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Abstract

The trapped mountain waves produced when the incident wind near the surface is small
compared to its value aloft are analyzed with a theory adapted from [Long(1953)] and compared
to fully nonlinear simulations done with WRF. Although small near surface incident winds
naturally occur in fronts via combination of the thermal wind balance and of the boundary
layer, they pose at least two problems in mountain meteorology: zero surface incident winds
produce no wave in the fully linear case, they also correspond to places where mountain waves
have a critical level.

Despite these problems, the theory and WRF show that for small mountains (i) trapped lee
waves can occur and (ii) are favored when the surface Richardson number J = N2/(∂u

∂z
)2 is small.

This last result is related to the theoretical fact that the surface absorption of stationary gravity
waves increases when J increases. The relation with flow stability is further corroborated by
the fact that the trapped lee waves resembles to the KH modes of instability that exist when
J < 0.25.

For medium mountains some aspects of the theory still hold but need to be adapted, the
more intense winds and foehn that occur along the lee side of the mountain having a tendency
to increase the surface flow stability. For ”initially” small J , this can limit the onset of trapped
lee-waves, again consistent with the fact that mountain wave surface absorption increases with
surface flow stability. For large J the dynamics produces wave breaking on the lee side, desta-
bilizing the flow in the wake of the mountain. In the region where the Richardson number is
small, trapped waves develop despite the fact that the surface Richardson number can be quite
large, suggesting that the trapped lee waves now result from an absolute instability of the wake.

∗Quarterly Journal of the Royal Meteorological Society
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1 Introduction

Trapped mountains waves generally occur when the vertical profiles of the large scale flow favor
the low level confinement of stationary gravity waves. They are sometimes associated with ro-
tors [Doyle and Durran(2002)] and can produce dangerous weather situations near the ground
[Keller et al.(2015)]. They also contribute to the low level mountain wave drag [Lott(1998),
Georgelin and Lott(2001), Teixeira et al.(2013), ] and still today, it is well established that
low level mountain drags improve weather forecast and climate models [Sandu et al.(2015),
Pithan et al.(2016), ]. For this reason, there is some debate on which source of low-level
mountain drag should be better represented, the results in [Tsiringakis et al.(2017)] suggest-
ing that the trapped lee waves could contribute as much as the blocked flow mountain drag
[Lott and Miller(1997), ] or the turbulent subgrid scale orographic drag [1, ]. According to
the conventional theory, the low level confinement favoring lee waves can have two dynamical
mechanisms. The first attributes the trapped lee waves to free oscillations along a low level
density discontinuity. This mechanism has been re-examined recently by [Vosper(2004)] and
[Sachsperger et al.(2017)], the first extending the theory to situations where the discontinuity
results from a boundary-layer inversion underneath a continuously-stratified atmosphere the
latter quantifying analytically the amplitude of the waves in the nonlinear context.

The second mechanism, first identified by [Scorer(1949)], involves the trapping of vertically
propagating internal gravity waves between the ground and a turning point aloft. In this theory
the Scorer parameter

S =
N2

U2
− 1

U

d2U

dz2
, (1)

plays a central role, N , U and z being the background buoyancy frequency, the background
wind and the vertical coordinate respectively. If S(z) decreases with height, due to a diminu-
tion of N with altitude for instance, some gravity waves that propagate vertically near above
the surface become evanescent aloft. For a given mode with horizontal wave number k, this
transition occurs at the turning level where S(zk) = k2, and at this level the corresponding
wave is reflected downward. The onset of trapped waves then strongly depends to what hap-
pen to the reflected waves when they return to the surface. In the initial theory of Scorer
(1949), the flow is inviscid and the downward waves are entirely reflected at the surface. In
this case a small and discrete number of harmonics survive the multiple interferences be-
tween the turning point and the surface, these harmonics dominate the lee waves field. Al-
though the cases where the variations of S(z) are due variations in N(z)2 are the most studied
([Jackson et al.(2013)Jackson, Mayr and Vosper, Markowski and Richardson(2011)]), it is clear
from Eq. (1) that the variations in S(z) can also be due to the variation of the wind with al-
titude (examples of trapped lee waves due to increase of the jet stream with altitude in the
low troposphere can be found in [Vosper et al.(2013), Teixeira et al.(2013)]). Nevertheless and
still according to Eq. (1), the variation of N and U should not be treated on the same footing.
To illustrate the difference we can recall that when U(z) becomes very small and even changes
sign at a given altitude, S(z) becomes infinite. We are in the presence of a critical level where
the waves are often absorbed in the linear case [Booker and Bretherton(1967), ], rather than
being entirely reflected as occurs at turning points. The differences become even more impor-
tant in the nonlinear cases, the mountain waves systematically breaking near that level, the
resulting gravity wave mean flow interactions sometimes yielding mountain waves amplification,
downslope winds and foehn [Clark and Peltier(1984), Nappo and Chimonas(1992), ].
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If we now return to the effect of the surface on the lee waves, a major limitation of the
inviscid theory is that it neglects the boundary layer effect. For this reason, many numerical
studies have included the effect of the boundary layer and shown that the surface friction and the
treatment of the turbulent dissipation affect mountain waves ([Bougeault and Lacarrere(1989)],
[Richard et al.(1989)]. More recently [Smith et al.(2006)], [Hills et al.(2016)], and [Teixeira (2017)]
returned to the basic mechanisms and included some boundary layer absorption in the theory.
More specifically, [Smith et al.(2006)] shows that flows that are more unstable near the sur-
face absorb less gravity waves and favor the onset of lee waves. They also noticed that in the
presence of a boundary layer the incident flow near the surface can become very small, caus-
ing a near critical level situation where the waves can be efficiently absorbed, if the theory of
[Booker and Bretherton(1967)] where the critical level is located within the flow applies.

Realizing that the absorption of gravity waves (GWs) by critical levels located at the surface
had never been studied, [Lott(2007)] (hereinafter L07) solved this problem theoretically in the
viscous case. This paper shows that the wave absorption at the ”surface” critical level can
be substantial and increases when the surface flow stability increases. This paper also shows
that pure reflection only occurs in the inviscid limit and when the surface Richardson number,
J = N2/(∂u

∂z
)2 < 0.25. To translate how this result affect trapped lee-waves, L07 applied these

results to the analysis of the stationary disturbances that can exist in flows with constant
stratification and wind that varies like a tanh profile above the surface. This profile was chosen
because it has zero wind at the surface, near constant shear immediately aloft and a very
smooth transition to constant wind in the far field: it is stationary enough in the viscous case
to make the analysis of stationary solutions relevant (at least for reasonably large Reynolds
numbers). In such profile, L07 confirmed that GWs absorption increases with J and also that
pure trapped modes exist in the inviscid limit when J < 0.25: these neutral modes correspond
to neutral modes of KH instability found by Drazin (1958) for the same profile in the unbounded
case. Latter, these results were confirmed in [Lott(2016)], (hereinafter L16), where an explicit
mountain forcing is introduced. The result in L16 also reveals consequences of the near surface
critical level dynamics that could not be anticipated from the analysis in L07. It shows that
in the presence of a near surface critical levels, the mountain forcing easily triggers strong
downslope winds and foehn. Interestingly, downslope windstorms in this case do not result
from upper level wave breaking, as often mentions the literature [Durran(1990), ]. In this paper
we will question how these downslope winds will modify the background flow in which the
trapped waves develop.

One of the more severe limitation of L16 is that it considers free-slip boundary conditions
but forces the incident flow to satisfy a no-slip boundary condition far upstream: it does not use
the viscous solutions presented in L07 or solutions affected by a turbulent boundary layer as in
[Belcher and Wood(1996)]. Although these simplifications are essentially made to simplify the
theory they are in part justified by the fact that in the atmosphere the low level wind shears are
often due to horizontal gradients in temperature, they do not solely result from boundary layer
dynamics: they can extend well above the boundary layer and there, the inviscid dynamics can
be applied.

The first purpose of this paper is to describe further the dynamical nature of the trapped lee
waves with surface critical level found in L16 and by comparison with a more commonly accepted
theory. The second is to analyze if these trapped lee waves still occur in the nonlinear context
and with realistic boundary layers. For the first purpose we will compare the nature of trapped
modes due to slow low level winds with and without surface critical levels using the L16 the-
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ory. For the second, we will follow [Damiens et al.(2018)Damiens, Lott, Millet and Plougonven]
(hereinafter D18), who (i) adapted the theory to higher mountains than in L16, (ii) used in the
theory boundary layer depths that gives result comparable to WRF, and (iii) used the WRF
model in various idealized configurations and boundary layer specifications. The plan of this
paper is as follows. In section 2, the formalism in L16 is extended to higher mountains, it is also
applied to flows with and without surface critical levels. This will highlight how dynamically
different can be situations where the changes in the background wind only affect the Scorer
parameter, to the situation where they both affect the Scorer parameter and induce a near
surface critical level. Section 3 then compares the theory with surface critical level and the
WRF simulations for small and medium height mountains respectively.

2 Theory

2.1 Continuous variations in U(z)

To analyze the mountain waves produced by a stably stratified shear flow when the incident
wind is null at z = 0, we follow L16 and consider the background flow profiles

U(z) = U∞ tanh(z/d), N2(z) = const, (2)

incident on a 2-dimensional mountain modeled by the Witch of Agnesi profile:

h(x) =
H

1 + x2

2L2

. (3)

In (2), U(z) is the background horizontal wind, N(z) the Brunt Vaisala frequency, z the altitude,
d is the vertical scale of the shear and U∞ the incident wind maximum amplitude. In (3) H
is the maximum mountain height, L its characteristic horizontal length, and x the horizontal
coordinate. When scaling time by N−1 and distances by U∞/N the 2-dimensional non-rotating
linear dynamics can be expressed in term of a non dimensional vertical velocity, w(x, z) of the
form,

w(x, z) =

∫ +∞

−∞

f(k)ŵc(k, z)e
ikxdk, (4)

where overbars denote dimensionless variables, and ŵc(k, z) is a canonical monochromatic solu-
tion of ”unit” amplitude in the far field which satisfies the dissipative Taylor Goldstein equation,

d2ŵc

dz2
+







1
(

U − i zk√
J

)2 − U zz

U − i zk√
J

− k
2






ŵc = 0. (5)

In (4) the amplitude term f(k) is obtained by numerical inversion of the non-linear free-slip
boundary condition:

w(x, h(x)) =
[

U(h) + u(x, h(x))
] dh(x)

dx
, (6)

where u(x, z) is the horizontal wind disturbance. In (5)-(6)

U(z) = tanh

(

z√
J

)

, and h(x) =
HN

1 + x2/2F 2
r

(7)
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where

J =
N2d2

U2
∞

, HN =
HN

U∞

, and Fr =
LN

U∞

(8)

are the surface and minimum Richardson number, the non-dimensional mountain height, and
the Froude number respectively. Still in (5) the dissipative vertical scale for each harmonics,

zk =
zb
2

(

1

Frk
+ Frk

)

. (9)

has been expressed in terms of a global scale zb, with the first term in parenthesis resulting
from Rayleigh drag and Newtonian cooling of coefficient zb/Fr/

√
J/2 and the second term

from a viscous dissipation which acts in the x-direction only of coefficient zbFr/
√
J/2 (for a

more thorough discussion of these terms see discussion of Eq. 4 in L16). They are introduced
to regularize the critical level dynamics for all the harmonics, i.e. the longer and the shorter
ones respectively. Note that zk is written differently than in L16 to make clear that when the
formula is applied to the dominant wave number Fr−1, zk in (9) is comparable to the dissipative
scale zb

1. To construct ŵc, L16 uses for each k an exact solution of the inviscid version of (5),
ŵinv(k, z), which is based on hypergeometric functions (see [Lott et al.(1992)]) and (34) in L16,
and which asymptotic behaviors are

ŵinv(k, z >> 1) ≈ e−mz, (10)

ŵinv(k, z << 1) ≈ ŵmat(k, z) = a1(k)z
1/2−iµ + a2(k)z

1/2+iµ (11)

where,

m =

√

|k2 − 1|, µ =

√

|J − 1

4
|, (12)

and where a1(k) and a2(k) have analytical forms once the ”unit” amplitude condition (10) is

satisfied. Also, when k
2
< 1, m is changed in −isign(k)m, where the sign is to ensure upward

group speed, and when J < 0.25, µ is changed in iµ. Near the surface, L16 also uses the
asymptotic solution of the damped Taylor-Goldstein Equation (5) valid when z << 1:

ŵsrf(k, z) = a1(k)(z − izk)
1/2−iµ + a2(k)(z − izk)

1/2+iµ, (13)

where a1 and a2 are the same as in (11) to ensure convergence toward the ”matching” function
ŵmat given in (11) and when z → ∞. Then, following [Bender and Orszag(1978)] we will
approximate ŵc by its uniform estimate:

ŵc ≈ ŵinv + ŵsrf − ŵmat. (14)

The only difference with L16, is that we use this approximation in the inversion of (6),

∫ +∞

−∞

f(k)

[

ŵc(k, h)− ûc(k, h)
dh

dx

]

eikxdk = U
dh

dx
(15)

rather than using the surface solution in (13) to express ŵc and ûc in the terms between brackets
in (15). This formally permits to consider more elevated ridges than in L16.

1For consistency, note also that the boundary layer depth zB used in L16 is related to the one here by

zB = 5zb.
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2.2 Discontinuous variations in U(z)

To contrast our results to the more common case where trapped lee waves are only due to
changes in the Scorer parameter and where the ground is not a critical level we also apply our
theory to a low level shear zone represented by a two layers flow,

U(z <
√
J) = U 1 = 0.5 and U(z >

√
J) = U2 = 1. (16)

This profile is given in the non-dimensional formalism of subsection (1.1), see also Fig. 1a. For
this profile the dissipative Taylor Goldstein equation takes the form,

d2ŵc

dz2
+

(

1

(Uj − izk)2
− k

2
)

ŵc = 0 (17)

where the j = 1, 2 index indicates the layer of interest. Also, the continuity of pressure and the
uniqueness of the material displacement at the altitude z =

√
J require that

[

(Uj − izk)
dŵc

dz

]j=2

j=1

= 0, and

[

ŵc

Uj

]j=2

j=1

= 0 (18)

respectively. If we then define vertical ”wavenumbers” as

mj = ǫ

√

k
2 − 1

(Uj − izk)2
, (19)

where the sign ǫ = ±1 is chosen so that ℜ{mj} > 0, the canonical solution writes,

ŵc = e−m2(z−
√
J) and ŵc =

(

1

4
+

m2

m1

)

e−m1(z−
√
J) +

(

1

4
− m2

m1

)

e+m1(z−
√
J), (20)

for z >
√
J and z <

√
J , respectively (see also [Teixeira et al.(2013)]).

2.3 Inviscid result

To show the fundamental dynamical differences between the two profiles we next search the
neutral solutions that exist in both the inviscid case and when the surface is flat.

When the variations in U(z) are continuous, L07 shows that the dynamics is intimately
related to the absorptive properties of the near-surface critical level. To expose them in a concise
way we can use the near surface inviscid solution in (11) and express the wave momentum flux

F z =
ûcŵ

∗
c + û∗

cŵc

4
=

{ µ

2k
(|a1|2 − |a2|2) when J > 0.25,

µ

2k
(a1a

∗
2 + a∗1a2) when J < 0.25.

(21)

L07 showed that for fixed a1, the inviscid solution (11) can be matched to dissipative solutions
that satisfy the surface boundary condition, a matching that determines a2. It also shows
that |a2| < |a1| when J > 0.25, which implies F z > 0 according to (21): the upward waves
dominate the downward propagating ones. The pure surface reflection which is at the basis of
the classical trapped lee wave theory [Scorer(1949), ] cannot be satisfied. L07 also shows that
the ratio |a2/a1| tend to decrease when J increases, which in lee waves theory translate into
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the fact that the wave field decay more rapidly with downstream distance when J increases
[Smith et al.(2006), ]. L07 also shows that these results still hold in the inviscid limit. When
J < 0.25 L07 also shows that for fixed |a1| one can have |a2| = 0 in the inviscid limit. In this
case F z = 0 according to (21) which means that the reflection is total and trapped lee waves
can exist. To find them, the near surface analysis in (11) is nevertheless not sufficient. We have
to find if there are indeed solutions of the global inviscid problem that satisfies a2 = 0 near
z = 0. L07 also shows that such solution do exist, they correspond to half of the branch of the
neutral modes of KH instabilities found by [Drazin(1958)] (see his Eq. 25). In our definition of
the non dimensional parameters it corresponds to the modes for which

k
2
=

1−
√
1− 4J

2J
, (22)

This dispersion curve is shown in Fig. 1b.
When the variations in U(z) are discontinuous, the dynamics is almost as in [Teixeira et al.(2013)],

and the onset of trapped modes correspond to wave numbers for which ŵc(z = 0) = 0, a con-
dition that imposes,

4 tanh(m1

√
J) = −m1

m2
. (23)

In the inviscid case, the only wave numbers that satisfy this condition are those for which
1 < k < 2 and when:

4 tan

(√
J

√

4− k
2
)

= −

√

4− k
2

√

k − 1
. (24)

The corresponding dispersion curves are shown in Fig. 1b. It shows that pure trapped waves
occur for much ”deeper” low level shear layer, the onset of trapped waves being now conditional
to J > π2/12 ≈ 0.822 rather than J < 0.25 in the continuous case. We also see that when J
increases the number of trapped modes increases, this number being given by the resolution of
(24) when k = 1, e.g. by the number n satisfying

π

2
+ nπ <

√
3J <

3π

2
+ nπ. (25)

2.4 Forced dissipative results

To include an explicit forcing, we next proceed numerically as in L16, discretize in the spectral
space the Fourier integral in (4), taking for ŵc (14) in the continuous case or (20) in the stairway
case. In both, cases, f(k) is determined through the numerical inversion of the nonlinear
boundary condition (15). In the discrete space this inversion is a matrix inversion that only
converges with increasing resolution when there is dissipation and because the surface boundary
condition becomes singular in the inviscid case when there are resonant modes. In this section,
we take a domain of length 500, spanned by 2048 equally spaced points, the boundary layer
parameter zb = 0.01, and the non-dimensional mountain height HN = 0.1. We also take Fr = 2,
which means that waves with wavenumbers around Fr−1 = 0.5 will be forced. This value is
sufficiently near the lower bound of the dispersion curves in Fig. 1b to ensure that some trapped
waves will be well excited.

The two panels in Figs. 1c) and 1d) show the vertical velocities around the center of the
shear layer in z =

√
J/2, for the continuous and discontinuous profiles respectively. As expected
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from L16, one sees that in the presence of a surface critical level, trapped lee waves develop
more easily when the flow is unstable, i.e. for small J ’s, whereas it is the other way round when
the background flow is discontinuous. In the later case, trapped waves develop more easily when
the parameter J becomes larger than one, consistent with the inviscid results for the stairway
case in section 2.3). These results corroborate that reasoning in terms of trapping only can
be misleading. If the surface critical level dynamics is neglected, increasing the depth of the
shear increases the depth of the low level wave duct: more and more modes can be trapped
within it. When including reasoning in terms of shear flow stability, the surface critical level
dynamics becomes central, and, when the depth of the shear zone decreases, the surface critical
level absorption decreases, which favors trapped lee waves.

3 Fully nonlinear simulations

3.1 Experimental setup

To test if the relation between flow stability and trapped mountain waves still hold in the
fully non linear context, we next follow D18 and use the WRF model in the 2D mountain flow
configuration available on line [Skamarock et al.(2005), ]. In all the simulations presented we
consider a mountain of length L = 1.1 km which height typically varies between 50 m and
500 m. To capture well the gravity waves dynamics the model domain is 80 km long and 9 km
high, and both directions are discretized by 800 x 450 equally spaced points respectively. These
yield an horizontal resolution of ∆x = 100 m and a vertical resolution of ∆z = 20 m, both are
near an order of magnitude smaller than the mountain dimension. These rather high resolutions
force to use a time step of ∆t = 0.5 s, they are necessary to guarantee that the near surface
critical level dynamics is well captured, and we verified that our results are not much changed
when these resolutions and domain sizes are changed by a factor 2. To allow gravity waves to
propagate away from the domain without lateral and upper boundary reflections we use open
lateral boundary conditions and introduce a 6km high damping layer below the domain lid.
To impose a constant buoyancy frequency, and because the WRF model is fully compressible
we take an isothermal atmosphere with T0 = 288 K. This results in a constant Brunt-Vaisala
frequency N , with N2 = g

θ0
dθ0
dz

= κg2

RT0

= 3.32 10−4s−2, and where κ, R and g have their usual
earth values, and θ0 is the background potential temperature. The background wind is defined
by (7) with U∞ = 10 m s−1. In this setup the froude number value Fr = 2, as in section
2 and will not vary, the sensitivity to the surface Richardson number J will be analyzed by
changing the value of the shear layer depth d, and that to the mountain height by varying the
mountain height HN . In most case, and except when specified the results are shown after 4 h
of integration, that is much longer than the advective time-scale L

U∞

≈ 100 s, and sufficiently
long for the trapped lee waves to develop downstream.

As the theory in Section 2 is based on an free-slip treatment of the lower boundary, we
will first present WRF simulations where the constant diffusion coefficients are put to zero
and where the surface boundary condition is free-slip. Nevertheless, this does not necessarily
make the simulations inviscid because irreversible or diabatic processes certainly occur near the
surface : it happens that the WRF dynamical core is stable and dissipative enough to handle
these processes (see discussion in D18). When we return to the theory, it is a priory difficult to
say how these irreversible processes can affect the wave dynamics. Nevertheless, as the theory
has a free parameter to represent dissipation, the boundary layer scale zb, we can vary it and
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try to identify a value for which there is a match between the nonlinear simulations and the
theory. In D18, it was found that a dependance in

√
J helped the comparison with WRF and

we take here
zb/

√
J = 0.005. (26)

We well keep this value in all the following experiments with the theoretical model.
To extent even further the significance of our results, we have also used WRF with two

boundary layer schemes that have been extremely validated by the community, the Yonsei
University Planetary Boundary Layer scheme (hereinafter YSU BLYR, [Hong et al.(2006)]) and
the Mellor Yamada scheme (hereinafter MY BLYR, [Mellor and Yamada(1982)]). Although the
two schemes have fundamental differences, the YSU BLYR is based on the nonlocal diffusion
concept of [Troen and Mahrt(1986)] whereas the MY calculate local diffusion coefficients with
amplitude controlled by the amplitude of a turbulent kinetic energy evaluated at each time step,
we do not expect them to behave very differently in all the dry and initially convectively stable
cases we consider. The intention here is more to test robustness using well known schemes, and
although the two schemes may well regularize the convectively unstable regions produced by
the waves quite differently. In these two configurations where the interaction with the surface is
more thoroughly taken into account we force the potential temperature of the surface to equals
the background potential temperature, θs(x) = T0e

κh(x)/H0 , where the characteristic height
H0 = RT0/g, whereas the roughness length has its default value z0 = 0.1 m.

3.2 Low mountain

The left panels in Fig. 2 show the vertical velocity fields produced by the theoretical model
for three different values of J , and the right panels show the same fields evaluated with the
free-slip WRF simulations. In all panels, the results are shown using non-dimensional vari-
ables to ease comparison with theory and the mountain maximum height HN = 0.1. The first
striking result is that the theory and WRF compare very well qualitatively and quantitatively.
This is maybe the most important result of this work: the theory is based on a linear approxi-
mation that is often questionned in the presence of critical levels [Lott and Teitelbaum(1992),
Dörnbrack and Nappo(1997)].

If we return to the fields themselves, we see that for J = 3 in Figs. 2a and 2b, the vertical
velocity field is largely dominated by vertically propagating mountain waves, the sign of the
constant phase lines slope being opposite to that of the incident wind. In both models, the wave
field substantially extents downstream of the ridge, which is characteristic of non-hydrostatic
effect when the background flow is uniform [Queney(1947), ] and the Froude number near
Fr = 1. Here the interpretation holds above the shear layer, i.e. when z >

√
J . Still for J = 3,

note that in WRF, the wave amplitude is a little smaller than in the theory, but this difference
could be sorted out by moderately increasing the boundary layer depth zb in the latter (not
shown).

If we now look at smaller values of J , we see that for J = 0.75 the theory and WRF in Figs.
2c and 2d still predict comparable fields, trapped lee waves start to appear, although they are
still quite small in both models. Note that now, it is the theory that predicts smaller amplitude
wave field than WRF, which could suggest that we should now decrease the boundary layer
depth zb in the theory. As this amplitude factor changes from one experiment to another this
indicates that the relation between zb and J we have taken here and in D18, should eventually
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be improved or made dependent on the Froude number or on HN . Nevertheless as this does
not affect our interpretation of the results we prefer to keep the relation (26).

In both models, and for even smaller values of J , (i.e, J = 0.16) we see again that WRF
and theory give comparable results, but now both present a well defined train of lee waves,
extending downstream down to more than 50 km. These trains of lee waves are characterized
by almost vertical phase lines, the vertical velocity fields being essentially confined within the
shear layer (see U(z) in the left part of each panel). A difference is that in the theory, the
train of lee waves seems to dissipate faster than in WRF, again this can be easily sorted out
by decreasing further zb in the theory, an issue that is not critical for our interpretation of the
results. A more interesting aspect concern the horizontal wavelength. We see that in both
models it is near equals λ ≈ 5, which corresponds to k ≈ 1.05, whereas the corresponding KH
mode in (22) has k ≈ 1.10 for J = 0.16. If we remember that the Drazin solutions are confined
to the shear layer and have only one node for the vertical velocity, the inflection point of the
background wind (here z = 0), it is clear that the wave field downstream in Figs. 2e and 2f has
structure of a neutral mode of KH instability.

As the central objective of this paper is focused on the trapped lee-waves development,
we next choose a representation that emphasize them. For this purpose, the Fig. 3 shows the
horizontal variations of the vertical velocity at the altitude z = 1. The panels in the left column
are for the theory (Fig. 3a), and are consistent with the results in L16, which establishes that
more unstable flows favor trapped lee waves. In L16 nevertheless dissipations are almost absent,
which makes that the lee waves for J < 0.25 are almost pure trapped lee waves, their amplitude
do not decay downstream, the mountain exciting a neutral mode of KH instability. Also, in
L16, the boundary layer depth does not increase with J , which here absorbs even further the
waves when J increase: this makes that in Fig. 3a) almost no waves are present when J > 1.

A striking result is that WRF reproduces well this dependence with J , in the free-slip case
which we already discussed but confirm here more systematically. What is more interesting is
that with more sophisticated boundary layer parameterization schemes in Figs. 3c and 3d the
transition from more unstable flows with more trapped waves to more stable flows with less
trapped waves still hold. As said in the model description, our choice was to use well tuned
and stable schemes to confirm our findings beyond the free slip assumption, rather than to
discuss with details the differences. What can be said here is that imposing a surface drag via
similarity theory, what fundamentally do both the MY-BLYR and the YSU-BLYR schemes,
does not fundamentally change the absorptive properties of the waves near the surface compared
to the inviscid case, and hence the downstream development of the trapped lee-waves. A reason
is probably that our background winds are small near the surface, and the roughness length is
also quite small, two reasons that make the frictional drag small and the results quite consistent
with the free-slip cases.

3.3 Medium height mountain

To test if some of our results hold for higher mountains, we next present experiments with
HN = 0.7, that is H = 404 m in dimensional units. The results for the horizontal profiles
of the vertical velocity in Fig 4 confirm that some aspects of the theory are still relevant.
The most remarkable one is that trapped waves do occur in most experiments, they all have
horizontal wavenumber around k = 1, their spatial structure also resemble to KH neutral modes
(not shown). Although there is an overall tendency for the simulations with small J to produce
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trapped waves propagating over longer distances downstream, some remarkable differences start
to occur.

The first is that for small J and except when the MY BLYR scheme is used, the first min-
imum in vertical velocity located immediately downstream of the ridge becomes substantially
larger in amplitude compared to the oscillations associated with the lee wave. This follows that
enhanced non-linearities increase downslope winds, a behavior already analyzed in D18. We
will not discuss it further here, essentially because this effect is present in the theory in Fig. 4
for J = 0.16, J = 0.23, and J = 0.3, as well as in the free slip case, and to a lesser extent when
using the YSU BLYR. Note that this enhancement of downslope winds is almost absent with
MY-BLYR, indicating that turbulent parameterizations affect seriously the downslope winds.
As we shall see with more details below this impacts in return the development of the trapped
lee waves: at small J and with MY-BLYR in Fig. 4d), the downslope winds are not as intense
as with the other BLYR, which seems to favor the downstream development of the lee waves.

The second difference is more directly related to the lee wave downstream extension. In
some cases it can almost disappear locally at small J (for instance in the free-slip case in
Fig. 4b when J = 0.16 between 1 < x < 30). Conversely lee waves can develop downstream
more substantially than in the theory, as occur quite systematically in WRF when J > 1. To
test if these changes challenge our interpretation of trapped lee waves in terms of stability, we
next analyze with more details the cases with the two extreme values J = 0.16 and J = 5.

The results above suggest that when HN approaches 1 the interpretation in term of upstream
flow surface stability becomes incomplete. Interestingly for such values of HN , we also know
that strong downslope winds and low level wave breaking can occur. These certainly change
the large-scale flow downstream and hence the local properties of the flow in which the trapped
waves develop. To substantiate this relation between local flow stability and trapped waves, we
next use the fact that the lee wave fields shown in Fig. 4 have rather well defined horizontal
wavelength: we can make a separation between the ”large-scale flow” and the waves by averaging
fields over horizontal distances that compare with the horizontal wavelength. In the following,
as the trapped waves have wavelength that are always near and below 3 km, we will apply a
top hat horizontal filter with a fixed length of 3 km to extract the large scale, but we found
little sensitivity when moderately increasing the horizontal length of the filter.

For J = 0.16 the top panels in Fig. 5 show the temporal evolution of the altitude of the
”unfiltered” isentrope θ = 291 K, and which upstream altitude is almost equal to H . The time
evolution in the free slip case in Fig. 5a shows the development of a moderate Foehn downslope,
the region where the isentrope altitude is below the mountain top extents with time to reach
near x = 20 km after t = 240 min. This region of moderate Foehn does not end by an abrupt
hydraulic jump, consistent with the fact that strong Foehn are favored when J is large (see L16,
D18). In term of trapped waves, what is interesting is that the oscillations with wavelength
below 3 km are stationary, as expected for mountain waves, but begins downstream the Foehn
region. The panel below in Fig. 5d shows the raw fields of potential temperature altitude at
t = 240 min, superimposed onto the ”large scale” Richardson number,

Rif =
g

θf

∂θf
∂z
/

(

∂uf

∂z

)2

(27)

where θf and uf are the filtered field of potential temperature and horizontal wind respectively.
Here we see that the region where the trapped waves are present are also characterized by
regions where Rif is small near the surface, and which are quite far downstream of the ridge.
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In Figs. 5b one sees that an effect of the YSU-BLYR layer parameterization is to reduce the
Foehn intensity, the descent of the θ = 291 K surface downstream is less pronounced than in
the inviscid case, and the flow near the surface still has Rif < 0.25, as indicates the green curves
and at least until the x = 20 km. Above this region substantial small scale oscillations do occur,
whereas beyond x = 20 km, the surface flow is stabilized and the isentropes no longer present
small scale oscillations. This correspondence between surface flow stability and trapped waves
is also found when the MY BLYR scheme is used (see Figs. 5c-5f), in this case also the scheme
reduces the foehn amplitude, the flow stays unstable on the lee-side of the ridge, it even stays
so down to at least x = 40 km and trapped waves are present almost everywhere in this zone.
In all cases, we see that the correspondence between trapped waves and the near surface flow
stability continues to hold.

The differences between the theory and the WRF are even more pronounced when the initial
background flow is stable as show the simulations with J = 5 in Fig. 6. First, in the free slip
case, the θ = 291 K surface in Fig 5a presents a pronounced foehn immediately downstream of
the ridge, followed by an abrupt transition beyond which trapped lee-waves develop. Again the
trapped lee waves field develops in time, but is stationary: the first pronounced crest at around
x = 10 km for instance stays almost at the same place, and this is true for the other crests.
The fields of large scale flow stability and isentropic surface in Fig 5d show that on the lee side,
the dynamics has not much modified the surface flow stability (the Richardson number near
z = 0 is still much larger than 1), but produced in the mountain wake a large unstable zone
that extent with time. We see in Fig. 5d that this unstable zone is also where the trapped wave
signal is the most pronounced. According to this result, it seems reasonable to suggest that the
trapped waves are again related to an instability triggered by the mountain, as suggests the
stationarity of the lee wave.

To support this, one needs to verify that where the flow is unstable the large-scale wind is
also small, and following that (i) KH instabilities have a phase speed near the large-scale wind
value in the region where they are produced, and (ii) mountains force stationnary waves. This
is verified in Fig. 7a, which shows profiles from filtered filelds at x = 13 km. In it, we see that
in the region of instability, the large scale wind is quite small, the near unstable modes, if they
exist, are likely to have small phase speed and to be excited by an orographic forcing. The
results from other boundary layer parameterizations in Figs. 6b-6e and Figs. 6c-6f somehow
corroborate these results. In all of them, trapped waves develop whereas the surface stability
stays strong. They seem associated to the unstable regions located well above the surface in the
wake of the mountain, and in all cases the large scale winds in the region where the Richardson
number is small are quite small (Figs. 7b and 7c). A marked difference is that between the free
slip case and the cases with BLYR parameterization the horizontal wavelength of the waves is
quite different, an other is that the intensity of the foehn is much less pronounced with the
BLYR parameterizations than in the free slip case.

4 Conclusion

Using theory and WRF simulations with various boundary layer parameterization, this paper
has shown that the onset of trapped lee waves is strongly linked to the stability property of
the background flow. This complement our conventional view of trapped lee waves where the
dynamics is mainly explained in term of variations of the Scorer parameter. We believe that
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this view becomes mandatory when the variations in the Scorer parameter are due to variations
of the incident wind rather than of stratification, and when the incident wind is quite small
near the surface. For small mountains, it happens that the theory in L16 explains well this
dependence. Small surface Richardson numbers result in large gravity wave surface reflections
and favor the trapped wave development. For medium height mountain, the nonlinear dynamics
in the wake of the mountain modify the large scale flow, and therefore the background properties
in which the trapped waves develop. For small J , non-linearities yield in an increase of the
surface Richardson number near the surface and the trapped waves are attenuated. For large
J , strong downslope windstorms happen and yield mixing that destabilizes the flow in the wake
of the mountain. In this case, we attribute the onset of trapped waves to the triggering of small
phase speed unstable modes.

Despite the fact that there is some coherency in our results concerning the links between
trapped waves and instabilities, it is important to note that the boundary layer parameteriza-
tions have strong quantitative impacts. These impacts are extremely evident in the medium
height mountain simulation (section 3.3). In this case and when the background flow is un-
stable near the surface (J = 0.16), the dynamics stabilizes the surface flow in the free slip
case, whereas it does not affect it much when the MY-BLYR scheme is used. This impacts
the location of the trapped waves. For very stable cases J = 5, the dynamics produce strong
foehn in the free-slip case, whereas the Foehn is less intense with the YSU and MY bound-
ary layer parameterizations. Again the location of the trapped waves is affected in return.
These results clearly illustrate that the boundary layer parameterizations have strong impacts
on mountain wave dynamics, at least when the incident wind present strong shears in the low
troposphere. In essence, the results obtained illustrate again the significance of low level wind
shears and stability on mountain flow dynamics, something often noticed in the context of
trapped lee waves [Reinecke and Durran(2009), Georgelin and Lott(2001)]. In this context it
is interesting to note that there are many field experiments where upstream soundings show
low level shears [Doyle et al.(2011), Sheridan et al.(2007)] generally related to advancing fronts
[Lothon et al.(2003)], when the low level shear is associated with thermal wind balance.
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Figure 6: Same as Fig. 5 for J = 5.
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Figure 7: Vertical profile of large scale horizontal velocity Uf , potential temperature θf − 288
K and Richardson number Rif , 13km downstream the mountain. HN = 0.7 and J = 5. The
thin dashed line corresponds to Rif = 0.25
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