
HAL Id: hal-02022618
https://hal.science/hal-02022618v3

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A polynomial algorithm for minimizing travel time in
consistent time-dependent networks with waits

Jérémy Omer, Michael Poss

To cite this version:
Jérémy Omer, Michael Poss. A polynomial algorithm for minimizing travel time in consistent time-
dependent networks with waits. Networks, 2021, 77 (3), pp.421-434. �10.1002/net.21994�. �hal-
02022618v3�

https://hal.science/hal-02022618v3
https://hal.archives-ouvertes.fr

A polynomial algorithm for minimizing travel time in consistent

time-dependent networks with waits

Jérémy Omer∗

Univ Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Michael Poss†

LIRMM, University of Montpellier, CNRS, Montpellier, France

September 1, 2020

Abstract

We consider a time-dependent shortest path problem with possible waiting at some nodes
of the graph and a global bound W on the total waiting time. The goal is to minimize the
time traveled along the edges of the path, not including the waiting time. We prove that the
problem can be solved in polynomial time when the travel time functions are piecewise linear
and continuous. The algorithm relies on a recurrence relation characterized by a bound ω on
the total waiting time, where 0 ≤ ω ≤ W . We show that only a small number of values
ω1, ω2, . . . , ωK need to be considered, where K depends on the total number of breakpoints of
all travel time functions.
keywords: Time-dependent networks; Shortest paths; Label-setting algorithms; Concavity;
Breakpoint; Wait.

1 Introduction

We consider a variant of the time-dependent shortest-path problem (TDSP). Let G = (V,A) be
directed graph with n nodes and m arcs. The travel time of each arc is a continuous piecewise linear
function of the departure time from its tail, which satisfies the consistency assumption, preventing
from reaching the head of an arc earlier by departing later from its tail. The objective is to find a
path from o ∈ V to d ∈ V that has the lowest travel time. We additionally consider that waiting
is allowed at nodes belonging to the set U ⊆ V , but the total waiting time may not exceed a given
bound W . Finally, the waiting time is not considered in the cost so only the travel time needs to
be minimized.

The problem has diverse applications in transportation, starting with the limitation of emissions
in urban environments, given that the emissions of a vehicle are roughly proportional to its travel
time, see for instance [13] for details. It can also be used for planning salesman trips, avoiding peak
hours by stopping at specific places to perform other activities, therefore avoiding to loose time

∗jeremy.omer@insa-rennes.fr
†michael.poss@lirmm.fr

1

in traffic. In that case, W models the total amount of other activities the salesman has to realize
while at rest, such as accounting, preparing presentations or reports. Finally, the problem also
has applications in planning long tourism trips where waits can be seen as opportunities to visit
minor attractions located on the route between the main spots whereas traffic kills the pleasure of
holidays. In that case W represents the amount of time the tourists are willing to spend visiting
the minor attractions.

1.1 Context and previous works

The study of the time-dependent shortest path problem (TDSP) dates back to Cooke and Halsey [6]
who introduced an extension of Bellman’s equations [3] to the time-dependent context. This early
work has been followed by articles introducing the aforementioned consistency assumption. Also
called FIFO (first-in first-out), this assumption leads to polynomial-time algorithms for the prob-
lem [9, 16, 14], through straightforward extensions of the algorithms for classical shortest path
problem.

Allowing to wait (or park) at nodes makes the problem more complex since one must decide
how long to wait at each node, in addition to choosing the path. Early variants for the TDSP
with waiting include [16, 17] where it is shown that the shortest path may well be infinite. As
these early papers could not handle certain kind of discontinuities, [8] proposed a new approach
able to solve the problem for any kind of discontinuity. A general approach to the TDSP with
waiting has been proposed by Cai et al. [4] who consider that each arc has a time-dependent cost,
in addition to the time-dependent traversing time, and that waiting incurs a cost, also modeled
by a time-dependent function. Their model also requires that the path reaches the destination
within a given time horizon. Different dynamic programming algorithms have been proposed for
this variant [4, 5, 7]. The resulting algorithms run in time polynomial in n,m, and the length of the
time horizon, making them pseudo-polynomial. Related works consider alternative settings such
as minimizing the excess time (over the minimum travel time) [2] or road networks with traffic
lights [1].

Other variants of the TDSP with waiting have been considered by [10] and [15]. Both papers
consider only traversing time functions and relax the time horizon constraint. On the one hand,
if waiting is allowed only at the source node, Foschini et al. [10] show that the problem remains
polynomially solvable. On the other hand, if waiting is allowed at each node, and bounds not
greater than W are considered on each node, the problem becomes NP-hard [15] and can be solved
polynomially in n,m and W . Interestingly, the reduction provided in [15] does not extend to the
case where the waiting times are bounded only by one global constraint. The purpose of this paper
is to fill this gap: we prove that the TDSP allowing waiting at each node and bounding the waiting
time only by one global constraint can be solved in polynomial time.

1.2 Definitions and notations

The travel time of an arc e ∈ A is given by a positive continuous piecewise linear function Ce :
R+ → R+

0 defined by re pieces (and re − 1 breakpoints, not counting 0 as breakpoint), the last
of which is a constant function. Each piece s = 1, . . . , re is an affine function cse + ρset defined
on the interval [τ s−1

e , τ se], where cse, ρ
s
e ∈ R, τ se ∈ R+, τ0

e = 0 and τ ree = +∞. We also denote
the interval between 0 and the starting point of the last piece among all travel cost functions as
Ω = [0,maxe∈A τ

re−1
e]. We assume in the paper that entering an arc e at time t′ ≥ t leads to leaving

the arc at time t′ + Ce(t
′) ≥ t+ Ce(t), which can be equivalently stated as follows.

Assumption 1 (Consistency assumption). Let ρmin = mine,s ρ
s
e. We have ρmin ≥ −1.

2

In what follows, we define a path from u to v as p = (ν; v1(= u), v2, . . . , vσ(p) = v) where ν
indicates the starting time at node v1, and σ(p) denotes the number of nodes of p. We say that
node w belongs to p if there is i ∈ {1, . . . , σ(p)} such that vi = w. To simplify the notations used
throughout, we assume that one can wait at all nodes of the graph (U = V), and define a path-
with-waits as the couple (p,w), where p is a path and w = (w1, . . . ,wσ(p)−1) is a (σ(p) − 1)-tuple
indicating the waiting time at each node along p. We further denote tp,w(i) as the departure time
from the ith node in path-with-waits (p,w) and tp(i) as the departure time from the ith node in
path p. For the last node of a path p (resp. path-with-waits (p,w)), tp(σ(p)) (resp. tp,w(σ(p)))
denotes the arrival time at the node.

For v ∈ V , we define PWv(ω) be the set of paths-with-waits from o to v which satisfy∑σ(p)−1
i=1 wi ≤ ω. Since we wish to minimize total travel time, the cost of (p,w) can be expressed as

C(p,w) =

σ(p)−1∑
i=1

Cvivi+1(tp,w(i)),

Let Tv(ω) = min(p,w)∈PWv(ω)C(p,w) be the minimum travel time among all paths-with-waits
from o to v with total waiting time at most ω. Given W ≥ 0, the aim of the article is to provide a
polynomial-time algorithm for the optimization problem

Td(W) = min
(p,w)∈PWd(W)

C(p,w). (TDSPW)

We can assume without loss of generality that W ∈ Ω as it is usless to wait more than maxe∈A τ
re−1
e .

We conclude the section by introducing further notations used throughout. Given ω < ω′, we
denote by pu→v(ω, ω

′) the shortest path (without waits) from u to v, leaving u at Tu(ω) + ω′. The
total number of breakpoints of all travel time functions is denoted as R =

∑
e∈A(re − 1). For

e = (u, v) ∈ A and 0 ≤ ω ≤ W , we denote the index of the right and left breakpoints of function
Ce at Tu(ω) + ω as se(ω) and s−e (ω), respectively. Formally,

se(ω) = min
s
{s : Tu(ω) + ω < τ se } and s−e (ω) = se(ω)− 1. (1)

To keep concise notations, we also define

τu(ω) = min
(u,v)∈A

τ suv(ω)
uv and τ−u (ω) = max

(u,v)∈A
τ s
−
uv(ω)
uv . (2)

Next, given a one-variable function f(x), we denote its left and right derivatives as ∂−f(x) and
∂+f(x), respectively. Finally, we denote by by SPP (α, β) the complexity of solving a static shortest
path problem on a digraph with α nodes and β edges, which is the same as solving a time-dependent
shortest path problem without waiting on a digraph (e.g. [16]). Similarly, we let ASPP (α, β) be
the complexity for solving a static shortest path problem on an acyclic digraph.

1.3 Contributions

The purpose of the article is to prove the following theorem.

Theorem 1. TDSPW can be solved in O(n×R× SPP (n,m)).

Similarly to the method developed by Foschini et al. [10], our algorithm exploits the breakpoints
of the travel time functions. Yet, our problem needs to handle the possibility of waiting at every
node of the graph, unlike in [10] where it is allowed to wait only at the source node. Hence, even

3

when the path is given, the optimization problem considered herein involves n variables, one for
each node, while the counterpart from [10] is a one-dimensional optimization problem.

We address this difficulty by decomposing optimal paths-with-waits into alternating sequences
of waits and paths. This decomposition is done by gradually increasing the allowed amount of
waiting time, starting from ω1 = 0. Specifically, at each iteration k of our algorithm, we will define
ωk as the allowed amount of waiting time, and we compute the breakpoint τv(ωk) for each node
v ∈ V . Iteration k then examines what is the value of the maximum possible wait at each node u
that, when followed by a shortest path from u to some other node v, hits the breakpoint τv(ωk).
Taking the minimum among all nodes of these maximum possible waits, we obtain the additional
waiting time allowed at iteration k, and adding that waiting time to ωk yields ωk+1. Once ωk+1 is
known, we compute {Tv(ωk+1), v ∈ V } from {Tv(ωk), v ∈ V } by applying a classical shortest path
algorithm.

A different approach has been followed simultaneously and independently by [11, 12]. Whenever
there is no waiting limit (setting W large enough), the authors of [11] decompose optimal paths-
with-waits into alternating sequences of waits and paths by expanding forward and backward
shortest path trees from each breakpoint and computing shortest paths on the resulting time-
indexed networks. The resulting algorithm solves the problem in

O(R× SPP (n,m) +ASPP (nR,mR)). (3)

They further extend their approach to handle bound W in [12] essentially by solving up to O(n×R2)
variants of the problem with no wait limits, resulting in an algorithm running in

O(n×R3 × SPP (n,m) +R2 ×ASPP (nR,mR)). (4)

We see that our result, stated in Theorem 1, compares in the general case favorably with the result
of [12], having the complexity stated in (4), while the case without waiting (obtained by setting W
large enough) is solved more efficiently by the result of [11], having the complexity stated in (3).

1.4 Outline

The rest of the paper is structured as follows. In the next section, we state basic properties of the
optimal paths-with-waits and the recurrence relations satisfied by Tv(ω). The section also shows
that if we are able to construct a sequence ω1, ω2, . . . , ωK for which the following recurrence relation
holds

Tv(ωk+1) = min

{
Tv(ωk), min

(u,v)∈A
Tu(ωk+1) + Cuv (Tu(ωk+1) + ωk+1)

}
, (5)

then we obtain a polynomial-time algorithm for the problem. Section 3 further analyzes the struc-
ture of the paths-with-waits realizing Tv(ω). The first important result of the section is to show
that when ω1, ω2, . . . , ωK are such that

Tu(ωk+1) + ωk+1 ≤ τu(ωk), (6)

holds for each k ∈ {1, . . . ,K − 1}, then the discrete recurrence relation (5) holds. The section
then decomposes any path-with-waits realizing Tv(ωk+1) into a concatenation of a path-with-waits
realizing Tu(ωk), an additional wait ωk+1−ωk at node u, and a shortest path from u to v. Section 4
leverages that decomposition to construct dynamically a sequence ω1, ω2, . . . , ωK satisfying property
(6). Hence, using the result from Section 3, we know that the recurrence relation (5) holds, and
the latter can be solved as explained in Section 2. The main ingredient of the construction of the
sequence is an algorithm that backpropagates the values τu(ωk) for each u ∈ V . Section 4 also
presents the overall algorithm solving the problem.

4

2 Preliminaries

In what follows, we introduce a dynamic programming recursions for TDSPW. These recursions
involve infinitely many states and cannot be used directly to solve TDSPW. However, we show
that if we can guarantee that only a polynomial number of these states (which will be indexed by
k = 1, . . . ,K) is needed to obtain the optimal solution, then TDSPW can be solved in polynomial
time by applying K times a shortest path algorithm. The section also presents key properties of
the value-functions involved in the recursions, which will be used often along the manuscript.

Let v ∈ V and ω ≤ W . Our algorithm is based on the recurrence relation that relates Tv(ω)
to the minimum travel time to the predecessors of v. To derive the relation, we introduce T=

v (ω)
as the minimum travel time among all paths from o to v with total waiting time exactly ω, not
including the time waited at v. Formally,

T=
v (ω) = min

(p,w)∈PWv(ω)

C(p,w) :

σ(p)−1∑
i=1

wi = ω

 .

For this quantity, one can verify that the following recurrence holds.

T=
v (ω) = min

(u,v)∈A

{
min
ω′≤ω

T=
u (ω′) + Cuv(T

=
u (ω′) + ω)

}
.

Using the consistency assumption, we observe that T=
u (ω′)+Cuv(T

=
u (ω′)+ω) is minimum if T=

u (ω′)
is minimum. Since Tu(ω) = minω′≤ω T

=
u (ω′), the above recurrence relation can be equivalently

written as
T=
v (ω) = min

(u,v)∈A
Tu(ω) + Cuv(Tu(ω) + ω). (7)

As a consequence, we can distinguish two cases in the computation of Tv(ω), depending on
whether it is achieved with a total wait equal to or lower than ω. If there exists ω′ < ω such that
Tv(ω) = T=

v (ω′), then
Tv(ω) = Tv(ω

′). (8)

Otherwise, Tv(ω) = T=
v (ω), so we can directly rewrite (7) as

Tv(ω) = min
(u,v)∈A

Tu(ω) + Cuv(Tu(ω) + ω). (9)

Grouping relations (8) and (9), Tv(ω) satisfies the recurrence relation

Tv(ω) = min

{
inf

0≤ω′<ω
Tv(ω

′), min
(u,v)∈A

Tu(ω) + Cuv(Tu(ω) + ω)

}
. (10)

The bottom line of our algorithm is to build a sequence with polynomial length 0 = ω1, ω2, . . . , ωK =
W such that relation (10) can be simplified to

Tv(ωk+1) = min

{
Tv(ωk), min

(u,v)∈A
Tu(ωk+1) + Cuv (Tu(ωk+1) + ωk+1)

}
, (11)

which can be equivalently formulated as

Tv(ωk+1) = min {Tv(ωk), T=
v (ωk+1)} . (12)

Indeed, we show below that for such a sequence, {Tu(ωk+1)}u∈V can be computed in polynomial
time from {Tu(ωk)}u∈V using classical shortest path algorithms.

5

Proposition 1. Let {Tv(ωk), v ∈ V } be given and {Tv(ωk+1), v ∈ V } be a set of numbers that
satisfy (11) and the initial conditions To(ωk+1) = 0. Then, {Tv(ωk+1), v ∈ V } can be computed by
classical shortest path algorithms in O(SPP (n,m)).

Proof. We create a new instance of the problem defined on the graph G′ = (V ′, A′) and denote
the travel time functions as C ′e for each e ∈ A′. The new graph contains a copy of each node v
different from the source, connected only to o and v, namely V ′ = V ∪ {v′, ∀v ∈ V \ {o}} and
A′ = A∪{(o, v′), ∀v ∈ V \{o}}∪{(v′, v), ∀v ∈ V \{o}}. We further define the travel time functions
as C ′ov′(t) = 0 and C ′v′v(t) = Tv(ωk) for all t ≥ 0 and v ∈ V \ {o}, while C ′uv(t) = Cuv(t+ ωk+1) for
each (u, v) ∈ A. Denoting Tv(ωk+1) as dv for each v ∈ V ′, and initializing do = 0, and dv = +∞
for each v ∈ V ′ \ {o}, one readily verifies that (11) can be reformulated as

dv = min
(u,v)∈A′

du + C ′uv(du),

the classical recurrence relations for the shortest path-problem in time-dependent networks. As G′

contains 2n−1 nodes and m+2n−2 arcs, the problem can be solved in SPP (2n−1,m+2n−2) ∈
O(SPP (n,m)) when the consistency assumption is satisfied (e.g. [16]).

We conclude the section by introducing useful properties of Tv(ω) and TDSPW. First, we show
that the consistency assumption implies that the left-derivative of Tv(ω) is bounded below by −1.

Proposition 2. ∂−Tv(ω) ≥ −1 for all ω>0 and v ∈ V . Hence, ω 7→ Tv(ω) +ω is a non-decreasing
function.

Proof. Consider ω̃ > 0 and let (p̃, w̃) ∈ PWv(ω̃) be a path-with-waits from o to v that achieves
Tv(ω̃), so C(p̃, w̃) = Tv(ω̃). Let vj be the last node along p̃ for which w̃j > 0 and define w ∈ Rn as

wi = w̃i for i 6= j and wj = w̃j − δ for some 0 < δ ≤ w̃j , as well as ω =
∑σ(p̃)−1

i=1 wi = ω̃ − δ. We
claim that

C(p̃, w̃)− C(p̃,w)

δ
≥ −1. (13)

Therefore,

Tv(ω̃ + (−δ))− Tv(ω̃)

(−δ)
=
Tv(ω̃)− Tv(ω̃ − δ)

δ
=
Tv(ω̃)− Tv(ω)

δ

=

C(p̃, w̃)− min
(p′,w′)∈PWv(ω)

C(p′,w′)

δ
≥ C(p̃, w̃)− C(p̃,w)

δ
≥ −1.

and the results follows by taking the limit for δ → 0+.
Let us now prove the claim (13). By definition, tp̃,w(j) = tp̃,w̃(j) − δ and, since ρmin ≥ −1,

tp̃,w(`) ≤ tp̃,w̃(`) for each j ≤ ` ≤ σ(p̃). In particular, tp̃,w(σ(p̃)) ≤ tp̃,w̃(σ(p̃)), and the claim follows

from the relation C(p′,w′) = tp′,w′(σ(p′))−
∑σ(p′)−1

i=1 w′i valid for any path-with-waits (p′,w′).

Remark 1. The function Tv(ω) is non-increasing for each v ∈ V . In contrast, function T=
v (ω)

may be increasing, as can be seen in the two-nodes example where V = {o, d} and A = {(o, d)} and
Cod(t) = min(t,W). In that example, T=

v (ω) = ω for each 0≤ω ≤W .

Next we show that we can restrict our attention to acyclic solutions.

Proposition 3. TDSPW admits an acyclic optimal solution.

6

Proof. Consider a solution (p,w) such that p = (ν; o = v1, . . . , vσ(p) = d) contains a cycle c =
(νc; vi, vi+1, . . . , vj), where vi = vj . Let C(c) be the travel time of cycle c in (p,w). By non-
negativity of arc travel times, we know that C(c) ≥ 0. As a consequence, if j = σ(p), we get a
solution with smaller or equal cost by removing c and the associated waiting times from (p,w).
If j < σ(p), let µk =

∑k
`=1 w` and (p(k),w(k)) is the subpath-with-waits of (p,w) that goes from o

to vk, for all k ∈ {2, . . . , σ(p)}. Assumption 1 ensures that ∂+Cuv ≥ −1,∀(u, v) ∈ A, so

C (p(j + 1),w(j + 1)) = C (p(i),w(i)) + C(c) + Cvjvj+1 (C(p(i),w(i)) + C(c) + µj)

≥ C(p(i),w(i))) + Cvjvj+1 (C(p(i),w(i))) + µj)

= C (p(i),w(i)) + Cvivj+1 (C(p(i),w(i))) + µi + (µj − µi)) ,

where the last expression is the travel time from o to vj+1 along (p,w) if we remove c and and wait
an additional µj − µi at vi = vj . This shows that c can be removed without increasing the total
travel time nor the total waiting time along the path-with-waits.

3 Structure of optimal paths

The sequence ω1, . . . , ωK will be constructed so that for all k = 1, . . . ,K there is some arc (u, v)
such that a breakpoint of Cuv is reached at Tu(ωk)+ωk. The practical algorithm that identifies this
sequence, provided in the next section, is based on the structure of the paths-with-waits that realize
the minimum travel time Tv(ω). For this, if (p,w) ∈ PWv(ω), we define (p(i),w(i)) and (p(i),w(i))
as the subpaths-with-waits of (p,w) respectively ending and starting at the i-th node of p. In this
section, we provide key properties of the paths-with-waits that realize Tv(ω) for each v ∈ V and
ω ≥ 0. Specifically, we identify that these paths-with-waits can be split into two subpaths, the
second of which contains no more waiting. This property will be essential to compute the values
ω1, . . . , ωK by back-propagation in the following section.

Definition 1. Let v ∈ V , 0 ≤ ω ≤W and (p,w) ∈ PWv(ω) where p = (ν; v1 := o, v2, . . . , vσ(p)= v)

and w = (w1, . . . ,wσ(p)−1). If there is i ≤ σ(p)− 1 such that
∑i

k=1 wk = ω and
∑i−1

k=1 wk = ω′ < ω,
then (p(i),w(i)) is the saturated subpath of (p,w). By extension the nodes vi, . . . , vσ(p) = v are
said to be saturated in (p,w) and vi is the first saturated node in (p,w).

From this definition, one can notice that the first saturated node of a path-with-waits is also
the last one where the wait is positive. The introduction of this saturated subpath allows for a
more precise characterization of optimal paths.

Proposition 4. Let v ∈ V , 0 ≤ ω ≤ W such that Tv(ω) = T=
v (ω). Then, there exists (p,w) ∈

PWv(ω) such that

• C(p,w) = Tv(ω),
∑σ(p)−1

`=1 w` = ω, and

• C(p(j),w(j)) = Tvj (ω) for every saturated node vj in (p,w).

In particular, Tvj (ω) = T=
vj (ω) for every saturated node vj after the first saturated node.

Proof. Let (p,w) ∈ PWv(ω) such that C(p,w) = Tv(ω) and
∑σ(p)−1

`=1 w` = ω. Assume that there is
vj , a saturated node in (p,w), such that C(p(j),w(j)) > Tvj (ω). There is (pj ,wj) ∈ PWvj (ω) such

that C(pj ,wj) = Tvj (ω) and
∑σ(pj)−1

`=1 wj
` = ωj ≤ ω. We can then build a path-with-waits (p′,w′)

from o to v with total wait ω, by appending (p(j),w(j)) to (pj ,wj) and waiting an additional

7

ω − ωj at vj . Node vj is saturated in both (p,w) and (p′,w′), so the departure time from vj is
C(p(j),w(j))+ω in (p,w) and Tvj (ω)+ω in (p′,w′). And since (p,w) and (p′,w′) are identical from vj
to v, the consistency assumption and C(p(j),w(j))+ω > Tvj (ω)+ω yields C(p,w) ≥ C(p′,w′). From
C(p,w) = Tv(ω), we deduce that C(p′, j′) = Tv(ω). We thus obtain the desired path-with-waits by
applying the above approach recursively on the saturated nodes until C(p(j),w(j)) = Tvj (ω) for
every saturated node vj .

The last assertion follows from the fact that the total wait along (p(j),w(j)) is exactly equal to
ω.

Remark 2. We observe that if i is the first saturated node in (p,w), there is no wait from vi+1 to
v in (p,w). If C(p,w) = Tv(ω), this means that p(i) is the shortest path (without wait) from vi to
v among those departing from vi at Tvi(ω) + ω.

Remark 3. In the proof of Proposition 4, we use the consistency assumption to show that C(p(j),w(j))+
ω > Tvj (ω)+ω implies C(p,w) ≥ C(p′,w′). Actually, it can happen that C(p,w) = C(p′,w′) only if
there is an arc (v`, v`+1) in p such that ` ≥ j and C`,`+1 has a slope equal to −1 at C(p(`),w(`))+ω.
As a consequence, if there is no such arc in the saturated subpath of (p,w), we can show that
C(p,w) = Tv(ω) directly implies that C(p(j),w(j)) = Tvj (ω) for every saturated node vj.

Next we prove a property which, if satisfied by sequence ω1, . . . , ωK , directly implies that (12)
holds.

Proposition 5. Let ωk+1 ≥ ωk be such that for all u ∈ V ,

Tu(ωk+1) + ωk+1 ≤ τu(ωk). (14)

Then for all v ∈ V , ω 7→ Tv(ω) is a continuous piecewise linear and concave function on [ωk, ωk+1].

Proof. See detailed proof in Appendix A.

Corollary 1. Let ωk+1 ≥ ωk be such that (14) holds. Then for all v ∈ V , (12) holds, i.e.,

Tv(ωk+1) = min {Tv(ωk), T=
v (ωk+1)} .

Proof. By concavity of Tv on [ωk, ωk+1], Tv is either constant on [ωk, ωk+1] or there is ω̄ ∈
[ωk, ωk+1] such that Tv is decreasing on [ω̄, ωk+1]. In the latter case, we get that Tv(ω) =
T=
v (ω) for all ω ∈ [ω̄, ωk+1]. In particular, Tv(ωk+1) = T=

v (ωk+1). To summarize, Tv(ωk+1) =
min {Tv(ωk), T=

v (ωk+1)}.

The above result allows to get more specific in the characterization of the first saturated node
of the path exhibited in Proposition 4 when ω = ωk+1 for some integer k.

Corollary 2. Let 0 ≤ ωk < ωk+1 ≤ W such that (14) holds and consider v ∈ V such that
Tv(ωk+1) = T=

v (ωk+1). Then, there exists (p,w) ∈ PWv(ωk+1) such that

• C(p,w) = Tv(ωk+1) and
∑σ(p)−1

`=1 w` = ωk+1;

• C(p(i),w(i)) = Tvi(ωk), where vi is the first saturated node in (p,w);

• and C(p(j),w(j)) = T=
vj (ωk+1) for every other saturated node vj.

8

Proof. Proposition 4 guarantees that there is (p,w) ∈ PWv(ω) such that C(p,w) = Tv(ωk+1),∑σ(p)−1
`=1 w` = ωk+1, and C(p(j),w(j)) = Tvj (ωk+1) for every saturated node vj . Denoting the first

saturated node as vi, we know that the total wait up to it in (p,w), ωi =
∑i−1

`=1 w`, is less than ωk+1.
As a consequence, C(p(i),w(i)) = Tvi(ωk+1) yields Tvi(ω) = Tvi(ωk+1) for all ω ∈ [ωi, ωk+1], so that
∂+Tvi(ω) = 0 for ω ∈ [ωi, ωk+1[. By concavity of Tvi on [ωk, ωk+1], ∂+Tvi(ω) = 0 for ω ∈ [ωk, ωk+1[,
so we conclude that Tvi(ω) = Tvi(ωk+1) for all ω ∈ [ωk, ωk+1], and therefore, C(p(i),w(i)) = Tvi(ωk).

The above two results immediately yield the concluding result of the section, which is essential
to the justification of the polynomial algorithm described in next section. Indeed, the path-with-
waits realizing Tv(ωk+1) can now be expressed as the concatenation of a path-with-waits up to some
node u for a total wait not greater than ωk, and a path-without-waits leaving u at Tu(ωk) + ωk+1.
In particular, this means that given Tu(ωk) for all u ∈ V , we will be able to focus on such paths
during the search for ωk+1.

Theorem 2. Let 0 ≤ ωk < ωk+1 ≤W such that (14) holds and consider v ∈ V . Then,

Tv(ωk+1) = min

{
Tv(ωk), min

u∈V \{v}
{Tu(ωk) + C (pu→v(ωk, ωk+1))}

}
.

Observe that C (pv→v(ωk, ωk+1)) = 0,∀v ∈ V, so the above result can be equivalently written
as

Tv(ωk+1) = min
u∈V
{Tu(ωk) + C (pu→v(ωk, ωk+1))} .

4 Building the sequence

We describe next how to construct the sequence ω1, . . . , ωK = W , starting from ω1 = 0 and
increasing the value of ωk along the iterations. From Proposition 5, we wish to define the next
iterate ωk+1 as the largest value (not greater than W) such that for all v ∈ V , condition (14) is
satisfied, i.e.,

Tv(ωk+1) + ωk+1 ≤ τv(ωk).

Stated otherwise, ωk+1 is the next waiting value such that a breakpoint of an edge cost function is
reached by Tv(ωk+1) + ωk+1 for some v ∈ V . This leads us to define the sequence ω1, . . . , ωK = W
as in the following theorem. With this definition, we guarantee that (14) is satisfied for all v ∈ V
and that the sequence contains at most as many elements as the total number of breakpoints in
the edge cost functions.

Theorem 3. Let ω1 = 0 and consider the sequence defined recursively as

ωk+1 = min

{
W,min

v∈V

{
max
ω∈Ω
{ω : Tv(ω) + ω ≤ τv(ωk)}

}}
(15)

Then, there is K ∈ {1, . . . , R} such that ωK = W , and ∀k ∈ {1, . . . ,K − 1}

Tv(ωk+1) + ωk+1 ≤ τv(ωk),∀v ∈ V.

Proof. Let k ∈ {1, . . . , R− 1}. Let v∗ ∈ arg minv∈V {maxω∈Ω{ω : Tv(ω) + ω ≤ τv(ωk)}} and ωv∗ =
maxω∈Ω{ω : Tv∗(ω) + ω ≤ τv∗(ωk)}. If ωv∗ ≥ W , then (15) yields ωk+1 = W with k + 1 ≤ R.
Otherwise, we get ωk+1 = ωv∗ , so Tv∗(ωk+1) +ωk+1 = τv∗(ωk). By definition of τv∗(ωk+1), we know

9

that τv∗(ωk+1) > Tv∗(ωk+1) + ωk+1, so τv∗(ωk+1) > τv∗(ωk). Moreover, for any ω, τv(ω) is the
breakpoint of a cost function of an arc leaving from v. As a consequence, τv∗(ωk) and τv∗(ωk+1)
correspond to two different breakpoints.

Since the function ω 7→ Tv(ω)+ω is non-decreasing for all v ∈ V , we deduce that each breakpoint
of each arc cost function can correspond to at most one element of the sequence ω1, . . . , ωK , hence
K ≤ R.

Finally, the recursive definition of ωk+1 directly yields

Tv(ωk+1) + ωk+1 ≤ τv(ωk),∀v ∈ V.

We now wish to build the sequence ω1, . . . , ωK by using the recursive relation (15). Assuming
that ω1, . . . , ωk are known for some k ≥ 1, it is not clear though how to use (15) to actually compute
ωk+1, because we do not know the value of Tv(ω) for ω > ωk. The contribution of this section is to
construct a back-propagation algorithm that will be essential in computing these values. Ideally,
such a back-propagation algorithm would construct reverse shortest paths from any given node v
at time t based on the cost function Ce for every e ∈ A; for instance, if (u, v) is an edge in such a
shortest path, the algorithm would relate t′ and t through t = t′+Cuv(t

′). An important difficulty
faced by such an algorithm is that when back-propagating some time t along an arc (u, v), we do
not know in which piece of the cost function Cuv the arc has been entered. Somewhat surprisingly,
we show in the section that for each arc, the only piece that matters is se(ωk) (see (1)), defined on

the interval [τ
se(ωk)−1
e , τ

se(ωk)
e]. This allows to back-propagate the values of τv(ωk) along particulars

paths that reach v at τv(ωk). Those are defined as follows.

Definition 2. Let u ∈ V, v ∈ V and ω ∈ [0,W]. We denote as Pback
u→v (ω) the set of paths such that

p = (ν; v1, . . . , vσ(p)) ∈ Pback
u→v (ω) if and only if:

• v1 = u, vσ(p) = v,

• p reaches v at τv(ω), and

• tp(vi) ∈ [Tvi(ω) + ω, τvi(ω)], for i = 1, . . . , σ(p)− 1.

The departing time from u of the shortest path among Pback
u→v (ω) is then denoted as tu→v(ω), i.e.,

tu→v(ω) =

{
τv(ω)−min{C(p) : p ∈ Pback

u→v (ω)}, if Pback
u→v (ω) 6= ∅,

+∞, otherwise.

Out of completeness in the proofs, we also set tv→v(ω) = τv(ω). The above also implies that
Pback
u→v (ω) = ∅ when τv(ω) = +∞ (so tu→v(ω) = +∞ in that case).

Let us denote

V (ωk) = arg min
v∈V

{
max
ω∈Ω
{ω : Tv(ω) + ω ≤ τv(ωk)}

}
.

Before moving to the description of the actual back-propagation algorithm, we show below that
ωk+1 can indeed be computed by searching for shortest paths in Pback

u→v (ωk) for u ∈ V and v ∈ V (ωk).

Proposition 6. Let ω1, . . . , ωK be constructed as in Theorem 3. Then, for each k ∈ {1, . . . ,K−1}
and v ∈ V (ωk),

ωk+1 = min

{
W,max

u∈V
{tu→v(ωk)− Tu(ωk)}

}
. (16)

10

Proof. See detailed proof in Appendix B.

Algorithm 1 details the back-propagation that will be used to search for shortest paths in
Pback
u→v (ωk). The algorithm requires that Tu(ωk) and τu(ωk) be already computed for all u ∈ V .

Then for each input node v, it back-propagates the departure time τv(ωk) along paths of Pback
u→v (ωk)

for each u ∈ V with the aim of computing tu→v(ωk). One additional difficulty is that Proposition 6
is only concerned with nodes that belong to V (ωk), which are not known at this stage. The focus
of what follows will thus be to show that Algorithm 1 returns maxu∈V {tu→v(ωk)− Tu(ωk)} for at
least one input node v ∈ V (ωk), and that it returns a larger or equal value for every other node
(see Lemma 1). As a consequence, Proposition 6 guarantees that ωk+1 will be found by considering
the smallest value returned by Algorithm 1 among every node.

For more insight into the back-propagation, first observe that by definition of τu(ωk) and τ−u (ωk)
(see (2)), we know that τ−u (ωk) ≤ Tu(ωk) + ωk < τu(ωk) for all u ∈ V . As a consequence, if
p ∈ Pback

u→v (ωk), then tp(vj) ∈ [τ−vj (ωk), τvj (ωk)] for all vj ∈ p. If (u,w) is an edge of a path in

p ∈ Pback
u→v (ωk), we can then relate tp(u) and tp(w) through the formula

tp(w) = tp(u) + Cuw(tp(u)) = tp(u) + ρsuw(ωk)
uw tp(u) + csuw(ωk)

uw . (17)

This formula justifies that steps 6–16 of Algorithm 1 describe a backward label-setting algorithm.
In these steps the departure times at u ∈ V , tu, is updated until the shortest path in Pback

u→v (ωk) is
found or until we can prove that the back-propagation of τv(ωk) is not useful. The non-marked node
with largest departure time, w, is selected and marked at steps 7–10, among which steps 8 and 9
ensure that tw ∈ [Tw(ωk) + ωk, τw(ωk)]. As we will show in Lemma 2 presented in Appendix C, if
the conditions checked at these steps are both wrong, then tw = tw→v(ωk). Formula (17) is then
used to update tu for every arc (u,w) at steps 11-16, wherein steps 15-16 address the special case

ρ
suw(ωk)
uw = −1. When this happens, (17) becomes tp(w) = c

suw(ωk)
uw , so the departure time at w does

not depend on the departure time at u. If c
suw(ωk)
uw > tw, this means that w can never be reached

early enough to get to v at τv(ωk) by taking arc (u,w). We can thus skip this iteration in the for

loop. If c
suw(ωk)
uw ≤ tw, we show in Lemma 2 presented in Appendix C that the back-propagation of

τv(ωk) can be stopped here to treat another node.
The execution of the back-propagation loop is described formally in the following proposition.

This will be essential to prove the overall validity of Algorithm 1.
We are now ready to prove that the overall approach is valid, that is, ωk+1 = min{W,minv∈V ωv},

where ωv is the value returned by Algorithm 1 when back-propagating τv(ωk).

Lemma 1. For all v ∈ V , denote as ωv the value returned by Algorithm 1 when back-propagating
τv(ωk). There is v∗ ∈ arg minv∈V {maxω∈Ω{ω : Tv(ω) + ω ≤ τv(ωk)}} such that

1. ωv∗ = max
u∈V
{tu→v∗(ωk)− Tu(ωk)}, and

2. ωv ≥ ωv∗ , ∀v ∈ V .

Proof. See detailed proof in Appendix C.

Corollary 3. Let ω1, . . . , ωk be defined recursively as in Theorem 3. For all v ∈ V , denote as ωv
the value returned by Algorithm 1 when back-propagating τv(ωk). Then,

min
v∈V
{ωv} = min

v∈V
{max
u∈V
{tu→v(ωk)− Tu(ωk)}}.

Proof. The result is the direct consequence of Lemma 1 and Proposition 6.

11

input: ωk, v ∈ V, τu(ωk), Tu(ωk), ∀u ∈ V,
1 V ′ ← V
2 S ← ∅ // set of marked nodes

3 tu ← −∞, ∀u ∈ V ′
4 tv ← τv(ωk)
5 if τv(ωk) = +∞ then ωv ← +∞, go to step 18
6 while S 6= V ′ do
7 select w in arg max

u∈V ′\S
{tu}

8 if tw > τw(ωk) then ωv ← +∞, go to step 18 // τw(ωk) is reached before τv(ωk)

9 if tw < Tw(ωk) + ωk then V ′ ← V ′ \ {w}, go to step 7 // impossible to backtrack to w

late enough

10 S ← S ∪ {w} // mark node w

11 for (u,w) ∈ A // back-propagation loop of tw to its predecessors

12 do

13 if ρ
suw(ωk)
uw > −1 then tu ← max

{
tu,

tw−c
suw(ωk)
uw

1+ρ
suw(ωk)
uw

}
14 else

15 if c
suw(ωk)
uw ≤ tw then ωv ← +∞, go to step 18 // τu(ωk) is reached before τv(ωk)

16 else continue // tw will not be reached with this arc, skip arc (u,w)

17 ωv ← max
u∈V ′
{tu − Tu(ωk)}

18 return ωv

Algorithm 1: Back-propagation of τv(ωk).

12

The above shows that we can solve TDSPW by executing Algorithm 2. The construction of the
sequence ω1, . . . , ωK is done by repeated executions of Algorithm 1 (step 4) so Corollary 3 ensures
that the sequence satisfies the recursive definition of Theorem 3. According to Theorem 3 and
Corollary 1, we then know that Proposition 1 applies, so the computation of Tv(ωk), ∀v ∈ V, can
be done by executing a shortest path algorithm. This yields the main result of the article, stated
in Theorem 4.

initialization: k = 1, ω1 = 0, ω0 = −1, Tv(ω0) = +∞ ∀v ∈ V \ {o}, To(ω0) = 0
1 repeat
2 for v ∈ V do compute Tv(ωk) using a shortest path algorithm
3 for v ∈ V do compute τv(ωk)
4 for v ∈ V do ωv ← result of the back-propagation of τv(ωk) with Algorithm 1
5 ωk+1 = min (W,minv∈V ωv)
6 k ← k + 1

7 until ωk = W
8 return Tv(W),∀v ∈ V

Algorithm 2: Computing Td(W).

Theorem 4. Algorithm 2 solves TDSPW in O(n×R× SPP (n,m)).

Proof. The validity of the algorithm has already been justified in the discussion preceding the
statement of the theorem. So we only prove the complexity result.

Corollary 3 shows that the sequence ω1, . . . , ωK is constructed as expected, so Theorem 3
justifies that K is at most equal to the total number of breakpoints in the arc cost functions. At
each iteration, a shortest path algorithm is called once to compute Tv(ωk),∀v ∈ V , and Algorithm 1
needs to be called n times. Furthermore, Algorithm 1 is essentially a time-dependent shortest path
problem without waiting on a digraph, which can be solved in SPP (n,m).

5 Acknowledgements

We thank the referees for their constructive comments that have helped improving the presentation
of the paper.

A Proof of Proposition 5

We prove the result by contradiction, so assume that there is v ∈ V such that ω 7→ Tv(ω) is not
concave on [ωk, ωk+1]. We have already observed that Tv is a continuous piecewise linear function,
so it is not concave if and only if there is ω̄ ∈]ωk, ωk+1[such that Tv is not differentiable at ω̄ and

∂−Tv(ω̄) < ∂+Tv(ω̄) (18)

In particular, (18) involves that ∂−Tv(ω̄) < 0, so T=
v (ω̄) = Tv(ω̄). According to Proposition 4,

this means that we can build (p,w) ∈ PWv(ω̄) such that C(p,w) = Tv(ω̄),
∑σ(p)−1

`=1 w` = ω̄, and,
denoting p = (ν; v1(= o), v2, . . . , vσ(p) = v), C(p(j),w(j)) = Tvj (ω̄) for every saturated node vj
in (p,w). Let vi be the first saturated node in (p,w). To exhibit the contradiction, we study the
function

f : [−wi,W − ω̄]→ R+

ε 7→ C (p,w + εδ(i)) ,

13

where δ(i) is the i-th vector of the canonical basis of Rσ(p) (δi(i) = 1 and δj(i) = 0, for j 6= i).
Stated otherwise, f(ε) is the cost of (p,w + εδ(i))), the path-with-waits from o to v obtained from
(p,w) by waiting an additional ε at node vi. Since the arc cost functions are piecewise linear and
continuous, so is f . As a consequence, we can compute the left and right partial derivative of f at
0 as

∂−f(0) = lim
ε→0−

C(p,w + εδ(i))− C(p,w)

ε
= lim

ε→0−

C(p,w + εδ(i))− Tv(ω̄)

ε

∂+f(0) = lim
ε→0+

C(p,w + εδ(i))− C(p,w)

ε
= lim

ε→0+

C(p,w + εδ(i))− Tv(ω̄)

ε

Observing that (p,w + εδ(i)) is a path-with-waits from o to v with total wait ω̄+ ε, we get C(p,w +
εδ(i)) ≥ Tv(ω̄ + ε) which yields

∂−f(0) ≤ lim
ε→0−

Tv(ω̄ + ε)− Tv(ω̄)

ε
= ∂−Tv(ω̄)

∂+f(0) ≥ lim
ε→0+

Tv(ω̄ + ε)− Tv(ω̄)

ε
= ∂+Tv(ω̄)

Together with (18), we get

∂−f(0) ≤ ∂−Tv(ω̄) < ∂+Tv(ω̄) ≤ ∂+f(0),

which implies in particular that f is non-differentiable at 0.
By definition, f(ε) is the sum of composites of the piecewise-linear arc cost functions Cvjvj+1 , j =

1, . . . , σ(p) − 1. For j = 1, . . . , i the term related to Cvjvj+1 is taken at C(p(j),w(j)) +
∑j−1

k=1 wk,
which does not depend on ε. For j = i + 1, . . . , σ(p) − 1 the term related to Cvjvj+1 is taken
at C(p(j),w(j) + εδ(i)) + ω̄ + ε. Let vj be a saturated node (j ∈ {i, . . . , σ(p)}): using that
C(p(j),w(j)) = Tvj (ω̄) and ωk ≤ ω̄ ≤ ωk+1, we get τ−vj (ωk) ≤ C(p(j),w(j)) + ω̄ ≤ τvj (ωk).

Recalling that Cvjvj+1 is differentiable on]τ−vj (ωk), τvj (ωk)[, for all (vj , vj+1) ∈ A, we get that f is
non-differentiable at ε = 0 only if there is a saturated node vj such that the piece where Cvjvj+1 is
evaluated changes at ε = 0, i.e.,

i. Tvj (ω̄) + ω̄ = τ−vj (ωk) and ∃α > 0 : C(p(j),w(j)− νδ(i)) + ω̄ − ν < τ−vj (ωk) for all 0 < ν < α;
or

ii. Tvj (ω̄) + ω̄ = τvj (ωk) and ∃α > 0 : C(p(j),w(j) + νδ(i)) + ω̄ + ν > τvj (ωk) for all 0 < ν < α.

If Tvj (ω̄) + ω̄ = τ−vj (ωk), τ
−
vj (ωk) ≤ Tvj (ωk) + ωk yields Tvj (ω̄) + ω̄ = Tvj (ωk) + ωk, hence

∂−Tvj (ω̄) = −1. Function Tvj is piecewise linear, so there is α > 0 such that for all 0 < ν < α,
Tvj (ω̄ − ν) = Tvj (ω̄) + ν. Using that C(p(j),w(j)− νδ(i)) ≥ Tvj (ω̄ − ν), we obtain

C(p(j),w(j)− νδ(i)) + ω̄ − ν ≥ Tvj (ω̄) + ω̄ ≥ τ−vj (ωk),

so item i. is never true.
If Tvj (ω̄)+ω̄ = τvj (ωk), then Tvj (ω̄)+ω̄ = Tvj (ωk+1)+ωk+1 by (14). A path-with-waits from o to

vj that realizes Tvj (ωk+1) with total wait ωk+1 will then arrive at Tvj (ωk+1)+ωk+1 = Tvj (ω̄)+ω̄. So if
we follow p from there without additional waits, v will also be reached at Tv(ω̄)+ω̄, just like in (p,w).
Denoting this new path-with-waits as (p′,w′), we get that C(p′,w′) = Tv(ω̄) + ω̄ − ωk+1. Finally,
C(p′,w′) ≥ Tv(ωk+1), hence Tv(ωk+1) + ωk+1 ≤ Tv(ω̄) + ω̄. This is only possible if ∂+Tv(ω) = −1
for all ω ∈ [ω̄, ωk+1], which is in contradiction with ∂−Tv(ω̄) < ∂+Tv(ω̄). We conclude that item ii.
is never true either, hence f is differentiable at 0: a contradiction.

14

B Proof of Proposition 6

Let k ∈ {1, . . . ,K − 1}, and v ∈ arg minu∈V {maxω∈Ω{ω : Tu(ω) + ω ≤ τu(ωk)}}. If τv(ωk) = +∞,
then both (15) and (16) yield ωk+1 = W , proving the desired equality.

Thus, we suppose next that τv(ωk) < +∞ and define

ω̃ = max
ω∈Ω
{ω : Tv(ω) + ω ≤ τv(ωk)}. (19)

Theorem 3 states that we are in the conditions of application of Corollaries 1 and 2. Using Corol-
lary 1, we get

Tv(ω̃) = min {Tv(ωk), T=
v (ω̃)} .

1. If Tv(ω̃) = Tv(ωk), we use that tv→v(ωk) = τv(ωk) = Tv(ω̃) + ω̃ (by definition of v and tv→v)
to observe that

ω̃ = tv→v(ωk)− Tv(ωk).

2. Otherwise, Tv(ω̃) = T=
v (ω̃), so by Corollary 2, there are vi ∈ V and a path p from vi to v such

that tp(vi) = Tvi(ωk)+ω̃, tp(vj) = Tvj (ω̃)+ω̃,∀vj ∈ p, vj /∈ {vi, v} and Tvi(ωk)+C(p) = Tv(ω̃).
By definition of ω̃, Tw(ω̃) + ω̃ ≤ τw(ωk),∀w ∈ p. Since ω 7→ Tw(ω) + ω is non-decreasing
for all w ∈ V , we see that p reaches v at τv(ωk) and every intermediary node vj in the time
interval [Tvj (ωk) + ωk, τvj (ωk)]. Stated otherwise, p ∈ Pback

vj→v (ωk). This means in particular
that

τv(ωk)−min{Tu(ωk) + C(p) : u ∈ V, p ∈ Pback
u→v (ωk)} ≥ τv(ωk)− Tv(ω̃) = ω̃.

By definition of tu→v(ωk), we get that in both cases above:

ω̃ ≤ max
u∈V
{tu→v(ωk)− Tu(ωk)}. (20)

To show the reverse equality, let u ∈ V and p ∈ Pback
u→v (ωk), and let ω = τv(ωk)−(Tu(ωk)+C(p))

(notice ω ≥ ωk by definition of Pback
u→v (ωk)). Then Tu(ωk)+C(p) is the the cost of a path-with-waits

from o to v that reaches u at Tu(ωk) and v at τv(ωk) with a total wait equal to ω. We thus get
that Tv(ω) + ω ≤ τv(ωk). Using (19), this implies that ω ≤ ω̃, and since the above is valid for any
u and any p ∈ Pback

u→v (ωk):

ω̃ ≥ τv(ωk)−min
{

(Tu(ωk) + C(p)) : u ∈ V, p ∈ Pback
u→v (ωk)

}
= max

u∈V
{tu→v(ωk)− Tu(ωk)}.

(21)

Combining (20) and (21) and yields

ω̃ = max
u∈V
{tu→v(ωk)− Tu(ωk)}.

Finally, we can rely on (19) to see that the above actually proves that

max
ω∈Ω
{ω : Tv(ω) + ω ≤ τv(ωk)} = max

u∈V
{tu→v(ωk)− Tu(ωk)},

proving the result whenever τv(ωk) < +∞.

15

C Proof of Lemma 1

Before proving the lemma, we introduce the following technical result that will be instrumental in
proving Lemma 1.

Lemma 2. Consider the node w selected at an execution of step 7 of Algorithm 1, i.e., w ∈
arg max
u∈V ′\S

{tu}. We have that

1. if Tw(ωk) + ωk ≤ tw ≤ τw(ωk), tw = tw→v(ωk);

2. if tw < Tw(ωk) + ωk, then Pback
w→v (ωk) = ∅;

3. if tw > τw(ωk), then τw(ωk) < τv(ωk) and

max
ω∈Ω
{ω : Tw(ω) + ω ≤ τw(ωk)} ≤ max

ω∈Ω
{ω : Tv(ω) + ω ≤ τv(ωk)}.

4. if there is (u,w) ∈ A such that ρ
suw(ωk)
uw = −1 and c

suw(ωk)
uw ≤ tw, then τu(ωk) < τv(ωk) and

max
ω∈Ω
{ω : Tu(ω) + ω ≤ τu(ωk)} ≤ max

ω∈Ω
{ω : Tv(ω) + ω ≤ τv(ωk)}.

Proof. One can verify that the first three items are satisfied if the conditions checked at steps 8
and 9 have been false since the beginning of the execution of Algorithm 1. Indeed, in such case,
the algorithm is a plain back-propagation for the computation of shortest paths with affine arc costs.

The complete proof of items 1. and 2. is by induction on the number of executions of step 7.
At the first execution of this step, w = v, so tw = τv(ωk) = tv→v(ωk) by definition. Hence items 1.
and 2. are true.

We now consider a later execution of step 7, where w ∈ arg maxu∈V ′\S{tu}, assuming that
the two items hold at each previous iteration. For every node u selected at a previous execution
of step 7, the definition of the algorithm involves that u ∈ S if Tu(ωk) + ωk ≤ tu ≤ τu(ωk) and
u ∈ V \ V ′ if tu < Tu(ωk) + ωk. This means that for all marked nodes u ∈ S, tu = tu→v(ωk), and
that no path in Pback

u→v (ωk) goes through a node of V \ V ′. Moreover, tu > τu(ωk) did not happen,
otherwise the algorithm would have been terminated.

To show item 1., observe that we would have obtained the same value for tw if the back-
propagation had been run on the subgraph induced by V ′. Moreover, the nodes of V \ V ′ are not
involved in the paths of Pback

w→v (ωk), so tw→v(ωk) can be computed by considering the subgraph
induced by V ′. In this subgraph, the conditions checked at steps 8-9 would have been false at every
previous iteration, so if Tw(ωk) +ωk ≤ tw ≤ τw(ωk), tw is the result of a classical back-propagation.
As a consequence, tw = tw→v(ωk).

The proof of item 2. is by contradiction. Assume that tw < Tw(ωk) + ωk and that there is p ∈
Pback
w→v (ωk) 6= ∅. Then let p = (tp; v1(= w), v2, . . . , vσ(p)(= v)) be the shortest path in Pback

w→v (ωk).
If every node in p is marked, then let i = 1. Otherwise, let vi be the first non-marked node in p,
i.e., vi /∈ S and vj ∈ S for j ∈ {i+ 1, . . . , σ(p)}. Since p is a shortest path, then tp(vj) = tvj→v(ωk)
for every marked node vj 6= w of p. Moreover, the back-propagation along the arcs of vi+1 ensures
that tvi ≥ tp(vi). By definition, w ∈ arg maxu∈V ′\S{tu}, so tw ≥ tvi ≥ tp(vi). And given that p
goes through w before vi, tp(w) ≤ tp(vi). As a consequence, tp(w) ≤ tw < Tw(ωk) + ωk, which is in
contradiction with the definition of Pback

w→v (ωk).

16

To prove item 3., assume that tw > τw(ωk) at some execution of step 7. Let p be the path from
w to v constructed by the back-propagation. First we have, by non-negativity of arc travel times,
tw ≤ τv(ωk), so

τw(ωk) < τv(ωk).

Then, denote as v+ the successor of w in p. Let ω′ = maxω{Tw(ω) + ω ≤ τw(ωk)} and let
(pw,ww) ∈ PWw(ω′) be a path-with-wait from o to w that reaches w at τw(ωk) < tw with a total
wait equal to ω′. Taking arc (w, v+) immediately after pw (no wait at w), v+ is reached at

t+ = τw(ωk) + ρ
swv+ (ωk)

wv+
τw(ωk) + c

swv+ (ωk)

wv+
.

By τw(ωk) < tw, we know that v+ is reached earlier in this path than in p, i.e., t+ ≤ tv+ . If we
then wait tv+ − t+ at v+, we can take the end of p from v+ to reach v at τv(ωk). Now, if (p′,w′)
is the path-with-wait from o to v constructed above, we get that (p′,w′) reaches v at τv(ωk) with
a total wait

ω(p′,w′) = ω′ + tv+ − t+ ≥ ω′. (22)

Stated otherwise, we have τv(ωk) = C(p′,w′) + ω(p′,w′) where C(p′,w′) ≥ Tv(ω(p′,w′)), so

Tv(ω(p′,w′)) + ω(p′,w′) ≤ τv(ωk).

This yields that

max
ω∈Ω
{ω : Tv(ω) + ω ≤ τv(ωk)} ≥ ω(p′,w′) ≥ ω′ = max

ω∈Ω
{ω : Tw(ω) + ω ≤ τw(ωk)}.

To prove item 4., first observe that if we are back-propagating the value of tw, this means that

Tw(ωk) + ωk ≤ tw ≤ τw(ωk), hence tw = tw→v(ωk). Now let (u,w) ∈ A such that ρ
suw(ωk)
uw = −1

and c
suw(ωk)
uw ≤ tw. Let ωu = maxω∈Ω{ω : Tu(ω) + ω ≤ τu(ωk)}. There is a path-with-wait

(pu,wu) ∈ PWu(ωu) such that C(pu,wu) = Tu(ωu). For any path-with-wait (p,w) that goes though

arc (u,w), if τ−u (ωk) ≤ tp,w(u) ≤ τu(ωk), then by definition of (u,w), tp,w(w) = c
suw(ωk)
uw ≤ tw. As a

consequence, we can extend (pu,wu) by

• departing from u at Tu(ωu) + ωu = τu(ωk),

• waiting an additional ω′ = tw − csuw(ωk)
uw at w,

• and taking the shortest path in Pback
w→v (ωk) to reach v at τv(ωk).

Denoting this path-with-wait as (pv,wv), we see that it accumulates a total wait ωv = ωu+ω′ ≥ ωu.
Given that (pv,wv) reaches v at τv(ωk), we have Tv(ωv) + ωv ≤ C(pv,wv) + ωv = τv(ωk). As a
conclusion,

max
ω∈Ω
{ω : Tv(ω) + ω ≤ τv(ωk)} ≥ ωv ≥ ωu = max

ω∈Ω
{ω : Tu(ω) + ω ≤ τu(ωk)}.

We are now ready to prove Lemma 1.

Proof of Lemma 1. To prove item 1., let v∗ ∈ arg minv∈V (ωk){τv(ωk)}. We then consider the back-
propagation of τv∗(ωk) by Algorithm 1. By contraposition of item 3. of Lemma 2, we know that

17

for all w selected at step 7 of Algorithm 1, tw ≤ τw(ωk). As a consequence, items 1. and 2. of
Lemma 2 guarantee that at step 17 of Algorithm 1

max
u∈V ′
{tu − Tu(ωk)} = max

u∈V
{tu→v∗(ωk)− Tu(ωk)}.

We now prove that ωv ≥ ωv∗ , ∀v ∈ V . We thus consider v ∈ V such that ωv < +∞. By
definition of ωv∗ , Tv(ωv∗) + ωv∗ ≤ τv(ωk) for each v ∈ V , so the application of Corollary 1 yields

Tv(ωv∗) = min{Tv(ωk), T=
v (ωv∗)}.

At step 4 of Algorithm 1, we initialize tv to τv(ωk), and this value is not modified in the rest of the
algorithm, hence ωv ≥ τv(ωk)− Tv(ωk). As a consequence,

Tv(ωv∗) = Tv(ωk) =⇒ ωv ≥ τv(ωk)− Tv(ωv∗) ≥ ωv∗ .

Now, assume that Tv(ωv∗) = T=
v (ωv∗), and let (p,w) be a path-with-waits constructed as in Corol-

lary 2 so that

• C(p,w) = Tv(ωv∗) and
∑σ(p)−1

`=1 w` = ωv∗ ;

• C(p(i),w(i)) = Tvi(ωk), where vi is the first saturated node in (p,w);

• and C(p(j),w(j)) = Tvj (ωv∗) for every other saturated node vj .

In particular, (p,w) connects vi to v without waits (after vi) with a cost equal to Tv(ωv∗)−Tvi(ωk).
We claim that the subpath of p leaving from vi, p̄(i), is in Pback

vi→v (ωk). By definition of tvi→v(ωk),
τv(ωk)− tvi→v(ωk) is the minimum cost of a path in Pback

vi→v (ωk), so the claim yields

τv(ωk)− tvi→v(ωk) ≤ Tv(ωv∗)− Tvi(ωk).

Moreover, if ωv < +∞, then Lemma 2 yields that tu = tu→v(ωk) for all v ∈ V ′ and Pback
u→v (ωk) = ∅

for u ∈ V \ V ′. As a consequence, ωv = maxu∈V {tu→v(ωk) − Tu(ωk)}. In particular, this means
that

ωv ≥ tvi→v(ωk)− Tvi(ωk) ≥ τv(ωk)− Tv(ωv∗) ≥ ωv∗ ,

where the last inequality follows from τv(ωk) ≥ Tv(ωv∗) + ωv∗ .
To prove the claim, observe that (p,w) reaches v at Tv(ωv∗) + ωv∗ , so if we back-propagate

Tv(ωv∗) + ωv∗ from v to vi along p̄(i), we reach every intermediary node vj at C(p(j),w(j)) =
Tvj (ωv∗) + ωv∗ . Using that τv(ωk) ≥ Tv(ωv∗) + ωv∗ , we observe that if we back-propagate τv(ωk)
from v to vi along p̄(i), we necessarily reach the intermediary nodes vj later than when back-
propagating Tv(ωv∗) + ωv∗ , i.e., later than Tvj (ωv∗) + ωv∗ . Moreover, if one intermediary node
is reached later than τvj (ωk), then Algorithm 1 necessarily stops at step 8, which is not possible
if ωv < +∞. By Tvj (ωv∗) + ωv∗ ≥ Tvj (ωk) + ωk, we get that every intermediary node vj is also
reached in the time interval [Tvj (ωk)+ωk, τvj (ωk)] when back-propagating τv̄(ωk) from v to vi along
p̄(i).

References

[1] R. K. Ahuja, J. B. Orlin, S. Pallottino, and M. Grazia Scutellà. Minimum time and minimum
cost-path problems in street networks with periodic traffic lights. Transportation Science,
36(3):326–336, 2002.

18

[2] R. K. Ahuja, J. B. Orlin, S. Pallottino, and M. G. Scutella. Dynamic shortest paths minimizing
travel times and costs. Networks, 41(4):197–205, 2003.

[3] R. Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

[4] X. Cai, T. Kloks, and C.-K. Wong. Time-varying shortest path problems with constraints.
Networks, 29(3):141–150, 1997.

[5] I. Chabini and B. Dean. Shortest path problems in discrete-time dynamic networks: complex-
ity, algorithms and implementations. Unpublished manuscript, 1999.

[6] K. L. Cooke and E. Halsey. The shortest route through a network with time-dependent
internodal transit times. Journal of Mathematical Analysis and Applications, 14(3):493 – 498,
1966.

[7] B. C. Dean. Algorithms for minimum-cost paths in time-dependent networks with waiting
policies. Networks, 44(1):41–46, 2004.

[8] M. Dell’Amico, M. Iori, and D. Pretolani. Shortest paths in piecewise continuous time-
dependent networks. Operations Research Letters, 36(6):688–691, 2008.

[9] S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research, 17(3):395–
412, 1969.

[10] L. Foschini, J. Hershberger, and S. Suri. On the complexity of time-dependent shortest paths.
Algorithmica, 68(4):1075–1097, 2014.

[11] E. He, N. Boland, G. Nemhauser, and M. Savelsbergh. Computational complexity of time-
dependent shortest path problems. Optimization Online (Feb. 2019), 12, 2019.

[12] E. He, N. Boland, G. Nemhauser, and M. Savelsbergh. Dynamic discretization discovery
algorithms for time-dependent shortest path problems. Optimization Online, 7082, 2019.

[13] O. Jabali, T. Van Woensel, and A. De Kok. Analysis of travel times and co2 emissions in
time-dependent vehicle routing. Production and Operations Management, 21(6):1060–1074,
2012.

[14] D. E. Kaufman and R. L. Smith. Fastest paths in time-dependent networks for intelligent
vehicle-highway systems application. I V H S Journal, 1(1):1–11, 1993.

[15] J. Omer and M. Poss. Time-dependent shortest path with discounted waits. Networks,
74(3):287–301, 2019.

[16] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with time-
dependent edge-length. Journal of the ACM (JACM), 37(3):607–625, 1990.

[17] A. Orda and R. Rom. Minimum weight paths in time-dependent networks. Networks,
21(3):295–319, 1991.

19

