 

other by a matrix of habitats unlike the original’ (Wilcove et al., 1986). Landscape structuration 78 

analysis is commonly conducted in parcels ranging in size from around 3 km2 to 300 km2 79 
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(Fischer and Lindenmayer, 2007), and often set to 100 km2 for different species in various 80 

studies (Atauri and de Lucio, 2001; Radford et al., 2005). Fragmentation typically leads to the 81 

reduction of landscape connectivity, which is defined as the degree to which the landscape 82 

facilitates or hinders organisms movements among habitat patches (Taylor et al., 1993). 83 

Management to maintain or restore connectivity is crucial to ensure the survival of many species 84 

and preserve biological diversity. Therefore, many authors proposed metrics to measure habitat 85 

connectivity at the landscape scale (Kindlmann and Burel, 2008; Ortega, 2010; Wang et al., 86 

2014). Calabrese and Fagan (2004) proposed to distinguish between three main classes of 87 

connectivity metrics. First, the structural connectivity can be directly derived from landscape 88 

physical attributes (e.g. composition, shape or configuration metrics (Rutledge, 2003)). These 89 

types of indicators range from ‘simple’ landscape structure metrics (e.g. number of fragments) to 90 

more complex landscape indices (e.g. effective mesh size (Jaeger, 2000)), and dedicated software 91 

such as Fragstats (McGarigal, 1994) or, more recently, Conefor (Saura and Torne, 2009) have 92 

been developed to easily compute them on different spatial levels. Data has also been collected 93 

to quantify structural fragmentation globally (Haddad et al., 2015; Riitters et al., 2000). Second, 94 

the potential connectivity combines the landscape physical attributes, obtained from the 95 

structural connectivity analysis, with information on the focal species dispersal ability. Finally, 96 

the actual connectivity is based on observed or quantified (e.g. through species distribution 97 

models) movement pathways in the landscape. Structural connectivity is the easiest to collect, 98 

but it has a limited interest since it does not consider the species characteristics. The structural 99 

metrics ecological relevance (i.e. their relationship with the actual ecological processes taking 100 

place in the landscape) is often unproven and questionable (Kupfer, 2012). Conversely, actual 101 

connectivity gives very detailed information on the landscape but requires a large amount of 102 
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data, and consequently hinders its implementation at larger scales. Thus, potential connectivity 103 

metrics seem to be a sound compromise for providing reasonable estimates of functional 104 

connectivity, i.e. species behavioural responses to landscape patterns (Kindlmann and Burel, 105 

2008), while being applicable at large-scale due to low data requirements. 106 

One promising landscape potential connectivity metric at large-scale is the metapopulation 107 

capacity λ derived from metapopulation theory (Hanski and Ovaskainen, 2000). Hanski and 108 

Ovaskainen defined the metapopulation as a group of spatially separated populations of the same 109 

species interconnected by dispersal. In particular, the metapopulation capacity λ measures how a 110 

given spatial configuration of a set of fragments contributes to the long-term persistence of a 111 

particular species structured as metapopulation. This indicator has been widely used to estimate 112 

the fragmentation effects in various landscapes, e.g. agricultural landscapes (Hietala-Koivu et al., 113 

2004), forest landscapes (Pardini et al., 2010; Schnell et al., 2013a), or fluvial landscapes 114 

(Bertuzzo et al., 2015), and it has also been tested and explored further on simulated landscapes 115 

(Grilli et al., 2015; Rybicki and Hanski, 2013). Although the metapopulation capacity λ may be a 116 

promising indicator of landscape fragmentation, for now its use is limited to specific local 117 

landscapes. The aim of this paper is to develop an easily appropriable and parsimonious 118 

methodology to derive worldwide regionalised fragmentation indexes based on λ and to 119 

demonstrate the applicability and interest of this methodology with a dispersal distance of 1 km 120 

fitting a wide variety of species on all forest ecoregions in the biodiversity hotspots (Myers et al., 121 

2000; Russell A. Mittermeier et al., 2004) as they are the richest and the most threatened plant 122 

and animal life reservoirs on Earth (Conservation International, 2016). This preliminary 123 

assessment will provide a global overview of the current abilities of birds or mammals with 124 

dispersal distances around 1 km to persist in the hotspots, which can be very useful in 125 
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environmental assessment studies such as ones conducted in LCA or in footprint analyses. The 126 

innovative methodology itself also opens up vast prospects for biological conservation: with 127 

specific parameters adapted to a particular species in a specific region, its use could be extended 128 

to land use planning and areas prioritisation for both ecological protection and restoration.   129 

2. Materials and methods 130 

We used spatially explicit metapopulation models (Hanski, 1998; Hanski and Ovaskainen, 131 

2000; Ovaskainen and Hanski, 2001) to describe habitat fragmentation at regional scales (e.g. 132 

ecoregion scale), since the metapopulation capacity λ can conveniently be used to rank different 133 

fragmented landscapes in terms of their capacity to support viable metapopulations. This section 134 

will present 1) the conventional metapopulation capacity calculation at the landscape scale and 135 

then 2) a methodology to extend it to large regions. 136 

2.1. Metapopulation capacity of a species in a single landscape 137 

Formally, in metapopulation theory, metapopulation capacity λ is given by: 138 

Leading	eigenvalue	λ	of	matrix	M	with	elements	݉௜௝ ൌ ቊ
௜ܣ
௫ܣ௝

௬݂൫݀௜௝൯, ݅ ് ݆
0, ݅ ൌ ݆

  (1) 139 

Where Ai and Aj are respectively the areas of fragments i and j, dij is the Euclidian distance 140 

between the centroids of fragments i and j, and f(dij) is a dispersal function describing how the 141 

species arrival rate drops off with the distance dij between fragments. The exponents x and y are 142 

scaling factors for the fragment area that depend on the extinction rate, the immigration rate and 143 

the emigration rate. The function f(dij) commonly presented is a negative exponential e−αdij, in 144 

which α is the inverse of the species average dispersal distance. We adopted the following 145 

exponential dispersal kernel with a cut-off at 0.01 (equation 2) proposed by Hanski et al. (2013): 146 
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݂൫݀௜௝൯ ൌ ,൛݁ିఈௗ೔ೕݔܽ݉ 0.01ൟ	        (2) 147 

Nevertheless, in original metapopulation models, colonisation is defined as a between-patch 148 

movement and there is no colonisation from a patch to itself. As a consequence, the original 149 

metapopulation capacity λ of a single patch—no matter how large it is, and even if the whole 150 

landscape consists of one patch—is zero, because it received no colonisation from surrounding 151 

patches. To overcome the non-intuitive behaviour of this metric for systems of a few large 152 

patches, Schnell et al. (2013b) recently adapted the original metapopulation model by adding a 153 

self-colonisation component that gives large patches the potential to harbour small numbers of 154 

survivors following an extinction event which will be able to recolonise the rest of the patch. In 155 

the model with self-colonisation, ݉௜௝ ൌ ௜ܣ
௫ܣ௝

௬	when ݅ ൌ ݆. Consequently, with the self-156 

colonisation metapopulation capacity λself, a single large patch has the highest metapopulation 157 

capacity and subsequent fragmentation decreases the metric. Like λ, λself is a measure that 158 

combines overall area and fragmentation, and provides a consistent relative ranking of 159 

landscapes. 160 

2.2. Computing statistics on λself calculated at the grid square scale for a large region 161 

For the environmental assessment of human activities, baseline indicators on regional habitat 162 

fragmentation would be useful for decision-making along globalised supply chains (i.e. along 163 

product or service life cycles). However, the metapopulation capacity should be quantified at a 164 

scale that is relevant for the focal species. According to Olson et al. (2001), the ecoregion 165 

average area is about 150,000 km2 (median ≈ 60,000 km2) while the biodiversity hotspots have a 166 

mean surface area around 800,000 km2 (median ≈ 300,000 km2). Given that the sizes of these 167 

biogeographic units are both much larger than the model species dispersal abilities, it would be 168 

ecologically meaningless to directly calculate the metapopulation capacity at such spatial scales. 169 
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Thus, to compute λself for larger areas, we divided the entire region of interest by a virtual grid 170 

and calculated λself,GS for selected Grid Squares (GS) (see Figure A1 in Appendix A). The 171 

landscape structure was characterised by a nonhabitat matrix surrounding native habitat 172 

fragments. Using Q-GIS (QGIS Development Team, 2017), the habitat fragment centroids were 173 

identified, and the data necessary to calculate λself,GS were extracted, i.e. each fragment size Ai, 174 

and its centroid coordinates Xi, Yi. The distances dij between the fragment centroids within each 175 

grid square were calculated, then, by introducing the dispersal distances of the modelled species, 176 

λself,GS was calculated according to equation 1 (see Appendix A, Section 1-E for programming 177 

details). 178 

2.3. Deriving fragmentation indexes for large regions based on λself,GS statistics 179 

Statistical analysis of λself,GS values calculated at the grid square scale can be used to obtain 180 

fragmentation indexes for a whole region.  181 

Several studies support the hypothesis that fragmentation effects follow a threshold function 182 

related to the remaining available habitat. When habitat area is still large enough, fragmentation 183 

can have a positive impact, i.e. by increasing the local species richness, but which will be hidden 184 

by the superior, negative habitat loss effects. When the habitat area falls below a critical 185 

threshold, generally around 20-30% (Andren, 1994; Flather and Bevers, 2002; Hanski, 2015; 186 

Pardini et al., 2010; Schneider, 2001), the fragmentation effects become negative, affecting 187 

species survival, and should not be ignored. Consequently, λself,GS were exclusively derived for 188 

grid squares with less than 30% of their original vegetation (defined as Conditions of λself validity 189 

in Figure 1Figure 1). Original or native vegetation can refer to various ecosystems (among 190 

others, grasslands, savannas, forests, or deserts). In this study, only primary forest ecosystems 191 

were considered and λself,GS was not calculated for grid squares with no primary forest at all. 192 
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Based on λself,GS values of all grid squares in which forest cover ranges from >0% to ≤30%—193 

thereafter referred to as ‘highly converted forest’—, we can determine a median value λself,j of the 194 

non-normally distributed λself,GS (Figure A2 in Appendix A), that stands for the metapopulation 195 

capacity of the whole large region j most converted forest areas (grey box in Figure 1Figure 1). 196 

 197 

 198 

Figure 1: Methodology for calculating the fragmentation indexes (Forest Fragmentation 199 

Potential FFP) of a large region at three levels of spatial aggregation (highly converted forest, 200 

forest and the entire region). P: Percentile. NC: Not calculated.  201 

Once λself,j has been computed for each large region j (e.g. ecoregions), the median values of all 202 

large regions are ranked from the 2.5th percentile (P2.5) to the 97.5th percentile (P97.5). 203 
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Subsequent winsorising reduces the effect of possible outliers by limiting extreme values in the 204 

data via setting outliers to a data specified percentile. Here, a 95% winsorising was applied, 205 

meaning that all data below the 2.5th percentile are set equal to the 2.5th percentile (=λself,min) and 206 

all data above the 97.5th percentile are set equal to the 97.5th percentile (=λself,max). A 95% 207 

winsorising was found to deal adequately with extreme values without being too exclusive on the 208 

dataset. Normalisation from 0 (low fragmentation stress) to 1 (high fragmentation stress) 209 

provides a commensurable and dimensionless index, i.e. the Forest Fragmentation Potential of 210 

highly converted forests FFPForest≤30%,j of a large region j according to equation 3. In this way, 211 

the 5% extreme values of the global dataset, i.e. the least fragmented regions (λself ≥ P97.5) and 212 

the most fragmented regions (λself ≤ P2.5), have a Forest Fragmentation Potential set to 0 and 1, 213 

respectively. In between, the fragmented regions are classified according to their fragmentation 214 

degree.  215 

FFPForest≤30%,j indicates the fragmentation ‘state’ of the most critical forest areas within region 216 

j. The more region j is fragmented, the smaller is λself,j and the higher is FFPForest≤30%,j: 217 

ܨܨ ிܲ௢௥௘௦௧ஸଷ଴%,௝ ൌ
൫ఒೞ೐೗೑,೘ೌೣିఒೞ೐೗೑,ೕ൯

൫ఒೞ೐೗೑,೘ೌೣିఒೞ೐೗೑,೘೔೙൯
        (3) 218 

To characterise the Forest Fragmentation Potential of the whole region FFPForest,j, we weight 219 

FFPForest≤30%,,j by the proportion between the highly converted forest grid squares and the total 220 

number of forest grid squares in region j ܵܨ ൑30%
FOREST

,௝
: 221 

ܨܨ ிܲ௢௥௘௦௧,௝ ൌ ܨܨ ிܲ௢௥௘௦௧ஸଷ଴%,௝ ൈ ܵܨ ൑30%
FOREST

,௝
      (4) 222 

With ܵܨ ൑30%
FOREST

,௝
ൌ

∑ୋୗ,୵୧୲୦	଴%	ழ	௙௢௥௘௦௧	௖௢௩௘௥	ஸ	ଷ଴%

∑ୋୗ,୵୧୲୦	଴%	୵୧୲୦	ழ	௙௢௥௘௦௧	௖௢௩௘௥	ஸ	ଵ଴଴%
 223 

Finally, to determine the whole region fragmentation state, we use the regional forest area 224 

proportion, defined as the ratio of forest grid squares and total number of grid squares (i.e. 225 
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including forest-free grid squares) in the region (ܵܨFOREST
TOTAL

,௝
	in equation 5). The Forest 226 

Fragmentation Potential FFPAll, j expresses the forest fragmentation potential for the whole large 227 

region j (e.g. an ecoregion):   228 

ܨܨ ஺ܲ௟௟,௝ ൌ ܨܨ ிܲ௢௥௘௦௧,௝ ൈ FORESTܵܨ
TOTAL

,݆
        (5) 229 

With ܵܨూో౎ు౏౐
౐ో౐ఽై

,௝
ൌ ∑GS,with	0%	൏	݂ݐݏ݁ݎ݋	ݎ݁ݒ݋ܿ	൑	100%

∑GS
 230 

2.4. Implementing the methodology on forest ecoregions included in the biodiversity 231 

hotspots 232 

For a global implementation, we first focus our assessment on the biodiversity hotspots. To 233 

qualify as a biodiversity hotspot, a region must meet two criteria, i.e. 1) holding high numbers of 234 

endemic vascular plants, and 2) having 30% or less of its original vegetation (Conservation 235 

International, 2016), thus corresponding to the ‘fragmentation threshold’ mentioned above, 236 

below which considering fragmentation is relevant. Furthermore, Sloan et al. (2014) recently 237 

provided updated estimates of natural, intact vegetation within these hotspots that show that their 238 

state could be even more critical than previously described. We considered all ecoregions 239 

included in the biodiversity hotspots with a focus on forest major habitat types (see Appendix A, 240 

Section 1–B for more details). Area loss in forests is rarely simply the removal of contiguous 241 

areas and these habitats are particularly experiencing fragmentation (Whitmore and Sayer, 1992), 242 

mainly because of industrial timber extraction, agricultural expansion, fire, and resource 243 

extraction (Potapov et al., 2017). Due to fragmentation, the number of intact forest landscapes 244 

(larger than 500 km2) is decreasing drastically, around 7% in 13 years, particularly in tropical 245 

regions (Potapov et al., 2017). Thus, forests are under pressure like never before, while they host 246 

90% of terrestrial species (WWF, 2016b). 247 
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We applied the methodology developed (Figure 1Figure 1) to all biodiversity hotpots that 248 

contain forest ecoregions (i.e. 34 forest hotspots: six in Africa, fourteen in Asia-Pacific, four in 249 

Europe and Central Asia, five in North and Central America, and five in South America). 259 250 

ecoregions met the conditions for λself,j calculation (see Conditions of λself validity in Figure 251 

1Figure 1), and FFPj were provided for a total of 283 ecoregions, because fragmentation indexes 252 

of the 24 ecoregions for which all whole grid squares had a forest cover higher than 30% were 253 

set to 0 (see right side of Figure 1Figure 1). Details on spatial processing can be found in 254 

Appendix A, Section 1–D. 255 

2.5. Input data for model parameters 256 

Two kinds of data are required to implement the developed methodology, i.e. 1) species 257 

characteristics (dispersal ability and scaling factors), and 2) landscape inputs (original habitat 258 

choice, map resolution, and grid size for spatial analysis). For each of them, data constraints and 259 

availability are discussed to select the most appropriate data for the λself global calculation (Table 260 

A1 in Appendix A). 261 

Species data are essential for the metapopulation capacity model. Provided that ‘forest’ is its 262 

habitat, a species can be heavily or slightly affected depending on its ability to move (1/α, in 263 

connection with dij), and on its immigration and extinction abilities (x and y, related to Ai). 264 

Various ‘dispersal distances’ are reported in literature, e.g. the median, mean and maximum 265 

dispersal distances, and the migratory distance. The differences between these variables are hard 266 

to capture because their calculation varies depending on the author. Furthermore, there is a large 267 

variability associated with species dispersal distances, depending on their size or migratory 268 

habits. Based on a literature review of available species dispersal distances (Sutherland et al., 269 

2000), we arbitrarily considered a 1 km dispersal distance, which can apply to some birds and 270 
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mammals, as a first example of the methodology application. Regarding scaling factors x and y, 271 

Hanski et al. (2013) give a x realistic value for birds and mammals (1.5), while Schnell et al. 272 

(2013b) propose another value valid for many taxa (0.5). Both studies considered a y value of 1. 273 

We used the values provided by Schnell et al. (2013b) because they offer a broader choice in 274 

terms of applications to different taxa. 275 

The fragmentation assessment strongly depends on the land cover of interest definition 276 

(Riitters et al., 2000). In this work, we used Globcover 2009 maps (Bontemps et al., 2011), 277 

produced by the European Space Agency, which count 22 land cover classes. Among them, 278 

several classes can be included in the forest definition, and considering only class 50 Closed 279 

(>40%) broadleaved deciduous forest (>5m), both classes 50 and 40 Closed to open (>15%) 280 

broadleaved evergreen or semi-deciduous forest (>5m), or all eight potential forest classes 281 

combined, can have a large influence on the results, underestimating or overestimating the real 282 

forest cover. Furthermore, reports usually describe the remaining original habitat area in 283 

percentage ‘of its original extent’ (CEPF, 2016; Di Bitetti et al., 2003), but all the ecoregion was 284 

not necessarily covered with this original habitat (other land covers, water bodies, mountains, 285 

etc.). To simplify our methodology, we considered all Globcover 2009 forest classes. 286 

Map resolution is also a crucial parameter, since the notion of ‘fragment’ strongly depends on 287 

the scale considered. Many metrics indicated lower fragmentation at coarser spatial resolutions 288 

(Saura, 2004), and a recent study showed that metapopulation capacity is sensitive to the spatial 289 

scale at which the habitat units were defined (Blazquez-Cabrera, 2014). Maps with smaller 290 

resolutions identify more non-forest area where forest cover is dominant but not exclusive. 291 

Hanski et al. (2013) used a map resolution of 30 m, but they used a bird species dispersal 292 

distance much smaller (300 m) than the median value found in literature, i.e. 4 km for birds 293 
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(Sutherland et al., 2000). A transposition based on ecological parameters would lead to a scale-294 

up of a factor ten for map resolution (400 m). Thus, we took Globcover 2009 (300 m resolution) 295 

for land cover data.  296 

Likewise, fragmentation can turn out greater when larger grid sizes are used (Riitters et al., 297 

2000). Consequently, to perform a meaningful metapopulation capacity calculation, it is essential 298 

to define spatial scale(s) at which metapopulation processes predominantly take place. Olson et 299 

al. (2001) examined a moth metapopulation with a measured dispersal distance of 100 m at four 300 

levels of spatial analysis and concluded that metapopulation processes were important at the 301 

regional and sub-regional scales (i.e. ≈35 km2 and ≈10 km2, with 100 m and 50 m resolutions 302 

respectively). Consequently, for dispersal distances ranging from 500 m to 5 km, spatial scales 303 

between 50 and 2000 km2 would be consistent, with associated resolutions ranging from 250 m 304 

to 5 km. Following the same logic as for map resolution, we could also have scaled-up the grid 305 

size for λself calculations based on Hanski et al. (2013), but we found 100 km2 more adapted to 306 

the range of ecoregion sizes. 1000 km2 grid squares were too large to adequately reflect some 307 

small ecoregions, e.g. for the Montane Fynbos And Renosterveld ecoregion (AT1203), only three 308 

grid squares were larger than 950 km2, representing only 6% of the whole ecoregion area. Thus, 309 

a 100 km2-grid was applied to each hotspot, and grid squares larger than 95 km2 (5% margin) 310 

were selected for each ecoregion. Consequently, all ecoregions smaller than the grid square size 311 

(100 km2) were excluded from the outset, representing less than 0. 2% in surface of all forest 312 

ecoregions belonging to the biodiversity hotspots. 313 

3. Results 314 

3.1. Spatial representation of the three FFPs 315 
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The FFPs of all 30 ecoregions included in the Indo-Burma hotspot are spatially represented for 316 

each 100-km2 grid square included in the hotspot (Figure 2Figure 4). FFPForest≤30%,j is a median 317 

value of the most critical forest areas fragmentation ‘state’ within the ecoregion j, thus only grid 318 

squares in which forest cover is smaller than 30% are concerned (upper-map in Figure 2Figure 319 

4). FFPForest≤30% can be used to assess the potential impact on biodiversity of a current or future 320 

activity using land in a highly converted forest area. As FFPForest weights the previous index by 321 

the total forest cover in the ecoregion, the index value is affected to all forest grid squares 322 

(middle-map in Figure 2Figure 4). FFPForest can be used to compare activities for which land use 323 

surely occurs in a forest area, with no additional information on the forest cover. Lastly, FFPAll 324 

applies to all grid squares in the ecoregion (lower-map in Figure 2Figure 4) and can be used to 325 

rank land use impacts in different ecoregions when the exact locations of activities in the 326 

ecoregions are unknown. The more spatially aggregated the fragmentation indexes (from 327 

FFPForest≤30%, then FFPForest, to finally FFPAll), the more uncertain they are.  328 

More explanations on the different indexes are given with the example of the Indo-Burman 329 

ecoregions A, B and C (Figure 2Figure 4). All three ecoregions have a high FFPForest≤30% 330 

(respectively 0.92, 0.82 and 0.99), which means that their most converted forest zones are highly 331 

fragmented and have a strong negative impact on species (compared to other ecoregions 332 

worldwide). Overall forest, however, is less damaged in ecoregion B than in ecoregions A or C, 333 

i.e. grid squares with less than 30% of forest are scarcer in ecoregion B, so FFPForest,B (0.10) is 334 

much lower than FFPForest,A (0.56) or FFPForest,C (0.86). However, almost all 100 km2 grid 335 

squares contain forest in both ecoregions A and B whereas ecoregion C contains many forest-336 

free grid squares, so FFPAll,A (0.54) and FFPAll,B (0.10) are close to FFPForest,A and FFPForest,B 337 

whereas FFPAll,C (0.18) decreases considerably compared to FFPForest,C. 338 
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 339 

Figure 2: Fragmentation indexes for forest ecoregions included in the Indo-Burma biodiversity 340 

hotspot calculated for a species dispersal distance of 1 km; arrow A points to Meghalaya 341 

Subtropical Forests (ecoregion IM0126), arrow B points to Chin Hills-Arakan Yoma Montane 342 

Forests (ecoregion IM0109), and arrow C points to Irrawaddy Dry Forests (ecoregion IM0205) 343 

3.2. Global maps of FFPs 344 

The fragmentation indexes were calculated for each forest ecoregion included in the 34 345 

biodiversity hotspots for an illustrative species dispersal distance of 1 km. Global map of FFPAll 346 

is presented in Figure 3Figure 3, and equivalent maps for FFPForest≤30% and FFPForest are 347 

displayed in Figure A3 and Figure A4 in Appendix A. All raw data for FFPForest<30%, FFPForest 348 

and FFPAll can be found in Appendix B (separate Excel file). 349 
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 350 

Figure 3: Forest Fragmentation Potential FFPAll for all forest ecoregions included in the 351 

biodiversity hotspots (coloured areas) calculated for a species dispersal distance of 1 km 352 

The most converted forests within the ecoregions (i.e. 0% < forest cover ≤ 30%) globally show 353 

a high fragmentation potential (Figure A3 in Appendix A). Only 42 out of the 259 ecoregions for 354 

which λself was calculated have a fragmentation potential FFPForest≤30% smaller than 0.6, and 57 355 

ecoregions (mainly in the Palearctic and Indomalayan realms) have it higher than 0.95. 356 

However, FFPForest≤30% reflects the fragmentation potential of already altered forest areas, and 357 

does not reflect the forest ‘state’ of the whole ecoregion. 358 

FFPForest, i.e. FFPForest≤30% weighted by the proportion of highly converted forest zones 359 

compared to all forest zones, provides more distributed results globally (Figure A4 in Appendix 360 

A). Only 22 ecoregions, mainly in Indo-Burma, Mediterranean Basin and Irano-Anatolian 361 

hotspots, present FFPForest higher than 0.90. In addition, there are strong differences between 362 

FFPForest≤30% and FFPForest results (respective median values of 0.86 and 0.27), which indicate 363 

that fragmentation is most frequently a process confined to relatively specific geographical areas. 364 

For instance, some ecoregions have highly fragmented forests (high FFPForest≤30%), but only over 365 
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a small part of their total forest area (low FFPForest). The spatial aggregation at the ecoregion 366 

scale tends to smooth the results.  367 

FFPAll, weighted in proportion to ecoregion forest areas, has values very similar to FFPForest 368 

(global median of 0.23). This is because there are few landscapes (100 km2 grid squares) with no 369 

forest at all (i.e. the forest share ܵܨFOREST
TOTAL

 often approaches 1), which is expected for ecoregions 370 

with forest as major habitat types. Nevertheless, for some ecoregions, e.g. for the four North 371 

African ecoregions included in the Mediterranean Basin hotspot, FFPForest can be high and 372 

FFPAll much lower, due to their small forest cover. Conversely, e.g. in Indonesia or South 373 

America, both FFPForest and FFPAll can be high because of some ecoregions large forest share. 374 

Only three ecoregions have FFPAll higher than 0.9, and they all are in the Neotropical realm 375 

(ecoregions NT0233 Veracruz Dry Forests, NT0102 Atlantic Coast Restingas and NT0151 376 

Pernambuco Coastal Forests).  377 

  378 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 20

4. Discussion 379 

An easily appropriable and performing methodology to derive worldwide regionalised λ-based 380 

fragmentation indexes at meaningful scales for fragmentation mechanisms was built, and applied 381 

to an illustrative, arbitrary example (by setting the species dispersal distance to 1 km, and using 382 

scaling factors adapted to birds or mammals). The objective was twofold: (1) to test the 383 

feasibility of the method at a worldwide scale, and (2) to evaluate the resulting indexes’ ability to 384 

provide valuable information on fragmentation stresses. The methodology was successfully 385 

applied in about 300 ecoregions all over the world, and the resulting indexes clearly confirmed 386 

significant intra- and inter-ecoregions differences regarding landscapes’ fragmentation stresses. 387 

These results open up prospects for promising applications of the methodology to real ecological 388 

studies. However, the proposed methodology still faces some methodological and practical 389 

limitations and still has room for improvement. 390 

4.1. Metapopulation model limitations 391 

The interest of metapopulation theory to explain variations in species occurrence patterns in 392 

highly fragmented landscapes has been recognised. However, metapopulation theory implies that 393 

the populations exist in patchy distributions. When there is no evidence for metapopulation 394 

dynamics in a given species or region, this approach might not be valid. As a great range of 395 

dispersal models are available in the literature, the more adapted and realistic dispersal functions 396 

f(dij) should be incorporated in spatial models when possible (Travis and French, 2000). In the 397 

proposed methodology, due to the metapopulation model flexibility, other more complex 398 

dispersal functions could easily replace the proposed one if needed. Furthermore, because 399 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 21

species dispersal still needs to be better understood and assessed, new ecological developments 400 

and data could also be easily incorporated in the model as soon as they become available. 401 

Modelling metapopulation dynamics is a very useful tool for conservation ecology. However, 402 

metapopulation models have historically treated a landscape as a collection of habitat patches —403 

in our case, forest—separated by a homogenous, permeable but unsuitable habitat usually called 404 

matrix—in our case, non-forest—. In these models, movement between patches depends only on 405 

the distance between patches and the inherent species dispersal ability, and the matrix structure 406 

and quality effects on movement through the landscape are neglected. Yet, even if theoretical 407 

and empirical evidence show that matrix quality can be extremely important in determining 408 

metapopulation dynamics (Vandermeer and Carvajal, 2001), these factors are rarely incorporated 409 

into metapopulation models. In particular, linear infrastructure such as road networks can 410 

considerably hinder species movements (often referred to as the ‘barrier effect’ in ecology 411 

(Forman and Alexander, 1998)) and have a strong negative impact on species (Loro et al., 2015). 412 

Moreover, this barrier effect varies among species, which are not similarly affected by a given 413 

barrier. Gebauer et al. (2013) investigated the importance of matrix type for metapopulation 414 

modelling and found that it had as much or sometimes more influence than patch sizes or 415 

distances between patches on metapopulation parameters. The use of mathematical tools enabled 416 

by the matrix-modelling framework, such as sensitivity and elasticity analyses (Shima et al., 417 

2010), or the incorporation of a matrix resistance parameter, which is expected to vary among 418 

species (Ricketts, 2001), could definitively improve metapopulation modelling. If matrix quality 419 

was to be included in the metapopulation model, complementary road maps could be used in 420 

addition to Globcover 2009 maps to capture the barrier effects induced by linear infrastructure. 421 
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Finally, the metapopulation capacity assesses species persistence in fragmented landscapes, 422 

which is a limited aspect of all possible ecological attributes and levels of biodiversity 423 

organisation, which encompasses not only species composition but also ecosystem structure and 424 

functions.  425 

4.2. Data availability and uncertainty  426 

There is inherent uncertainty in data (e.g. land cover maps, species dispersal distances), on 427 

choices associated with data treatment, and on the metapopulation model itself, i.e. to what 428 

extent does it reflect real species behaviour. The results should hence be interpreted in light of 429 

this information (Langford et al., 2006). Globcover 2009 maps are among the most detailed, 430 

reliable and up-to-date global land cover maps. Their overall accuracy weighted by the class area 431 

reaches 67.5%. The Globcover 2009 resolution (300 m) is consistent with the spatial scale 432 

considered (i.e. global statistics on 100 km2-landscapes), and execution times for the associated 433 

spatial processing are acceptable. Regarding species data, the selected dispersal distances were 434 

chosen to be of the same order of magnitude than estimates derived from empirical data from a 435 

global literature review (Sutherland et al., 2000). The uncertainty associated with these estimates 436 

is very closely linked to the natural data variability. A way to overcome this shortcoming would 437 

be to generate more results to cover a more complete range of species dispersal distances. As 438 

more biodiversity monitoring data will become available, these dispersal distances estimates 439 

should be updated and results accuracy will be improved. Moreover, the indexes could be 440 

combined with data on specific species effectively inhabiting each ecoregion to enhance the 441 

results relevance. Another interesting development would be to weight the indexes by the 442 

threatened status and/or the level of species endemism, e.g. percent endemism by taxonomic 443 

group in each hotspot (CEPF, 2016). 444 
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The λself  sensitivity to several crucial parameters related to 1) land cover data (original habitat 445 

and maps resolution), 2) grid size, and 3) species data (dispersal distance and scaling factor x) 446 

was assessed and the results can be found in Appendix A, Section 3–A. Other data or 447 

methodological choices likely to affect the results were also discussed in the same section. 448 

However, even if some parameters may have a great influence on λself, no change in these will 449 

affect their ranking (i.e. for ecoregions ranking). The λself final distribution and subsequent FFP 450 

indexes derived from λself, might be affected though, given that the λself dependency on the input 451 

parameters and choices is not necessarily linear.  452 

Regarding the fragmentation index calculation based on λself statistics, the λself,GS values 453 

aggregation for large regions (e.g. ecoregions), by means of the median, is another important 454 

source of uncertainty, due to the intra-ecoregion spatial variability. As an example, the λself,GS 455 

spatial variability of the larger forest ecoregion included in the biodiversity hotspots, i.e. Alto 456 

Paraná Atlantic Forest (ecoregion NT0150), is illustrated in Figure A5 in Appendix A. The 457 

results show that, rather than being distributed evenly throughout the ecoregion, fragmentation 458 

can be very critical in some specific places of the ecoregion. Similarly to other stress indexes 459 

(e.g. water stress), a global or regional fragmentation stress can strongly differ from a local 460 

stress, and too aggregated stress values will be unrepresentative of the local reality. 461 

Likewise, the definition and spatial resolution of Forest Shares FS used for FFP calculation 462 

may influence the results and is discussed in Appendix A, Section 3–C. 463 

4.3. Applicability 464 

The fragmentation indexes can be used directly to rank all highly fragmented forest ecoregions 465 

included in the biodiversity hotspots. As they are based on metapopulation capacity, which is 466 

already a relative measure, and given their strong sensitivity to the input parameters, the 467 
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fragmentation indexes should not be taken as absolute values and should be used for comparative 468 

purposes only. Assuming that the species dispersal ability is known and similar in magnitude to 469 

the considered dispersal distance, conclusions can be drawn for this particular species. However, 470 

for now, they are limited to a specific range of species dispersal distances, based on animal 471 

dispersal abilities statistics. Plants should also be considered, especially as metapopulation 472 

concept has been largely applied to plants through seed dispersal (Verheyen et al., 2004). 473 

To overcome this problem, the proposed grid procedure and methodology for deriving 474 

metapopulation capacity statistics at regional scales was designed to be easily used and applied 475 

to other large datasets. Our analysis was restricted to biodiversity hotspots as defined by Myers 476 

et al. (2000), but other prioritisation approaches exist for global biodiversity conservation, and 477 

other templates may be considered (Brooks et al., 2006; Moran and Kanemoto, 2017). We also 478 

focused the scope of application on the ecoregions whose major habitat type was forest (i.e. 479 

approximately 70% in surface of all ecoregions belonging to the biodiversity hotspots), but other 480 

major habitat types, e.g. grasslands, could easily be incorporated. Conversely, the proposed 481 

methodology could also be applied to specific ecoregions or sub-ecoregions, with a grid size and 482 

a map resolution adapted to a particular species. To widen the range of model applications while 483 

ensuring reproducibility, and to ease new fragmentation indexes calculations, the matrix 484 

calculation program is available upon request. 485 

4.4. Conclusions and perspectives 486 

The global forest fragmentation is a critical issue facing major challenges for the biodiversity 487 

conservation and ecosystems management, particularly in tropical environments (Bregman et al., 488 

2014), and especially since these effects may be worsened by other global changes caused by 489 

human activity, e.g. climate change (Haddad et al., 2015). Macro-scale conservation planning 490 
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gives a means of coping with the challenge arising from the environmental impacts of extensive 491 

land use changes for urban or agricultural activities (Olsoy et al., 2016). To this end, global 492 

information on areas sensitive to fragmentation is needed to improve the effectiveness of 493 

planning efforts. 494 

Thus, an innovative methodology for modelling the fragmentation potential of large regions 495 

was proposed. The landscape spatial configuration is combined with a metapopulation model to 496 

obtain an ecologically relevant landscape fragmentation metric to compare any fragmented 497 

landscapes, producing an efficient tool for land management. The modelling approach applied in 498 

this work was developed to fit most species, provided that some adaptations are made to deal 499 

with species specificities. Indeed, the flexibility of the methodology allows the spatial 500 

parameters, e.g. the grid size and the map resolution, and the species parameters, e.g. the 501 

dispersal distance and the dispersal function of the metapopulation model, to be easily adapted to 502 

a specific species.  503 

Secondly, as an example, we provide a first set of fragmentation indexes for ranking all forest 504 

ecoregions (> 100 km2) belonging to the biodiversity hotspots. These global maps are relevant to 505 

the subset of species corresponding to the types of habitat and to the dispersal capacities 506 

considered, and provide first-hand information on the ability of these species, i.e. birds or 507 

mammals with a dispersal distance of 1 km, to persist in highly fragmented habitats. These 508 

indexes can help decision makers, from producers, scientists, conservationists, to governments, 509 

to better target their actions. They can be used as a tool for land planners or industrial companies, 510 

for comparing different options regarding their activities locations at the ecoregion scale. 511 

Conversely, they enable focusing on areas where offset measures would have the most impact 512 

(Dalang and Hersperger, 2012). Finally, fragmentation metrics at large-scale can be used to 513 
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improve predictive modelling of range shifts associated with land use (Reino et al., 2013). More 514 

particularly, they could contribute to better assess the environmental impacts of a product using 515 

land at different places around the globe along its life cycle. To date, several indicators are 516 

available in LCA to quantify a certain number of land use impacts (e.g. the impact of decreasing 517 

their habitat quantity on species), but, until now, habitat fragmentation impacts are poorly 518 

considered. In this perspective, the fragmentation indicators should be calculated for each taxon 519 

usually considered for land use impacts in LCA, i.e. birds, mammals, reptiles, amphibians and 520 

vascular plants, using median values of species or seed dispersal distances and scaling factors for 521 

which estimates are available in the literature (see for example Kharouba et al. (2012); 522 

Sutherland et al. (2000) and Verheyen et al. (2004)). They should also be extended to other 523 

habitat types (e.g. grasslands, savannas, shrublands, tundra, mangroves and deserts). In addition, 524 

as they stand, the fragmentation indexes are stand-alone indicators which are not directly linked 525 

to a land use intervention. Incorporating them into analytical environmental assessment methods 526 

such as LCA will need further development. 527 

  528 
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Appendices 529 

Appendix A: Additional methods and results (PDF) 530 

Appendix B: Metapopulation capacities λself, forest shares FS, and FFP indexes for forest 531 

ecoregions included in the biodiversity hotspots for a 1 km species dispersal distance (XLSX) 532 

Acknowledgments 533 

The authors thank Jean-Louis Martin and Ana Rodrigues from CEFE, Montpellier for their 534 

inspiring and valuable insights on the fragmentation issue, Thomas Koellner and Asja Bernd 535 

from the University of Bayreuth, Germany for their useful inputs on the fragmentation 536 

assessment, Jean-Baptiste Mihoub from Pierre and Marie Curie University, Paris for fruitful 537 

discussions about global biodiversity assessment, and Samuel Alleaume from UMR TETIS, 538 

Irstea Montpellier for his good advice on spatial processing. The authors are members of the 539 

ELSA research group (Environmental Life Cycle and Sustainability Assessment, 540 

http://www.elsa-lca.org/) and thank all ELSA members for their advice. This work was 541 

supported by the French National Research Agency (ANR), the Occitanie Region, ONEMA, 542 

Ecole des mines d’Alès and the industrial partners (BRL, SCP, SUEZ, VINADEIS, and 543 

Compagnie Fruitière) of the Industrial Chair for Environmental and Social Sustainability 544 

Assessment ‘ELSA-PACT’ (ANR grant no. 13-CHIN-0005-01).  545 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 28

References 546 

Andren, H., 1994. Effects of habitat fragmentation on birds and mammals of suitable habitat : a 547 

review landscapes with different proportions. Oikos 71, 355–366. 548 

Atauri, J.A., de Lucio, J. V., 2001. The role of landscape structure in species richness distribution 549 

of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landsc. Ecol. 550 

16, 147–159. 551 

Bertuzzo, E., Rodriguez-Iturbe, I., Rinaldo, A., 2015. Water Resources Research. Water Resour. 552 

Res. 51, 2696–2706. doi:10.1002/2015WR016946.Received 553 

Blazquez-Cabrera, S., 2014. Indicators of the impacts of habitat loss on connectivity and related 554 

conservation priorities : Do they change when habitat patches are defined at different 555 

scales? Ecol. Indic. 45, 704–716. doi:10.1016/j.ecolind.2014.05.028 556 

Bontemps, S., Defourny, P., Bogaert, E. Van, Arino, O., Kalogirou, V., Perez, J.R., 2011. 557 

GLOBCOVER 2009: Products Description and Validation Report. 558 

Bregman, T.P., Sekercioglu, C.H., Tobias, J.A., 2014. Global patterns and predictors of bird 559 

species responses to forest fragmentation : Implications for ecosystem function and 560 

conservation. Biol. Conserv. 169, 372–383. doi:10.1016/j.biocon.2013.11.024 561 

Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, 562 

J.F., Mittermeier, C.G., Pilgrim, J.D., Rodrigues, A.S.L., 2006. Global Biodiversity 563 

Conservation Priorities. Science (80-. ). 313, 58–61. doi:10.1126/science.1127609 564 

Calabrese, J.M., Fagan, W.F., 2004. A comparison-shopper’s guide to connectivity metrics. 565 

Front. Ecol. Environ. 2, 529–536. 566 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 29

CEPF, 2016. Biodiversity Hotspots [WWW Document]. URL 567 

http://www.cepf.net/resources/hotspots/ (accessed 12.19.16). 568 

Chaudhary, A., Kastner, T., 2016. Land use biodiversity impacts embodied in international food 569 

trade. Glob. Environ. Chang. 38, 195–204. doi:10.1016/j.gloenvcha.2016.03.013 570 

Conservation International, 2016. Biodiversity Hotspots [WWW Document]. URL 571 

http://www.conservation.org/How/Pages/Hotspots.aspx (accessed 12.19.16). 572 

Convention on Biological Diversity, 2016. Aichi Biodiversity Targets [WWW Document]. URL 573 

https://www.cbd.int/sp/targets/ (accessed 12.16.16). 574 

Crooks, K.R., Burdett, C.L., Theobald, D.M., Rondinini, C., Boitani, L., 2011. Global patterns of 575 

fragmentation and connectivity of mammalian carnivore habitat. Philos. Trans. R. Soc. 366, 576 

2642–2651. doi:10.1098/rstb.2011.0120 577 

Dalang, T., Hersperger, A.M., 2012. Trading connectivity improvement for area loss in patch-578 

based biodiversity reserve networks. Biol. Conserv. 148, 116–125. 579 

doi:10.1016/j.biocon.2012.01.042 580 

de Baan, L., Curran, M., Rondinini, C., Visconti, P., Hellweg, S., Koellner, T., 2015. High-581 

resolution assessment of land use impacts on biodiversity in life cycle assessment using 582 

species habitat suitability models. Environ. Sci. Technol. 49, 2237–2244. 583 

doi:10.1021/es504380t 584 

Di Bitetti, M.S., Placci, G., Dietz, L.A., 2003. A biodiversity vision for the Upper Parana 585 

Atlantic Forest ecoregion: designing a biodiversity conservation landscape and setting 586 

priorities for conservation action. 587 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 30

Fischer, J., Lindenmayer, D.B., 2007. Landscape modification and habitat fragmentation : a 588 

synthesis. Glob. Ecol. Biogeogr. 16, 265–280. doi:10.1111/j.1466-8238.2006.00287.x 589 

Flather, C.H., Bevers, M., 2002. Patchy reaction-diffusion and population abundance: the 590 

relative importance of habitat amount and arrangement. Am. Nat. 159, 40–56. 591 

Forman, R.T.T., Alexander, L.E., 1998. Roads and Their Major Ecological Effects. Annu. Rev. 592 

Ecol. Syst. 29, 207–231. doi:10.1146/annurev.ecolsys.29.1.207 593 

Gebauer, K., Dickinson, K.J.M., Whigham, P.A., Seddon, P.J., 2013. Matrix Matters : 594 

Differences of Grand Skink Metapopulation Parameters in Native Tussock Grasslands and 595 

Exotic Pasture Grasslands. PLoS One 8, 1–12. doi:10.1371/journal.pone.0076076 596 

GEO BON, 2015. Global Biodiversity Change Indicators - Version 1.2. 597 

Grilli, J., Barabás, G., Allesina, S., 2015. Metapopulation Persistence in Random Fragmented 598 

Landscapes. PLoS Comput. Biol. 11, 1–13. doi:10.1371/journal.pcbi.1004251 599 

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., 600 

Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., 601 

Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., 602 

Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D., Townshend, J.R., 2015. Habitat 603 

fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10. 604 

Hanski, I., 2015. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–993. 605 

doi:10.1111/jbi.12478 606 

Hanski, I., 1998. Metapopulation dynamics. Nature 396, 41–49. 607 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 31

Hanski, I., Ovaskainen, O., 2000. The metapopulation capacity of a fragmented landscape. 608 

Nature 404, 755–758. doi:10.1038/35008063 609 

Hanski, I., Zurita, G.A., Bellocq, M.I., Rybicki, J., 2013. Species-fragmented area relationship, 610 

in: Proceedings of the National Academy of Sciences of the United States of America. pp. 611 

12715–20. doi:10.1073/pnas.1311491110 612 

Hellweg, S., Mila i Canals, L., 2014. Emerging approaches, challenges and opportunities in life 613 

cycle assessment. Science (80-. ). 344. doi:10.1126/science.1248361 614 

Hietala-Koivu, R., Järvenpää, T., Helenius, J., 2004. Value of semi-natural areas as biodiversity 615 

indicators in agricultural landscapes. Agric. Ecosyst. Environ. 101, 9–19. 616 

doi:10.1016/S0167-8809(03)00273-1 617 

Jaeger, J.A.G., 2000. Landscape division, splitting index, and effective mesh size: new measures 618 

of landscape fragmentation. Landsc. Ecol. 15, 115–130. 619 

Kharouba, H.M., Mccune, J.L., Thuiller, W., Huntley, B., 2012. Do ecological differences 620 

between taxonomic groups influence the relationship between species’ distributions and 621 

climate? A global meta-analysis using species distribution models. Ecography (Cop.). 35, 622 

001–008. doi:10.1111/j.1600-0587.2012.07683.x 623 

Kindlmann, P., Burel, F., 2008. Connectivity measures : a review. Landsc. Ecol. 23, 879–890. 624 

doi:10.1007/s10980-008-9245-4 625 

Kupfer, J.A., 2012. Landscape ecology and biogeography : Rethinking landscape metrics in a 626 

post-FRAGSTATS landscape. Prog. Phys. Geogr. 2012 36. 627 

doi:10.1177/0309133312439594 628 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 32

Langford, W.T., Gergel, S.E., Dietterich, T.G., Cohen, W., 2006. Map Misclassification Can 629 

Cause Large Errors in Landscape Pattern Indices : Examples from Habitat Fragmentation. 630 

Ecosystems 9, 474–488. doi:10.1007/S10021-005-0119-1 631 

Lenzen, M., Moran, D., Kanemoto, K., Lobefaro, L., Geschke, A., 2012. International trade 632 

drives biodiversity threats in developing nations. Nature 486, 109–112. 633 

doi:10.1038/nature11145 634 

Loro, M., Ortega, E., Arce, R.M., Geneletti, D., 2015. Ecological connectivity analysis to reduce 635 

the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors 636 

with multiple paths and without bottlenecks. Landsc. Urban Plan. 139, 149–162. 637 

doi:10.1016/j.landurbplan.2015.03.006 638 

McGarigal, K., 1994. FRAGSTATS: spatial pattern analysis program for quantifying landscape 639 

structure. 640 

Moran, D., Kanemoto, K., 2017. Identifying species threat hotspots from global supply chains. 641 

Nat. Ecol. Evol. 1, 1–5. doi:10.1038/s41559-016-0023 642 

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. 643 

Biodiversity hotspots for conservation priorities. Nature 403, 853–858. 644 

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, 645 

E.C., D’Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., 646 

Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., Kassem, K.R., 2001. 647 

Terrestrial Ecoregions of the World : A New Map of Life on Earth. Bioscience 51, 933–938. 648 

Olsoy, P.J., Zeller, K.A., Hicke, J.A., Quigley, H.B., Rabinowitz, A.R., Thornton, D.H., 2016. 649 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 33

Quantifying the effects of deforestation and fragmentation on a range-wide conservation 650 

plan for jaguars. Biol. Conserv. J. 203, 8–16. 651 

Ortega, E., 2010. Indicator assessment for habitat fragmentation, in: COST 356 Final 652 

Conference. 653 

Ovaskainen, O., Hanski, I., 2001. Spatially Structured Metapopulation Models : Global and 654 

Local Assessment of Metapopulation. Theor. Popul. Biol. 60, 281–302. 655 

doi:10.1006/tpbi.2001.1548 656 

Pardini, R., De Arruda Bueno, A., Gardner, T.A., Inacio Prado, P., Metzger, J.P., 2010. Beyond 657 

the Fragmentation Threshold Hypothesis : Regime Shifts in Biodiversity Across 658 

Fragmented Landscapes. PLoS One 5. doi:10.1371/journal.pone.0013666 659 

Potapov, P., Hansen, M.C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, 660 

W., Zhuravleva, I., Komarova, A., Minnemeyer, S., Esipova, E., 2017. The last frontiers of 661 

wilderness : Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, 1–13. 662 

QGIS Development Team, 2017, 2017. QGIS Geographic Information System. Open Source 663 

Geospatial Foundation Project. [WWW Document]. URL http://www.qgis.org/ 664 

Radford, J.Q., Bennett, A.F., Cheers, G.J., 2005. Landscape-level thresholds of habitat cover for 665 

woodland-dependent birds. Biol. Conserv. 124, 317–337. doi:10.1016/j.biocon.2005.01.039 666 

Ricketts, T.H., 2001. The Matrix Matters: Effective Isolation in Fragmented Landscapes. Am. 667 

Nat. 158, 87–99. 668 

Riitters, K., Wickham, J., O’Neill, R., Jones, B., Smith, E., 2000. Global-Scale Patterns of Forest 669 

Fragmentation. Conserv. Ecol. 4. 670 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 34

Russell A. Mittermeier, Patricio Robles Gil, Michael Hoffman, John Pilgrim, Thomas Brooks, 671 

Cristina Goettsch Mittermeier, John Lamoreux, Gustavo A. B. da Fonseca, 2004. Hotspots 672 

Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions, 673 

Revised. ed. Conservation International. 674 

Rutledge, D., 2003. Landscape indices as measures of the effects of fragmentation: can pattern 675 

reflect process? DOC Science Internal Series. 676 

Rybicki, J., Hanski, I., 2013. Species-area relationships and extinctions caused by habitat loss 677 

and fragmentation. Ecol. Lett. 16, 27–38. doi:10.1111/ele.12065 678 

Saura, S., 2004. Effects of remote sensor spatial resolution and data aggregation on selected 679 

fragmentation indices. Landsc. Ecol. 19, 197–209. 680 

Saura, S., Torne, J., 2009. Environmental Modelling & Software Conefor Sensinode 2.2: A 681 

software package for quantifying the importance of habitat patches for landscape 682 

connectivity. Environ. Model. Softw. 24, 135–139. doi:10.1016/j.envsoft.2008.05.005 683 

Schneider, M.F., 2001. Habitat loss , fragmentation and predator impact : spatial implications for 684 

prey conservation. J. Appl. Ecol. 38, 720–735. 685 

Schnell, J.K., Harris, G.M., Pimm, S.L., Russell, G.J., 2013a. Quantitative Analysis of Forest 686 

Fragmentation in the Atlantic Forest Reveals More Threatened Bird Species than the 687 

Current Red List. PLoS One 8, 36–37. doi:10.1371/journal.pone.0065357 688 

Schnell, J.K., Harris, G.M., Pimm, S.L., Russell, G.J., 2013b. Estimating Extinction Risk with 689 

Metapopulation Models of Large-Scale Fragmentation. Conserv. Biol. 27, 520–530. 690 

doi:10.1111/cobi.12047 691 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 35

Secretariat of the Convention on Biological Diversity, 2014. Global Biodiversity Outlook 4. 692 

doi:10.2143/KAR.25.0.504988 693 

Shima, J.S., Noonburg, E.G., Phillips, N.E., 2010. Life history and matrix heterogeneity interact 694 

to shape metapopulation connectivity in spatially structured environments. Ecology 91, 695 

1215–1224. 696 

Sloan, S., Jenkins, C.N., Joppa, L.N., Gaveau, D.L.A., Laurance, W.F., 2014. Remaining natural 697 

vegetation in the global biodiversity hotspots. Biol. Conserv. 177, 12–24. 698 

doi:10.1016/j.biocon.2014.05.027 699 

Sutherland, G.D., Harestad, A.S., Price, K., Lertzman, K.P., 2000. Scaling of Natal Dispersal 700 

Distances in Terrestrial Birds and Mammals. Conserv. Ecol. 4. 701 

Taylor, P.D., Fahrig, L., Henein, K., Merriam, G., 1993. Connectivity is a vital element of 702 

landscape structure. Oikos 68, 571–573. 703 

Travis, J.M.J., French, D.R., 2000. Dispersal functions and spatial models: expanding our 704 

dispersal toolbox. Ecol. Lett. 3, 163–165. 705 

Vandermeer, J., Carvajal, R., 2001. Metapopulation Dynamics and the Quality of the Matrix. 706 

Am. Nat. 158, 211–220. 707 

Verheyen, K., Vellend, M., Calster, H. Van, Peterken, G., Hermy, M., 2004. Metapopulation 708 

Dynamics in Changing Landscapes : A New Spatially Realistic Model for Forest Plants. 709 

Ecology 85, 3302–3312. 710 

Wang, X., Blanchet, F.G., Koper, N., 2014. Measuring habitat fragmentation: An evaluation of 711 

landscape pattern metrics. Methods Ecoloy Evol. 5, 634–646. doi:10.1111/2041-712 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068



 36

210X.12198 713 

Whitmore, T.C., Sayer, J.A., 1992. Tropical Deforestation and Species Extinction. Chapman & 714 

Hall, for the IUCN. 715 

Wilcove, D.S., McLellan, C.H., Dobson, A.P., 1986. Habitat fragmentation in the temperate 716 

zone, in: Soulé, M.E. (Ed.), Conservation Biology - The Science of Scarcity and Diversity. 717 

Sinauer Associates, Inc., pp. 237–256. 718 

WWF, 2016a. Living Planet Report 2016 - Risk and resilience in a new era. 719 

WWF, 2016b. WWF - Our Global Goals: Forests [WWW Document]. URL 720 

http://wwf.panda.org/what_we_do/how_we_work/our_global_goals/forests/ (accessed 721 

12.16.16). 722 

 723 

Author-produced version of the article published in Ecological Indicators, 2018, N°89, p.543-551. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ecolind.2018.01.068




