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Performance of MIMO channel estimation with a
physical model

Luc Le Magoarou, Stéphane Paquelet

Abstract—Channel estimation is challenging in multi-antenna
communication systems, because of the large number of param-
eters to estimate. One way of facilitating this task is to use a
physical model describing the multiple paths constituting the
channel, in the hope of reducing the number of unknowns in the
problem. The achievable performance of estimation using this
kind of physical model is studied theoretically. It is found that
adjusting the number of estimated paths leads to a bias-variance
tradeoff which is characterized. Moreover, computing the Fisher
information matrix of the model allows to identify orthogonal
parameters, ultimately leading to fast and asymptotically optimal
algorithms as a byproduct.

Index Terms—Channel estimation, physical model, MIMO

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) communica-
tion systems allow for a dramatic increase in channel

capacity, adding space to the classical time and frequency
dimensions [1], [2]. This is done by using several antennas at
the transmitter (Nt) and at the receiver (Nr). The capacity of
MIMO systems is maximized if the channel state is perfectly
known at both ends of the link, which requires a channel
estimation step.

Channel estimation is deeply impacted by the transition
from single antenna to MIMO systems. Indeed, it amounts to
determine a complex gain for each transmit/receive antenna
pair, for each subcarrier. If Nf subcarriers are used, the
number of real parameters to estimate is thus 2NrNtNf ,
which may be very large for massive MIMO systems, i.e.
systems with up to several hundreds of antennas [3], [4].

In a massive MIMO context, the classical least squares
(LS) channel estimator is not adapted because the high di-
mensionality of the parameter space leads to an ill-posed
problem. Therefore, in order to add prior information, it has
been proposed classically to use Bayesian estimation and thus
model the channel matrix as random with a known distribution,
giving rise to estimators such as the linear minimum mean
square error (LMMSE) [5], [6]. Another possibility is to use a
parametric model based on the physics of wave propagation,
in which the channel is expressed as a sum of p paths [7].
Whereas LS and LMMSE estimators have been studied exten-
sively in terms of optimal training sequences and performance
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[8], a similar study is still lacking for channel estimators based
on a physical model.
Contributions and organization. In this paper, the perfor-
mance of MIMO wideband channel estimators based on a
physical model is studied. The considered model is presented
and the estimation error is decomposed into a bias and a
variance terms in section II. Each term is then analyzed
theoretically, beginning with the variance term in section III
and the bias term in section IV, highlighting a bias-variance
tradeoff piloted by the number of paths p considered by the
model. The theoretical analysis also allows to nicely interpret
the channel estimation error and leads to the design of a
computationally efficient channel estimation algorithm with
optimality properties. Finally, the mathematical developments
are assessed empirically in section V, justifying the use of
such physical models and showing the interest of the designed
computationally efficient algorithm.

Note that this paper is based on some of our previous work
[9], [10], but significantly extends it in several ways. First,
the wideband MIMO channel is considered here whereas only
the narrowband MIMO channel was considered in [9], [10].
Second, the assumptions required for the study of the variance
are relaxed, and a much more extensive set of experiments is
performed.

II. PROBLEM FORMULATION

Notations. Matrices and vectors are denoted by bold upper-
case and lower-case letters: A and a (except 3D “spatial”
vectors that are denoted −→a ); the ith column of a matrix A by
ai; its entry at the ith line and jth column by aij . A matrix
transpose, conjugate and transconjugate is denoted by AT ,
A∗ and AH respectively. The trace of a linear transformation
represented by A is denoted Tr(A). For matrices A and B,
A � B means that A − B is positive semidefinite. The
linear span of a set of vectors A is denoted: span(A). The
Kronecker product and vectorization operators are denoted
by ⊗ and vec(·) respectively, and the Hadamard (entry-wise)
product by �. The identity matrix is denoted by Id. CN (µ,Σ)
denotes the standard complex gaussian distribution with mean
µ and covariance Σ. E(·) denotes expectation and cov(·) the
covariance of its argument. S2 denotes the 3D unit sphere.

A. Physical channel model

Let us study a wideband block fading MIMO channel whose
features are:
• Nt transmit antennas located at the positions
−→at,1, . . . ,−−→at,Nt with respect to the centroid of the
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transmit antenna array, whose radius is denoted
Rt , maxj ‖−→at,j‖2.

• Nr receive antennas located at the positions
−−→ar,1, . . . ,−−−→ar,Nr with respect to the centroid of
the receive antenna array, whose radius is denoted
Rt , maxi ‖−→ar,i‖2.

• Nf subcarriers at the frequencies fc + f1, . . . , fc + fNf ,
where fc is the central frequency (

∑
k fk = 0), and the

bandwidth is denoted B , fNf − f1.
• P propagation paths, where βl is the complex gain of

the l-th path, τl is its delay, −→ur,l is its direction of arrival
(DoA) and −→ut,l is its direction of departure (DoD).

Making the plane wave assumption, and further assuming
RrB
c � 1 and RtB

c � 1 so that the phase difference due to the
antenna positions is the same for all subcarriers, the channel
between the j-th transmit antenna and the i-th receive antenna
at the k-th subcarrier can be expressed

hijk =
P∑
l=1

βle
−j2π[ 1

λ
−−→ar,i.−−→ur,l− 1

λ
−−→at,j .−−→ut,l+fkτl], (1)

where λ , c
fc

is the wavelength at the central frequency. The
used system representation is illustrated in figure 1.

Fig. 1: Example of system representation for the l-th path.
The length of the path from the first transmit antenna to the
first receive antenna is equal to the length of the red line plus
the length of the blue line minus the length of the green line,
which illustrates (1).

It is possible to express the whole channel in a compact
form by introducing the steering vectors,

et(
−→u ) , 1√

Nt

(
e−j 2πλ

−−→at,1.−→u , . . . , e−j 2πλ
−−−→at,Nt .

−→u
)T ∈ CNt ,

er(
−→u ) , 1√

Nr

(
e−j 2πλ

−−→ar,1.−→u , . . . , e−j 2πλ
−−−→ar,Nr .

−→u
)T ∈ CNr ,

and the delay vector,

ef (τ) , 1√
Nf

(
e−j2πf1τ , . . . , e−j2πfNf τ

)T ∈ CNf .

Indeed, defining the characteristic vectors,

e(−→ur,−→ut , τ) , ef (τ)⊗ et(
−→ut)∗ ⊗ er(

−→ur) ∈ CNrNtNf ,

the channel can be expressed as a simple linear combination:

h =
√
NrNtNf

P∑
l=1

βle(−→ur,l,−→ut,l, τl). (2)

This expression of the channel is very general and encom-
passes many cases encountered in practice. For example,
a narrowband (single carrier) channel corresponds to take
Nf = 1 and ef (τ) = 1, ∀τ , and a multiple-input single-
output (MISO) channel corresponds to take Nr = 1 and
er(
−→ur) = 1, ∀−→ur. Most MIMO channel simulators [11]–[13]

are based on a similar parameterization which can be described
by a vector φ ∈ RNφ containing the physical parameters:

φ , (βl,
−→ur,l,−→ut,l, τl)Pl=1. (3)

The channel is thus described with Nφ = 7P real numbers
(two for the complex gain, two for each direction and one for
the delay of each path), with P taking values up to several
hundreds in the most widepsread models [11]–[13].

B. Channel estimation

Observations. Let us consider that in order to carry out
channel estimation, Nm noisy linear measurements of the
channel are taken. The obtained observations are expressed

y = Mh + n, (4)

where M ∈ CNm×NrNtNf is the observation matrix and n
is the received noise, which is assumed complex gaussian:
n ∼ CN (0,Σ). Once again, this way of expressing the obser-
vations is very general. For example in the case of an hybrid
system [14]–[16], if the channel is observed through Nc analog
combiners given by the combining matrix W ∈ CNc×Nr ,
and the same training sequence of duration Ns given by
the matrix X ∈ CNt×Ns is sent on Nps subcarriers whose
positions are given by a row-sampled identity matrix F ∈
{0, 1}Nps×Nf , then the observation matrix would take the form
M = F⊗XT⊗WH ∈ CNcNsNps×NrNtNf . On the other hand,
if every subcarrier is used to send pilots and the output of every
receive antenna is observed, the observation matrix would take
the form M = IdNf ⊗XT ⊗ IdNr ∈ CNrNsNf×NrNtNf .
Objective. Channel estimation aims at retrieving h from the
observation of y, knowing the observation matrix M and the
distribution of the noise vector n. The channel estimator is
denoted ĥ, and is assessed by its mean squared error

MSE(ĥ) , E
[∥∥h− ĥ

∥∥2

2

]
(5)

=
∥∥h− E[ĥ]

∥∥2

2
+ E

[∥∥ĥ− E[ĥ]
∥∥2

2

]
, (6)

where the second line is the well-known bias-variance de-
composition [17]. At first sight, the search space of channel
estimation is of dimension 2NrNtNf (number of real numbers
needed to describe the channel vector), which may be very
large in massive MIMO systems (up to several thousands).
For this reason, classical estimation methods such as the least
squares (LS) may not be appropriate. In order to overcome
this limitation, some information about the channel has to
be used to regularize the problem. For example, the channel
can be considered as a random vector whose distribution is
known, yielding Bayesian channel estimation [5], [6]. Another
possibility is to use a physical channel model, as the one
presented in section II-A. In that case, according to (2), the
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dimension of the search space is equal to 7P , which can also
be very large.

However in practice, the number of estimated paths p is
much smaller than P , so that there are only Nθ = 7p
parameters to estimate. In that case the estimate belongs by
construction to the set Mp of vectors that can be expressed
by a sum of at most p virtual paths. This set is called model
set hereafter and is expressed

Mp =
{
a ∈ CNrNtNf |a =

∑p

n=1
γne(−−→wr,n,−−→wt,n, ξn)

}
,

with αn ∈ C, −−→wr,n ∈ S2, −−→wt,n ∈ S2 and ξn ∈ R+. Such sets
obey the inclusion relation Mq ⊂ Mq+1. The best element
of the model set is denoted

hMp
, argmin

g∈Mp

‖h− g‖2 . (7)

It is simply the projection of the channel onto the model set
Mp. By construction, this projection can be written

hMp
=
√
NrNtNf

p∑
n=1

γne(−−→wr,n,−−→wt,n, ξn), (8)

which gives optimal values for the estimated parameters, or
virtual parameters

θ , (γn,
−−→wr,n,−−→wt,n, ξn)pn=1 ∈ RNθ . (9)

The actual estimate will be denoted

ĥ =
√
NrNtNf

p∑
m=1

αme(−−→vr,m,−−→vt,m, ζm), (10)

so that the estimated parameters are

θ̂ , (αm,
−−→vr,m,−−→vt,m, ζm)pm=1 ∈ RNθ . (11)

In summary, the channel depends on the 7P physical param-
eters φ given in (3), but the considered model depends on
only 7p parameters whose optimal values make up the virtual
parameters θ defined in (9), and the channel estimate depends
on the actually estimated parameters θ̂ given in (11). The
central question of this paper is:

How well can an estimator that yields estimates belonging to
Mp perform with a channel taking the form (2)?

MSE decomposition. In order to answer this fundamental
question, let us first notice that an estimate taking the form
(10) cannot be better than the best element of the model set,
that is ∥∥h− ĥ

∥∥
2
≥
∥∥h− hMp

∥∥
2
.

The study of this paper focuses on estimators whose expec-
tation E[ĥ] is equal to the projection hMp , so that the MSE
can be decomposed as in (6):

MSE(ĥ) =
∥∥h− hMp

∥∥2

2
+ E

[∥∥ĥ− hMp

∥∥2

2

]
. (12)

According to this assumption, the bias of the estimator is
identified to the model bias (distance of the true channel h
to the model Mp), and the variance is computed with respect
to the projection hMp

. In the next sections, the two terms of
this decomposition are analyzed separately.

III. VARIANCE ANALYSIS

In this section, the variance term of the mean squared
error (12) is bounded using the Cramér-Rao Bound (CRB)
[18], [19], which is valid for any unbiased estimator. The
case of a linear channel parameterization is first evoked
in section III-A because of its remarkable similarities with
the studied problem. The bound for the studied model is
then derived in section III-B, and computationally efficient
estimation algorithms are deduced of the particular form of
the Fisher information matrix in sections III-C and III-D.

A. The linear case

The projected channel hMp is a nonlinear function of the
virtual parameters θ. Let us first look at a simplified problem
in which the channel to estimate hl is linearly linked to the
parameter vector θl ∈ RNθ via the equation hl , Dθl. In
that hypothetical case, the observations would read

yl = MDθl + n.

The least-squares estimate of the parameter vector (without
constraining it to be real) is then

θ̂l = (DHMHMD)−1DHMHyl

= θl + (DHMHMD)−1DHMHn,

and a channel estimate can be obtained as

ĥl = Dθ̂l

= Dθl︸︷︷︸
hl

+ D(DHMHMD)−1DHMHn︸ ︷︷ ︸
n′

.

This is an unbiased estimator of hl. Assuming a white noise
n ∼ CN (0, σ2Id), the covariance of n′ is given by

E[n′n′H ] = σ2D(DHMHMD)−1DH .

The variance of the estimator ĥl is thus given by

E
[∥∥ĥl − hl

∥∥2

2

]
= σ2Tr[D(DHMHMD)−1DH ]

=
σ2Nθ

‖M‖22
if DH MHM

‖M‖22
D = DHD.

According to the second line of the above equation, provided
the observation matrix fulfills some condition (being confor-
mal on the column space of D), the variance is proportional to
the number of parameters and the noise variance, and inversely
proportional to the observation matrix squared norm. As will
be highlighted in the next subsection, the lower bound on the
variance of ĥ is surprisingly similar to this expression, despite
the non-linearities involved.

B. Cramér-Rao bound

Let us go back to the original problem and consider the
virtual parameters θ defined in (9) as true parameters and
θ̂ defined in (11) as their unbiased estimates. Applying the
complex CRB [20] yields

E
[∥∥ĥ− hMp

∥∥2

2

]
≥ Tr

[
∂hMp

∂θ
I(θ)−1 ∂hMp

∂θ

H
]
, CRB,
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with
∂hMp

∂θ ,
(∂hMp

∂θ1
, . . . ,

∂hMp

∂θNθ

)
∈ CNrNtNf×Nθ , and

I(θ) ∈ RNθ×Nθ being the Fisher information matrix (FIM).
Noticing that the observation y follows a complex gaussian
distribution,

y ∼ CN
(

Mh︸︷︷︸
µ(θ)

,Σ
)
,

the FIM is given by the Slepian-Bangs formula [21], [22]:

I(θ) = 2Re

{
∂µ(θ)

∂θ

H

Σ−1 ∂µ(θ)

∂θ

}
(13)

= 2Re

{
∂hMp

∂θ

H

MHΣ−1M
∂hMp

∂θ

}
, (14)

where the second line is true assuming that locally, h can be
decomposed as h = hMp

+ r, with r not being a function
of the virtual parameters θ, so that ∂h

∂θ =
∂hMp

∂θ . Let us now
state the main result of the paper regarding the variance.

Theorem 1. Provided the model is identifiable,

CRB ≥ Nθ

2
∥∥MHΣ−1M

∥∥
2

, (15)

with equality if the condition

Copt :
∂hHMp

∂θ

MHΣ−1M

‖MHΣ−1M‖2
∂hMp

∂θ
=
∂hHMp

∂θ

∂hMp

∂θ

is fulfilled.

The theorem is proven in appendix A, in order to keep the
flow of the paper.

An important feature of this result is that the optimal CRB is
proportional to the number of parameters, and consequently to
the number of estimated paths p, if Copt is fulfilled. However,
the condition Copt may seem a bit abstract in its current general
form. In order to ease interpretation, let us consider a special
case given by the following corollary.

Corollary 1. For a white gaussian noise with Σ = σ2Id, the
bound of theorem 1 becomes

CRB ≥ Nθσ
2

2 ‖M‖22
, (16)

with equality if C ′opt :
∂hHMp

∂θ
MHM
‖M‖22

∂hMp

∂θ =
∂hHMp

∂θ

∂hMp

∂θ .

Note that this bound is very similar to the variance ob-
tained in the linear case in section III-A, except for the
division by two (due to the fact that the parameters being real
was overlooked in section III-A). This means that, at least
asymptotically, the nonlinear model behaves like a linear one
(provided an efficient estimator is available in the nonlinear
case).
Interpretations. The condition C ′opt is quite easily understood.
It means that the observation matrix M has to preserve
angles (be conformal) on the column space of

∂hMp

∂θ . One
obvious although conservative way to fulfill C ′opt is then to
take MHM = α2Id, so that M is conformal on the whole
space CNrNtNf (including the column space of

∂hMp

∂θ ). This
is possible only if Nm ≥ NrNtNf , meaning that the number

of measurements has to be greater than the dimension of
the channel. Another (more clever) way of fulfilling C ′opt is
to take M = αQUH where Q ∈ CNθ×Nθ is an unitary
matrix and U ∈ CNrNtNf×Nθ has its columns forming an
orthogonal basis of the column space of

∂hMp

∂θ . That way,
Nm = Nθ, which may be much smaller than the channel
dimension NrNtNf .

Let us now look at the quantity ‖M‖22 when using the two
aforementioned strategies with a fixed power per measure-
ment Pm. First, if each coordinate of CNrNtNf is measured
K times, this yields M =

√
Pm(Id(1), . . . , Id(K))T and

Nm = KNrNtNf . Second, if each basis vector of the
column space of

∂hMp

∂θ is measured K times, this yields

M =
√
Pm(UQH (1)

, . . . ,UQH (K)
)H and Nm = KNθ. In

these two cases, ‖M‖22 = PmK so that CRB = Nθσ
2

2PmK
. The

bound is thus in both cases inversely proportional to the mea-
surements power, as well as to the number of measurements
taken. However the second strategy is much more computa-
tionally efficient since it requires to take only Nm = KNθ

measurements instead of Nm = KNrNtNf . Note that Pm is
strongly linked to the transmit power, for example in the case
of a single subcarrier and an observation matrix of the form
M = XT ⊗ IdNr where each column of X has its squared
norm equal to Pt, then Pm = Pt.

A study of practical and resource efficient pilot designs
that fulfill (exactly or approximately) Copt would be of great
interest, but is beyond the scope of this paper. The condition
Copt is assumed fulfilled in the remaining of this paper,
yielding an optimal observation matrix.

C. Fisher information matrix

The CRB computed in the previous subsection is attained
by efficient estimators [17]. Maximum likelihood estimators
(MLEs) are asymptotically efficient, and The Fisher informa-
tion matrix (FIM) determines their asymptotic properties (it
is the expected Hessian of the negative log-likelihood), and
can be used to design efficient estimation algorithms. Let us
compute the FIM for the considered physical model (9). It
exhibits a block structure

I(θ) =

 I(1,1) I(1,2) ... I(1,p)

I(2,1) I(2,2)
...

. . .

I(p,1) I(p,p)

 ,

where, according to (14) assuming Copt, the off-diagonal
block I(m,n) ∈ R7×7 contains the correlations between the
sensitivities of the channel to parameters of the m-th and
n-th paths, and the diagonal block I(n,n) ∈ R7×7 contains
the correlations between the sensitivities to parameters of the
n-th path. Let us focus here on the diagonal blocks, since
as will be stated in more details in the next subsection,
most estimation algorithms do not handle paths jointly but
sequentially, implicitly assuming distinct estimated paths have
uncorrelated effects on the channel.

It remains to compute the derivatives (sensitivities)
∂hMp

∂θ
with θ defined in (9). Writing γn = ρnejφn yields

∂hMp

∂ρn
=
√
NrNtNfejφnef (ξn)⊗ et(

−−→wt,n)∗ ⊗ er(
−−→wr,n)
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and
∂hMp

∂φn
=
√
NrNtNf jγnef (ξn)⊗ et(

−−→wt,n)∗ ⊗ er(
−−→wr,n).

Then, denoting
−−−→
br,n,1,

−−−→
br,n,2 the two basis vectors used to

describe a change in −−→wr,n and
−−−→
bt,n,1,

−−−→
bt,n,2 those used to

describe a change in −−→wt,n,

∂hMp

∂
−−→
br,n,i

=
√
NrNtNfγnef (ξn)⊗et(

−−→wt,n)∗⊗(ar,n,i�er(
−−→wr,n))

with ar,n,i , −j 2π
λ (−−→ar,1.

−−→
br,n,i, . . . ,

−−−→ar,Nr .
−−→
br,n,i)

T , and

∂hMp

∂
−−→
bt,n,i

=
√
NrNtNfγnef (ξn)⊗(at,n,i�et(

−−→wt,n))∗⊗er(
−−→wr,n)

with at,n,i , −j 2π
λ (−−→ar,1.

−−→
bt,n,i, . . . ,

−−−→ar,Nt .
−−→
bt,n,i)

T . Finally,

∂hMp

∂ξn
=
√
NrNtNfγn(f � ef (ξn))⊗ et(

−−→wt,n)∗ ⊗ er(
−−→wr,n)

with f , −j2π(f1, . . . , fNf )T .
Note that in section II-A the antenna locations are expressed

with respect to the centroid and the frequencies with respect to
the central frequency. This is not an arbitrary choice. Indeed,
this carefully chosen parameterization guarantees that

1T f = 1Tar,n,i = 1Tat,n,i = 0,

where 1 is a vector of the appropriate size having all entries
equal to one. Taking this into account and injecting these
derivatives in (14) assuming Copt yields

I(n,n) = C



1 0 0 0 0

0 ρ2
n 0 0 0

0 0 Br,n 0 0

0 0 0 Bt,n 0

0 0 0 0 ρ2
n ‖f‖

2
2


(17)

with C = NrNtNf
∥∥MHΣ−1M

∥∥
2
, 0 denotes zero vectors or

matrices of appropriate size,

Br,n , ρ2
n

(
‖ar,n,1‖22 aHr,n,1ar,n,2

aHr,n,2ar,n,1 ‖ar,n,2‖22

)
and

Bt,n , ρ2
n

(
‖at,n,1‖22 aHt,n,1at,n,2

aHt,n,2at,n,1 ‖at,n,2‖22

)
.

The important feature of (17) is that the FIM I(n,n) being block
diagonal, the parameters of the same path are orthogonal to
each other (thanks to the chosen parameterization). Parameter
orthogonality has several implications [23]. It can for instance
be exploited to design efficient estimation algorithms, as is
the topic of the next subsection. The diagonal blocks of
the FIM are not analyzed here, since they do not have any
impact on the CRB as long as the model is identifiable (some
interpretations regarding the diagonal terms in a simplified
setting are available in [9]).

D. Efficient estimation algorithms

Let us focus on algorithms aimed at obtaining an estimate
taking the form of (10). First, one can rewrite (10) as

ĥ = Eα,

with E , (e(−→vr,1,−→vt,1, ζ1), . . . , e(−→vr,p,−→vt,p, ζp)) and α ,√
NrNtNf (α1, . . . , αp)

T . Assuming a white gaussian noise,
maximum likelihood channel estimation corresponds to solve
the optimization problem

minimize
E,α

∥∥y −MEα
∥∥2

2
, ĥ← Eα. (18)

Note that given E, the optimal vector α can be obtained
as the solution of a least squares problem as αopt =
(EHMHME)−1EHMHy, so that in the end channel esti-
mation amounts to find an optimal E, i.e. an optimal set of p
vectors {e(−→vr,1,−→vt,1, ζ1), . . . , e(−→vr,p,−→vt,p, ζp)}.
Greedy strategy. Looking for the p vectors jointly yields a
very complex optimization problem. Instead, greedy strate-
gies have been proposed which consist in building a dictio-
nary of characteristic vectors and applying a sparse recov-
ery algorithm such as orthogonal matching pursuit (OMP)
[24]–[26]. This amounts to estimate the paths one by one,
i.e. building the matrix E column by column. Denoting
E(k) , (e(−→vr,1,−→vt,1, ζ1), . . . , e(−−→vr,k,−→vt,k, ζk)) the state of the
matrix E at the k-th iteration, the optimal vector α(k) ←
(E(k)HMHME(k))−1E(k)HMHy is computed so that a
residual r(k+1) ← y−ME(k)α(k) is used at the next iteration.
Such a strategy is summarized in algorithm 1.

Algorithm 1 Greedy channel estimation

Input: Observation y, observation matrix M, number of paths
to estimate p.

1: r(1) ← y
2: for i = 1, . . . , p do
3: Estimate a characteristic vector e(−→vr,i,−→vt,i, ζi) based on

r(i)

4: E(i) ← (e(−→vr,1,−→vt,1, ζ1), . . . , e(−→vr,i,−→vt,i, ζi))
5: Update the coefficients:

α(i) ←
(
E(i)HMHME(i)

)−1
E(i)HMHy

6: Update the residual:
r(i+1) ← y −ME(i)α(i)

7: end for
8: ĥ← E(p)α(p)

Output: Channel estimate ĥ

The critical and most computationally intensive part of the
above algorithm is the characteristic vector estimation (line
3), which in the maximum likelihood framework amounts to
solve the optimization problem

maximize
x

f(x, r(i)) ,
|xHMHr(i)|2

‖Mx‖22
,

with x being a characteristic vector.
Joint estimation. One straightforward and popular way to
solve this problem is given in algorithm 2 which, if testing
Nζ delays, N−→vr DoAs and N−→vt DoDs requires NζN−→vrN−→vt
computations of the cost function f(x, r(i)).
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Algorithm 2 Joint characteristic vector estimation

Input: Current residual r(i), observation matrix M
1: Estimate physical parameters −→vr,i,−→vt,i, ζi based on r(i)

−→vr,i,−→vt,i, ζi ← argmax
−→vr,−→vt ,ζ

f
(
e(−→vr ,−→vt , ζ), r(i)

)
Output: Characteristic vector e(−→vr,i,−→vt,i, ζi)

Sequential estimation. Let us propose a new way of estimat-
ing the characteristic vector, taking profit of the analysis of
the previous subsection. The idea is to exploit the parameters
orthogonality, adopting a sequential strategy presented in algo-
rithm 3. In this algorithm, the first step (line 1) corresponds to
the maximum likelihood estimation of the delay considering
DoD and DoA as unknown nuisance parameters (bk being
the k-th vector of the standard basis of RNt and cl being
the l-th vector of the standard basis of RNr ), the second step
(line 2) corresponds to the maximum likelihood estimation
of the DoD considering a known delay and the DoA as
an unknown nuisance parameter and finally the third step
(line 3) corresponds to the maximum likelihood estimation
of the DoA considering both delay and DoD are known.
This strategy, if testing Nζ delays, N−→vr DoAs and N−→vt DoDs
requires NζNrNt + N−→vtNr + N−→vr computations of the cost
function f(x, r(i)). Thanks to the parameters orthogonality
[23], this strategy is asymptotically (at high SNR or with a
great number of measurements Nm) equivalent to the joint
estimation, although it may be much less complex (provided
N−→vt � Nt and N−→vr � Nr). Note that this is true for any
estimation order (the DoD or DoA can be estimated first also,
without affecting the conclusions), so the order should be
chosen so as to yield the lowest complexity. This sequential
strategy is empirically assessed and compared to the classical
joint strategy in section V.

Algorithm 3 Sequential characteristic vector estimation

Input: Current residual r(i), observation matrix M
1: Estimate delay ζi based on r(i)

ζi ← argmax
ζ

∑Nt
k=1

∑Nr
l=1 f

(
ef (ζ)⊗ bk ⊗ cl, r

(i)
)

2: Estimate DoD −→vt,i based on r(i) and ζi
−→vt,i ← argmax

−→vt

∑Nr
l=1 f

(
ef (ζi)⊗ et(

−→vt )∗ ⊗ cl, r
(i)
)

3: Estimate DoA −→vr,i based on r(i) , ζi and −→vt,i−→vr,i ← argmax
−→vr

f
(
e(−→vr ,−→vt,i, ζi), r(i)

)
Output: Characteristic vector e(−→vr,i,−→vt,i, ζi)

IV. BIAS ANALYSIS

The main result of the previous section (theorem 1) indicates
that the variance of the studied class of estimators is at best
proportional to the number of virtual paths p. This result may
lead to choose p as small as possible so as to minimize the
variance. However, if p is taken too small, hMp

may become
an oversimplified version of the channel h leading to a high
MSE due to a high model bias ‖h−hMp‖22. There is a bias-
variance tradeoff. How to set p appropriately? Knowing that

the number of physical paths P is in general very large (up
to several hundreds), is it possible to approximate it with
a few virtual paths? This section studies these questions,
trying to understand the mechanisms allowing to merge a
large number of physical paths into much fewer virtual paths
without incurring a large bias.

Computing the bias defined in (12) amounts to compute the
projection hMp

. Unfortunately, even considering a discretized
set of candidates DoAs, DoDs and delays, this problem
(which then becomes a sparse approximation problem) is NP-
hard [27]. The projection can be approximated numerically
using sparse recovery methods, as will be done in section V.
However the objective of this section is to study theoretically
the bias and give an interpretable upper bound.
Bound on the bias. To do so, let us consider a simple situation
in which L physical paths are approximated by a single virtual
path, in order to understand under which circumstances they
can be merged. In that case, the physical channel is expressed

h =
√
NrNtNf

∑L

l=1
βle(−→ur,l,−→ut,l, τl),

and the bias is bounded as

‖h− hM1
‖2 ≤ ‖h− h̃‖2

for any

h̃ =
√
NrNtNfγe(−→wr,−→wt, ξ),

where −→wr,−→wt and ξ are the DoA, DoD and delay of the ap-
proximating virtual path. This is true in particular considering
the optimal coefficient

γopt =
∑L

l=1
βle(−→wr,−→wt, ξ)He(−→ur,l,−→ut,l, τl)

for which h̃ is the orthogonal projection of the channel h onto
the characteristic vector e(−→wr,−→wt, ξ). With this optimal coef-
ficient, introducing e , e(−→wr,−→wt, ξ) and el , e(−→ur,l,−→ut,l, τl)
in order to lighten notations, it follows

∥∥h− h̃
∥∥

2
=
√
NrNtNf

∥∥∥∑L
l=1 βl

(
el − eHele

) ∥∥∥
2

≤
√
NrNtNf

∑L
l=1

∥∥∥βl (el − eHele)
) ∥∥∥

2

=
√
NrNtNf

∑L
l=1 |βl|

√
1− |eHel|2.

(19)
This inequality highlights the fact that collinear characteristic
vectors lead to small error. Said otherwise, physical paths with
characteristic vectors collinear to the one of the approximating
virtual path can be merged without accuracy loss.

Moreover, the inner product between characteristic vectors
is expressed as the product of inner products between steering
and delay vectors,

eHel = [ef (ξ)Hef (τl)][et(
−→ut,l)Het(

−→wt)][er(−→wr)Het(
−→ur,l)].

Analyzing jointly the three inner products yields the following
approximation bound which is the main result of this section.
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Theorem 2. Provided ‖−→ur,l−−→wr‖2 < 1√
2πRrλ

, ‖−→ut,l−−→wt‖2 <
1√

2π
Rt
λ

and |τl − ξ| < 1
π√
2
B the bias is bounded by∥∥h− hM1

∥∥
2
≤√

NrNtNf
L∑
l=1

|βl|
√

1− (1− xl)2(1− yl)2(1− zl)2,

where
• xl = 2π2(τl − ξ)2 1

Nf

∑Nf
i=1 f

2
i ,

• yl = 2π2‖−→ut,l −−→wt‖22 1
Nt

∑Nt
j=1

‖−−→at,j‖22
λ2 cos2(−→at,j ,−→ut,l −−→wt),

• zl = 2π2‖−→ur,l−−→wr‖22 1
Nr

∑Nr
k=1

‖−−→ar,k‖22
λ2 cos2(−−→ar,k,−−→ur,k−−→wr).

The theorem is proven in appendix B, in order to keep the
flow of the paper.
Interpretations. This bound yields quite intuitive results that
can be nicely interpreted:
• First of all, physical paths that are close to the approximating

virtual path in the delay, DoD and DoA domains can be
merged. Indeed, if the quantities (τl− ξ)2, ‖−→ut,l−−→wt‖22 and
‖−→ur,l − −→wr‖22 are small the l-th term of the bound is small
and the l-th path can be merged with low approximation
error. It is important to notice that the physical path and the
virtual path have to be close in the three domains, because
one domain in which they are far apart is sufficient to get
almost orthogonal characteristic vectors.

• Second, the discrimination power of the system is taken into
account by the bound. A larger bandwidth or larger arrays
lead to more difficulty to merge physical paths. Indeed,
if the quantities

∑Nf
i=1 f

2
i ,
∑Nt
j=1

‖−−→at,j‖22
λ2 and

∑Nr
k=1

‖−−→ar,k‖22
λ2

increase the approximation error also increases. On the other
hand, if there is for example only one antenna at the receiver,
a physical path that has a close delay and DoD with the
approximating virtual path can be merged irrespective of its
DoA, because the system has then no discrimination power
in the DoA domain.

• Finally, the ability to merge paths depends also on the
orientation of the transmit and receive antenna arrays. Some
paths can be merged even if they are far from the virtual path
in the DoD and DoA domains, if their direction differences
lie in a direction in which the array is insensitive. This can
be seen by the presence of the quantities cos2(−→at,j ,−→ut,l−−→wt)
and cos2(−−→ar,k,−−→ur,k − −→wr) in the bound. for example for
a ULA aligned with the z-axis, a path that has the same
elevation as the approximating virtual path will be perfectly
mergeable irrespective of its azimuth, because the ULA has
sensitivity only in one direction (the cosine will be null in
this case).
The proposed bound lends itself to nice interpretations as

shown above, but may be loose because of the use of the
triangle inequality. A way of possibly improving the bound is
evoked in appendix C.

V. EXPERIMENTS

The objective of this section is to assess empirically the
mathematical developments of the previous sections. The
model bias is first computed with a varying number of virtual
paths. Then, the joint and sequential estimation strategies

(algorithms 2 and 3) are compared, showing a bias-variance
tradeoff. All experiments are done using realistic channels
generated with help of the NYUSIM channel simulator [11],
in a millimeter wave massive MIMO context. In particular,
the central frequency is set to fc = 28 GHz and the distance
between transmitter and receiver to d = 30 m to obtain the
DoDs, DoAs, delays, gains and phases of each path. The
channel matrix is then obtained from (2) (with the total number
of physical paths P being random and ranging from fifty to a
hundred). All results shown in this section are averages over
one hundred channel realizations.

A. Empirical evaluation of the model bias

Computing the model bias ‖h−hMp‖22 requires to compute
the projection onto the model hMp

= projMp
(h). This is

unfortunately a NP-hard problem even with discretized direc-
tions and delays [27]. It is nevertheless possible to compute an
approximation ĥMp by using algorithm 1 called directly on
h (in perfect observation conditions and without noise). The
relative bias is then approximated by the relative error

‖h− ĥMp‖22
‖h‖22

.

For this first set of experiments, let us compute this relative
error in various configurations (varying p, Nt, Nr, Nf and
the orientation of the antenna array). To do so, algorithm 1
is used in conjunction with the joint characteristic vector
estimation (algorithm 2), for which the optimization problem
is solved by exhaustive testing of Nζ delays, N−→vr DoAs and
N−→vt DoDs (evenly sampling the three domains). In order
to simplify the analysis, let us have a single oversampling
parameter S controlling the number of tests. This amounts to
take Nζ = SNf if Nf > 1, Nζ = 1 otherwise (the delay has
no influence with Nf = 1), and setting similarly N−→vr and N−→vt .
The value S = 6 is taken here (it was found empirically that
testing more values does not improve the result, the impact
or reducing S is assessed in the next subsection). Results on
average over 100 NYUSIM channel realizations are shown on
figure 2. Several comments are in order:
• On all three subfigures, the error decreases quickly when

the number of virtual paths p increases. This shows that
even a large number of physical paths can indeed be merged
into much fewer virtual paths with little accuracy loss. This
justifies the use of channel estimators based on physical
models taking the form of (10) for massive MIMO in the
millimeter wave band.

• On figure 2a, the influence of the number of antennas on the
bias is assessed. To do so, let us consider an uniform linear
array (ULA) aligned with the x-axis with half-wavelength
separated antennas with a varying number of transmit anten-
nas Nt ∈ {16, 64, 256} at the transmitter, a single antenna
receiver (Nr = 1) and a single subcarrier (Nf = 1). First,
notice that taking more virtual paths (a greater p) leads to
lower error, as expected since each physical path is then
closer in average to a virtual path. This could be predicted
from the bound of theorem 2, in which adding virtual paths
amounts to reduce the quantity ‖−→ut,l−−→wt‖22. This conclusion
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Fig. 2: Bias assessment in several configurations with a varying number of virtual paths p.

holds also for figures 2b and 2c. Second, more antennas
require more virtual paths to attain the same error, because
the discrimination power of the antenna array is higher, as
was predicted by the quantity

∑Nt
j=1

‖−−→at,j‖22
λ2 in the bound of

theorem 2.
• Let us now consider a fixed number of transmit antennas

(64) and add several receive antenna and several subcarriers.
Results of this experiment are shown on figure 2b. It is clear
that considering 12 subcarriers (with a 15 MHz spacing
between adjacent subcarriers) leads to a higher discrim-
ination power, which results in higher error for a fixed
number of virtual paths. This is also the case when a ULA
with 4 receive antennas is considered, but the difference
is subtle, since the DoA discrimination power of an array
with 4 antennas is quite low. These observations are nicely
interpreted with help of the bound of theorem 2, because
the quantities

∑Nf
i=1 f

2
i and

∑Nr
k=1

‖−−→ar,k‖22
λ2 are not null with

several subcarriers and receive antennas, whereas they were
for the previous experiment.

• Finally, changing the orientation of the antenna array also
has an influence on the bias, as evidenced on figure 2c.
Indeed, taking a ULA aligned with the z-axis (a vertical
ULA) allows to get a lower error for a fixed number of
virtual paths compared to the horizontal ULA aligned with
the x-axis. This is because the physical paths generated by
NYUSIM have mostly similar elevations, they differ mainly
for their azimuth. This observation corresponds in the bound
of theorem 2 to cos2(−→at,j ,−→ut,l − −→wt) that is small in most
cases for the vertical ULA, since it has discrimination power
only on the elevation, and not on the azimuth (this is the
opposite for the horizontal ULA).

B. Comparison of joint and sequential strategies

The objective of this subsection is to compare the joint
and sequential estimation strategies (algorithms 2 and 3) for
several signal to noise ratios (SNR). To do so, let us consider a
system with Nt = 64 transmit antennas (arranged as an ULA
with half-wavelength separated antennas), a single receive
antenna (Nr = 1) and Nf = 12 subcarriers (with a 15 MHz
spacing between adjacent subcarriers). When the sequential
characteristic vector estimation (algorithm 3) is used, the
DoD is estimated first and then the delay (the DoA being

irrelevant since Nr = 1). The observation matrix M is taken
as the identity (the objective here being to study the channel
model and not pilot sequences). The greedy channel estimation
algorithm is used on noisy observations taking the form of (4)
(with various noise levels) to get a channel estimate ĥ. The
oversampling factor S defined in the previous subsection is
taken in {2, 4, 6}. The performance is measured by the relative
error

‖h− ĥ‖22
‖h‖22

.

Results are shown on figure 3, where each subfigure cor-
responds to a different oversampling factor S. Note that the
approximate bias (computed with S = 6) is shown on the
three plots to serve as a reference. Several comments are in
order:
• First, notice that for both characteristic vector estimation

methods, the error is close to the bias for a small p, and
then linearly increasing for a large p (error dominated by the
variance). This is a bias-variance tradeoff. It is interesting
to notice that the optimal number of virtual paths increases
with the SNR (for both methods) and stays relatively
small (no more than a dozen, which yields around 50 real
parameters to estimate), whereas the channel vector has
768 complex entries (which yields 1536 real parameters to
estimate if not using a parametric model). For a large p, the
slope at which the error increases is inversely proportional
to the SNR, which was predicted by corollary 1.

• Second, the joint strategy (algorithm 2) performs better than
the sequential strategy (algorithm 3) for all SNRs (at the
optimal p). However, the difference becomes very small at
high SNR. For example, the difference is approximately
3% for a SNR of −8 dB and only approximately 0.5%
for a SNR of 0 dB. This is in total agreement with the
parameter orthogonality between DoD and delay evidenced
in section III, which implies asymptotic independence.

• Finally, one can notice that increasing the oversampling
factor S improves accuracy, but also increases complexity.
Indeed, the joint strategy complexity is S2NtNf whereas
the sequential strategy complexity is SNtNf + SNf (it
is roughly S times less complex). This implies that the
complexity advantage of the sequential strategy increases
linearly with S (it would increase quadratically with several
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Fig. 3: Comparison of the joint and sequential strategies for several oversampling factors S and several SNRs.

receive antennas and the estimation of the DoA). This
is verified empirically by the ratio of the average joint
estimation time Tjoint and the average sequential estimation
time Tseq shown below each figure, which indeed increases
with S.
In summary, the sequential strategy was empirically found

to be almost as good as the joint strategy, whereas it is much
less complex. Moreover, its complexity advantage is higher if
a high accuracy is sought for. This shows that such sequential
characteristic vector estimation strategies are promising for
greedy channel estimation methods.

VI. CONCLUSION

In this paper, the performance of MIMO wideband channel
estimators using a physical model was theoretically studied.
To do so, the mean squared error (MSE) of channel estimation
was decomposed in to a bias and a variance term. The variance
was studied with help of the Cramér-Rao bound, shown to
be proportional to the number of considered virtual paths,
provided a condition on the observation matrix Copt is fulfilled.
Moreover, computing the Fisher information matrix (FIM)
allowed to discover that DoD, DoA and delay are orthogonal
parameters, leading to the design of a computationally efficient
sequential estimation algorithm (algorithm 3) with asymptotic
optimality properties. Then, the bias term was bounded by a
quantity lending itself to nice interpretations, depending both
on the propagation properties of the channel, on the antenna
arrays geometries and on the position of the subcarriers.

The aforementioned mathematical developments were then
assessed experimentally. First, the bias was approximated
in various configurations, verifying the predictions of the
computed bound, and furthermore showing that few virtual
paths are sufficient to approximate well realistic channels in
the millimeter wave band. The sequential estimation algorithm
was then compared to the classical joint one. It was found that
from moderately high SNR it performed as well as the joint
one, whereas being much more computationally efficient. This
shows it is a promising alternative and should be considered
for system design.

In the future, it would be of great interest to study practical
designs of observation matrices that take into account practical

constraints (for example hybrid systems) while fulfilling ex-
actly or approximately the optimal observation condition Copt
and requiring a reasonable amount of resources (with a number
of linear measurements Nm much smaller than NtNrNf ).
On a more technical side, improving the bound on the bias
proposed here may be possible, as mentioned in appendix C.

APPENDIX

A. Proof of theorem 1

Starting from (14) and denoting A , MHΣ−1M, the CRB
can be re-expressed using only real matrices by introducing

D̄ ,

(
Re{∂hMp

∂θ }
Im{∂hMp

∂θ }

)
, Ā ,

(
Re{A} −Im{A}
Im{A} Re{A}

)
,

so that
I(θ) = 2D̄T ĀD̄

is verified immediately. This yields the following expression
for the CRB

CRB =
1

2
Tr

[
∂hMp

∂θ
(D̄T ĀD̄)−1 ∂hMp

∂θ

H
]
.

Moreover, since for any symmetric real matrix F and any
complex matrix E,

Tr
[
EFEH

]
= Tr

[(
Re{E}
Im{E}

)
F
(
Re{E}T Im{E}T

)]
,

it follows

CRB = 1
2 Tr

[
D̄(D̄T ĀD̄)−1D̄T

]
= 1

2‖Ā‖2
Tr
[
D̄(D̄T Ā

‖Ā‖2
D̄)−1D̄T

]
.

(20)

The normalized matrix Ā
‖Ā‖2

is symmetric positive semidefi-
nite and has all its eigenvalues upper bounded by one so that

Ā

‖Ā‖2
� Id,

which yields

D̄T Ā

‖Ā‖2
D̄ � D̄T D̄.
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Using [28, Theorem 4.3] and assuming the model is identifi-
able (so that the inversion is possible), it follows

(D̄T Ā

‖Ā‖2
D̄)−1 � (D̄T D̄)−1,

and finally

D̄(D̄T Ā

‖Ā‖2
D̄)−1D̄T � D̄(D̄T D̄)−1D̄T ,

which gives

Tr
[
D̄(D̄T Ā

‖Ā‖2
D̄)−1D̄T

]
≥ Tr

[
D̄(D̄T D̄)−1D̄T

]
= Nθ.

Dividing both sides by 2‖Ā‖2 and noticing that the matrices A
and Ā have the same eigenvalues (even though with a doubled
multiplicity for Ā) so that ‖A‖2 =

∥∥Ā∥∥
2
, (15) is obtained.

B. Proof of theorem 2

The inner product of characteristic vectors involved in (19)
can be expressed as

eHel = [ef (ξ)Hef (τl)][et(
−→ut,l)Het(

−→wt)][er(−→wr)Het(
−→ur,l)],

which is a product of three inner products, that can all be
expressed in the general form

1

N

N∑
n=1

e−jCn ,

where
• taking Cn = 2πfn(τl − ξ) and N = Nf yields the delay

vectors inner product ef (ξ)Hef (τl),
• taking Cn = 2π

λ
−−→at,n.(−→wt − −→ut,l) and N = Nt yields the

transmit steering vectors inner product et(
−→ut,l)Het(

−→wt),
• taking Cn = 2π

λ
−−→ar,n.(−→ur,l −−→wr) and N = Nr yields the

receive steering vectors inner product er(
−→wr)Her(

−→ur,l).
This general expression allows to study these three inner
products jointly.

Using the series representation of the exponential ex =∑+∞
k=0

xk

k! , one gets

1

N

N∑
n=1

e−jCn =
1

N

N∑
n=1

+∞∑
k=0

(−j)kCkn
k!

.

The antennas at both the transmitter and receiver being located
with respect to the centroid of the array and the frequencies
being expressed with respect to the central frequency, one gets∑N
n=1 Cn = 0, which implies that the term k = 1 of the series

is null in all three cases, leading to

1

N

N∑
n=1

e−jCn = 1 +

+∞∑
k=2

(
− j
)k

k!

1

N

N∑
n=1

Ckn.

Noticing that Ckn ≥ 0 for k even, one gets that the real part
of the series is an alternating series. Its terms are decreasing
in magnitude if

Ckn >
k!

(k + 2)!
C(k+2)
n , ∀k, n.

This is the case for any k if it is fulfilled for k = 0, leading
to the sufficient condition

C2
n < 2, ∀n.

Specializing this condition to the three values Cn can take
allows to get the three sufficient conditions of the theorem:
• |τl − ξ| < 1

π√
2
B ,

• ‖−→ur,l −−→wr‖2 < 1√
2πRrλ

,

• ‖−→ut,l −−→wt‖2 < 1√
2π

Rt
λ

.

If they are fulfilled, the real part of the series can be bounded,

Re

{
1

N

N∑
n=1

e−jCn

}
≥ 1− 1

2N

N∑
n=1

C2
n,

which implies∣∣∣∣∣ 1

N

N∑
n=1

e−jCn

∣∣∣∣∣ ≥ 1− 1

2N

N∑
n=1

C2
n.

Replacing Cn and N by their respective values for the three
inner products gives the theorem.

C. Improving the bound on the bias

The bound of this paper is obtained applying the triangle
inequality, which may lead to a loose bound. Instead, one
could write∥∥h− h̃

∥∥
2

=
√
NrNtNf

∥∥∥∑L
l=1 βl

(
el − eHele

) ∥∥∥
2

= βHQβ

where β = (β1, . . . , βL)T and Q ∈ CL×L with

qij = eHi ej − eHi eeHej .

Studying the properties of the matrix Q may lead to a tighter
bound, but is not guaranteed to lead to as easily interpretable
results.
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