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Preface

Markov chains are a class of stochastic processes very commonly used to model
random dynamical systems. Applications of Markov chains can be found in many
fields, from statistical physics to financial time series. Examples of successful
applications abound. Markov chains are routinely used in signal processing and
control theory. Markov chains for storage and queueing models are at the heart of
many operational research problems. Markov chain Monte Carlo methods and all
their derivatives play an essential role in computational statistics and Bayesian
inference.

The modern theory of discrete state-space Markov chains actually started in the
1930s with the work well ahead of its time of Doeblin (1938, 1940), and most of the
theory (classification of states, existence of an invariant probability, rates of con-
vergence to equilibrium, etc.) was already known by the end of the 1950s. Of
course, there have been many specialized developments of discrete-state-space
Markov chains since then, see for example Levin et al. (2009), but these devel-
opments are only taught in very specialized courses. Many books cover the classical
theory of discrete-state-space Markov chains, from the most theoretical to the most
practical. With few exceptions, they deal with almost the same concepts and differ
only by the level of mathematical sophistication and the organization of the ideas.

This book deals with the theory of Markov chains on general state spaces. The
foundations of general state-space Markov chains were laid in the 1940s, especially
under the impulse of the Russian school (Yinnik, Yaglom, et al.). A summary
of these early efforts can be found in Doob (1953). During the sixties and the
seventies, some very significant results were obtained such as the extension of the
notion of irreducibility, recurrence/transience classification, the existence of
invariant measures, and limit theorems. The books by Orey (1971) and Foguel
(1969) summarize these results.

Neveu (1972) brought many significant additions to the theory by introducing
the taboo potential a function instead of a set. This approach is no longer widely
used today in applied probability and will not be developed in this book (see,
however, Chapter 4). The taboo potential approach was later expanded in the book
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by Revuz (1975). This latter book contains much more and essentially summarizes
all that was known in the mid seventies.

A breakthrough was achieved in the works of Nummelin (1978) and Athreya
and Ney (1978), which introduce the notion of the split chain and embedded
renewal process. These methods allow one to reduce the study to the case of
Markov chains that possess an atom, that is, a set in which a regeneration occurs.
The theory of such chains can be developed in complete analogy with discrete state
space. The renewal approach leads to many important results, such as geometric
ergodicity of recurrent Markov chains (Nummelin and Tweedie 1978; Nummelin
and Tuominen 1982, 1983) and limit theorems (central limit theorems, law of
iterated logarithms). This program was completed in the book Nummelin (1984),
which contains a considerable number of results but is admittedly difficult to read.

This preface would be incomplete if we did not quote Meyn and Tweedie
(1993b), referred to as the bible of Markov chains by P. Glynn in his prologue to
the second edition of this book (Meyn and Tweedie 2009). Indeed, it must be
acknowledged that this book has had a profound impact on the Markov chain
community and on the authors. Three of us learned the theory of Markov chains
from Meyn and Tweedie (1993b), which has therefore shaped and biased our
understanding of this topic.

Meyn and Tweedie (1993b) quickly became a classic in applied probability and
is praised by both theoretically inclined researchers and practitioners. This book
offers a self-contained introduction to general state-space Markov chains, based on
the split chain and embedded renewal techniques. The book recognizes the
importance of Foster—Lyapunov drift criteria to assess recurrence or transience of a
set and to obtain bounds for the return time or hitting time to a set. It also provides,
for positive Markov chains, necessary and sufficient conditions for geometric
convergence to stationarity.

The reason we thought it would be useful to write a new book is to survey some
of the developments made during the 25 years that have elapsed since the publi-
cation of Meyn and Tweedie (1993b). To save space while remaining
self-contained, this also implied presenting the classical theory of general
state-space Markov chains in a more concise way, eliminating some developments
that we thought are more peripheral.

Since the publication of Meyn and Tweedie (1993b), the field of Markov chains
has remained very active. New applications have emerged such as Markov chain
Monte Carlo (MCMC), which now plays a central role in computational statistics
and applied probability. Theoretical development did not lag behind. Triggered by
the advent of MCMC algorithms, the topic of quantitative bounds of convergence
became a central issue. Much progress has been achieved in this field, using either
coupling techniques or operator-theoretic methods. This is one of the main themes
of several chapters of this book and still an active field of research. Meyn and
Tweedie (1993b) deals only with geometric ergodicity and the associated Foster—
Lyapunov drift conditions. Many works have been devoted to subgeometric rates of
convergence to stationarity, following the pioneering paper of Tuominen and
Tweedie (1994), which appeared shortly after the first version of Meyn and
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Tweedie (1993b). These results were later sharpened in a series of works of Jarner
and Roberts (2002) and Douc et al. (2004a), where a new drift condition was
introduced. There has also been substantial activity on sample paths, limit theorems,
and concentration inequalities. For example, Maxwell and Woodroofe (2000) and
Rio (2017) obtained conditions for the central limit theorems for additive functions
of Markov chains that are close to optimal.

Meyn and Tweedie (1993b) considered exclusively irreducible Markov chains
and total variation convergence. There are, of course, many practically important
situations in which the irreducibility assumption fails to hold, whereas it is still
possible to prove the existence of a unique stationary probability and convergence
to stationarity in distances weaker than the total variation. This quickly became an
important field of research.

Of course, there are significant omissions in this book, which is already much
longer than we initially thought it would be. We do not cover large deviations
theory for additive functionals of Markov chains despite the recent advances made
in this field in the work of Balaji and Meyn (2000) and Kontoyiannis and Meyn
(2005). Similarly, significant progress has been made in the theory of moderate
deviations for additive functionals of Markov chains in a series of Chen (1999),
Guillin (2001), Djellout and Guillin (2001), and Chen and Guillin (2004). These
efforts are not reported in this book. We do not address the theory of fluid limit
introduced in Dai (1995) and later refined in Dai and Meyn (1995), Dai and Weiss
(1996) and Fort et al. (2006), despite its importance in analyzing the stability of
Markov chains and its success in analyzing storage systems (such as networks of
queues). There are other significant omissions, and in many chapters we were
obliged sometimes to make difficult decisions.

The book is divided into four parts. In Part I, we give the foundations of Markov
chain theory. All the results presented in these chapters are very classical. There are
two highlights in this part: Kac’s construction of the invariant probability in
Chapter 3 and the ergodic theorems in Chapter 5 (where we also present a short
proof of Birkhoff’s theorem).

In Part II, we present the core theory of irreducible Markov chains, which is a
subset of Meyn and Tweedie (1993b). We use the regeneration approach to derive
most results. Our presentation nevertheless differs from that of Meyn and Tweedie
(1993b). We first focus on the theory of atomic chains in Chapter 6. We show that
the atoms are either recurrent or transient, establish solidarity properties for atoms,
and then discuss the existence of an invariant measure. In Chapter 7, we apply these
results to discrete state spaces. We would like to stress that this book can be read
without any prior knowledge of discrete-state-space Markov chains: all the results
are established as a special case of atomic chains. In Chapter 8, we present the key
elements of discrete time-renewal theory. We use the results obtained for
discrete-state-space Markov chains to provide a proof of Blackwell and Kendall’s
theorems, which are central to discrete-time renewal theory. As a first application,
we obtain a version of Harris’s theorem for atomic Markov chains (based on the
first-entrance last-exit decomposition) as well as geometric and polynomial rates of
convergence to stationarity.
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For Markov chains on general state spaces, the existence of an atom is more the
exception than the rule. The splitting method consists in extending the state space to
construct a Markov chain that contains the original Markov chain (as its first
marginal) and has an atom. Such a construction requires that one have first defined
small sets and petite sets, which are introduced in Chapter 9. We have adopted a
definition of irreducibility that differs from the more common usage. This avoids
the delicate theorem of Jain and Jamison (1967) (which is, however, proved in the
appendix of this chapter for completeness but is not used) and allows us to define
irreducibility on arbitrary state spaces (whereas the classical assumption requires
the use of a countably generated g-algebra). In Chapter 10, we discuss recurrence,
Harris recurrence, and transience of general state-space Markov chains. In Chapter
11, we present the splitting construction and show how the results obtained in the
atomic framework can be translated for general state-space Markov chains. The last
chapter of this part, Chapter 12, deals with Markov chains on complete separable
metric spaces. We introduce the notions of Feller, strong-Feller, and T-chains and
show how the notions of small and petite sets can be related in such cases to
compact sets. This is a very short presentation of the theory of Feller chains, which
are treated in much greater detail in Meyn and Tweedie (1993b) and Borovkov
(1998).

The first two parts of the book can be used as a text for a one-semester course,
providing the essence of the theory of Markov chains but avoiding difficult tech-
nical developments. The mathematical prerequisites are a course in probability,
stochastic processes, and measure theory at no deeper level than, for instance,
Billingsley (1986) and Taylor (1997). All the measure-theoretic results that we use
are recalled in the appendix with precise references. We also occasionally use some
results from martingale theory (mainly the martingale convergence theorem), which
are also recalled in the appendix. Familiarity with Williams (1991) or the first three
chapters of Neveu (1975) is therefore highly recommended. We also occasionally
need some topology and functional analysis results for which we mainly refer to the
books Royden (1988) and Rudin (1987). Again, the results we use are recalled in
the appendix.

Part III presents more advanced results for irreducible Markov chains. In Chapter
13, we complement the results that we obtained in Chapter 8 for atomic Markov
chains. In particular, we cover subgeometric rates of convergence. The proofs
presented in this chapter are partly original. In Chapter 14 we discuss the geometric
regularity of a Markov chain and obtain the equivalence of geometric regularity
with a Foster—Lyapunov drift condition. We use these results to establish geometric
rates of convergence in Chapter 15. We also establish necessary and sufficient
conditions for geometric ergodicity. These results are already reported in Meyn and
Tweedie (2009). In Chapter 16, we discuss subgeometric regularity and obtain the
equivalence of subgeometric regularity with a family of drift conditions. Most
of the arguments are taken from Tuominen and Tweedie (1994). We then discuss
the more practical subgeometric drift conditions proposed in Douc et al. (2004a),
which are the counterpart of the Foster—Lyapunov conditions for geometric
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regularity. In Chapter 17 we discuss the subgeometric rate of convergence to sta-
tionarity, using the splitting method.

In the last two chapters of this part, we reestablish the rates of convergence by
two different types of methods that do not use the splitting technique.

In Chapter 18 we derive explicit geometric rates of convergence by means of
operator-theoretic arguments and the fixed-point theorem. We introduce the uni-
form Doeblin condition and show that it is equivalent to uniform ergodicity, that is,
convergence to the invariant distribution at the same geometric rate from every
point of the state space. As a by-product, this result provides an alternative proof
of the existence of an invariant measure for an irreducible recurrent kernel that does
not use the splitting construction. We then prove nonuniform geometric rates of
convergence by the operator method, using the ideas introduced in Hairer and
Mattingly (2011).

In the last chapter of this part, Chapter 19, we discuss coupling methods that
allow us to easily obtain quantitative convergence results as well as short and
elegant proofs of several important results. We introduce different notions of
coupling, starting almost from scratch: exact coupling, distributional coupling, and
maximal coupling. This part owes much to the excellent treatises on coupling
methods Lindvall and (1979) and Thorisson (2000), which of course cover much
more than this chapter. We then show how exact coupling allows us to obtain
explicit rates of convergence in the geometric and subgeometric cases. The use of
coupling to obtain geometric rates was introduced in the pioneering work of
Rosenthal (1995b) (some improvements were later supplied by Douc et al. (2004b).
We also illustrate the use of the exact coupling method to derive subgeometric rates
of convergence; we follow here the work of Douc et al. (2006, 2007). Although the
content of this part is more advanced, part of it can be used in a graduate course on
Markov chains. The presentation of the operator-theoretic approach of Hairer and
Mattingly (2011), which is both useful and simple, is of course a must. I also think
it interesting to introduce the coupling methods, because they are both useful and
elegant.

In Part IV we focus especially on four topics. The choice we made was a difficult
one, because there have been many new developments in Markov chain theory over
the last two decades. There is, therefore, a great deal of arbitrariness in these
choices and important omissions. In Chapter 20, we assume that the state space is a
complete separable metric space, but we no longer assume that the Markov chain is
irreducible. Since it is no longer possible to construct an embedded regenerative
process, the techniques of proof are completely different; the essential difference is
that convergence in total variation distance may no longer hold, and it must be
replaced by Wasserstein distances. We recall the main properties of these distances
and in particular the duality theorem, which allows us to use coupling methods. We
have essentially followed Hairer et al. (2011) in the geometric case and Butkovsky
(2014) and Durmus et al. (2016) for the subgeometric case. However, the methods
of proof and some of the results appear to be original. Chapter 21 covers central
limit theorems of additive functions of Markov chains. The most direct approach is
to use a martingale decomposition (with a remainder term) of the additive
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functionals by introducing solutions of the Poisson equation. The approach is
straightforward, and Poisson solutions exist under minimal technical assumptions
(see Glynn and Meyn 1996), yet this method does not yield conditions close to
optimal. A first approach to weaken these technical conditions was introduced in
Kipnis and Varadhan (1985) and further developed by Maxwell and Woodroofe
(2000): it keeps the martingale decomposition with remainder but replaces Poisson
by resolvent solutions and uses tightness arguments. It yields conditions that are
closer to being sufficient. A second approach, due to Gordin and LifSic (1978) and
later refined by many authors (see Rio 2017), uses another martingale decompo-
sition and yields closely related (but nevertheless different) sets of conditions. We
also discuss different expressions for the asymptotic variance, following Héggstrom
and Rosenthal (2007). In Chapter 22, we discuss the spectral property of a Markov
kernel P seen as an operator on an appropriately defined Banach space of complex
functions and complex measures. We study the convergence to the stationary
distribution using the particular structure of the spectrum of this operator; deep
results can be obtained when the Markov kernel P is reversible (i.e., self-adjoint), as
shown, for example, in Roberts and Tweedie (2001) and Kontoyiannis and Meyn
(2012). We also introduce the notion of conductance and prove geometric con-
vergence using conductance thorough Cheeger’s inequalities, following Lawler and
Sokal (1988) and Jarner and Yuen (2004). Finally, in Chapter 23 we give an
introduction to sub-Gaussian concentration inequalities for Markov chains. We first
show how McDiarmid’s inequality can be extended to uniformly ergodic Markov
kernels following Rio (2000a). We then discuss the equivalence between
McDiarmid-typesub-Gaussian concentration inequalities and geometric ergodicity,
using a result established in Dedecker and Gouézel (2015). We finally obtain
extensions of these inequalities for separately Lipschitz functions, following
Djellout et al. (2004) and Joulin and Ollivier (2010).

We have chosen to illustrate the main results with simple examples. More
substantial examples are considered in the exercises at the end of each chapter; the
solutions of a majority of these exercises are provided. The reader is invited use
these exercises (which are mostly fairly direct applications of the material) to test
their understanding of the theory. We have selected examples from different fields,
including signal processing and automatic control, time-series analysis and Markov
chain Monte Carlo simulation algorithms.

We do not cite bibliographical references in the body of the chapters, but we
have added at the end of each chapter bibliographical indications. We give precise
bibliographical indications for the most recent developments. For former results, we
do not necessarily seek to attribute authorship to the original results. Meyn and
Tweedie (1993b) covers in much greater detail the genesis of the earlier works.

The authors would like to thank the large number of people who at times
contributed to this book. Alain Durmus, Gersende Fort, and Francois Roueff gave
us valuable advice and helped us to clarify some of the derivations. Their contri-
butions were essential. Christophe Andrieu, Gareth Roberts, Jeffrey Rosenthal and
Alexander Veretennikov also deserve special thanks. They have been a very
valuable source of inspiration for years.
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Fig. 1 Suggestion of playback order with respect to the different chapters of the book. The red
arrows correspond to a possible path for a reader eager to focus only on the most fundamental
results. The skipped chapters can then be investigated on a second reading. The blue arrows
provide a fast track for a proof of the existence of an invariant measure and geometric rates of
convergence for irreducible chains without the splitting technique. The chapters in the last part of
the book are almost independent and can be read in any order.

We also benefited from the work of many colleagues who carefully reviewed
parts of this book and helped us to correct errors and suggested improvements in the
presentation: Yves Atchadé, David Barrera, Nicolas Brosse, Arnaud Doucet,
Sylvain Le Corff, Matthieu Lerasle, Jimmy Olsson, Christian Robert, Claude
Saint-Cricq, and Amandine Schreck.

We are also very grateful to all the students who for years helped us to polish
what was at the beginning a set of rough lecture notes. Their questions and sug-
gestions greatly helped us to improve the presentation and correct errors.

Evry, France Randal Douc
Palaiseau, France Eric Moulines
Paris, France Pierre Priouret

Nanterre, France Philippe Soulier
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