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USEFUL BOUNDS ON THE EXTREME EIGENVALUES AND
VECTORS OF MATRICES FOR HARPER’S OPERATORS

DANIEL BUMP, PERSI DIACONIS, ANGELA HICKS, LAURENT MICLO,
AND HAROLD WIDOM

ABSTRACT. In analyzing a simple random walk on the Heisenberg group we en-
counter the problem of bounding the extreme eigenvalues of an n X n matrix of
the form M = C'+ D where C'is a circulant and D a diagonal matrix. The dis-
crete Schrédinger operators are an interesting special case. The Weyl and Horn
bounds are not useful here. This paper develops three different approaches to
getting good bounds. The first uses the geometry of the eigenspaces of C' and
D, applying a discrete version of the uncertainty principle. The second shows
that, in a useful limit, the matrix M tends to the harmonic oscillator on L?(R)
and the known eigenstructure can be transferred back. The third approach is
purely probabilistic, extending M to an absorbing Markov chain and using
hitting time arguments to bound the Dirichlet eigenvalues. The approaches
allow generalization to other walks on other groups.

October 1, 2018

1. INTRODUCTION

Consider the n x n matrix

As explained in [5] and summarized in Section this matrix arises as the Fourier
transform of a simple random walk on the Heisenberg group, as a discrete approx-
imation to Harper’s operator in solid state physics and in understanding the Fast
Fourier Transform. Write M = C + D with C a circulant, (having % on the diago-
nals just above and below the main diagonal and in the corners) and D a diagonal
matrix (with diagonal entries 1 cos (2%) for 0 < j <n—1). The Weyl bounds [20]

and Horn’s extensions [2] yield that the largest eigenvalue Ay (M) < A1 (C)+ A1 (D).

1991 Mathematics Subject Classification. 60B15; 20P05.

Key words and phrases. Heisenberg group, almost Mathieu operator, Fourier analysis, random
walk.

The first, second, third, and fifth authors would like to acknowledge partial support from
NSF grants DMS 1001079, DMS 08-04324, DMS 1303761, and DMS 1400248 (respectively). The
remaining author would like to acknowledge partial support from ANR grant number ANR-12-
BS01-0019.



2 BUMP, DIACONIS, HICKS, MICLO, AND WIDOM

Here A\ (C) = A\i(D) = % giving A\;(M) < 1. This was not useful in our applica-
tion; in particular, we need A1 (M) <1 — %ﬁbt This paper presents three different
approaches to proving such bounds. The first approach uses the geometry of the
eigenvectors and a discrete version of the Heisenberg uncertainty principle. It works
for general Hermitian circulants:

Theorem 1. Let C be an n x n Hermitian circulant with eigenvalues A1 (C)
<o > M(C). Let D be an n x n real diagonal matriz with eigenvalues A\ (D)
<> Ao(D). If kK satisfy 1 < k, k' < n,kk' <n, then

M(C+ D) < \(C)+ (D)

>
>

- %min{Al(D) = A(D), M(C) = A (C)} (1 — kk/) .

n

Example 1. For the matrix M, in , the eigenvalues of C' and D are real and

equal to {3 cos (2£2) 0<jcn_1- For simplicity, take n odd. Then, writing \; =

)\J(C) = )\j(D), )\1 = %, )\2 = )\3 = %COS (2%), and /\2j+1 = )\2]' = %COS (2%) for

1<j <231 Choose k = k' = |c¢y/n] for a fixed 0 < ¢ < 1. Then

2
1 1/ me \2 1 74 9
’\’“_2<1_2<n1/2) +O(n3/z)>v (1‘ n> =z(1-9

and the bound in Theorem [I] becomes

72 2(1 — ¢)? 1
A (M) <1— s n +0 (W) .

The choice ¢ = % gives the best result. Very sharp inequalities for the largest and
smallest eigenvalues of M,, follow from [3]. They get better constants than we have
in this example. Their techniques make sustained careful use of the exact form of
the matrix entries while the techniques in Theorem [I] work for general circulants.

The second approach passes to the large n limit, showing that the largest eigen-
values of M, from tend to suitably scaled eigenvalues of the harmonic oscillator
L=-14 + w222

— 4dx? :

Theorem 2. For a fized k > 1, the kth largest eigenvalue of M,, equals

1
1'uk+0<)
n n

w, the kth smallest eigenvalue of L.

with py =

Theorem [2] gets higher eigenvalues with sharp constants for a restricted family of
matrices. The argument also gives a useful approximation to the kth eigenvector.
Similar results (with very different proofs) are in [28].

There are many techniques available for bounding the eigenvalues of stochastic
matrices ([24], [13], and [7]). We initially thought that some of these would adapt to
M,,. However, M, is far from stochastic: the row sums of M,, are not constant and
the entries are sometimes negative. Our third approach is to let M), = %I + %Mn
This is substochastic (having non-negative entries and row sums at most 1). If
ai=1—732; M;(i,j), consider the (n + 1) x (n + 1) stochastic matrix:
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100...0
aj

(2) M) = | @ M
: n
an

This has the interpretation of an absorbing Markov chain (0 is the absorbing
state) and the Dirichlet eigenvalues of M/ (namely those whose eigenvalues vanish
at 0) are the eigenvalues of M},. In [5] path and other geometric techniques are used
to bound these Dirichlet eigenvalues. This results in bounds of the form 1— CSE/S; for
A1(M,,). While sufficient for the application, it is natural to want an improvement
that gets the right order. Our third approach introduces a purely probabilistic
technique which works to give bounds of the right order for a variety of similar

matrices.

Theorem 3. There is a ¢ > 0 such that, for all n > 1 and M,, defined at , the
largest eigenvalue satisfies A1 (M,) <1 — £.

Section [2] gives background and motivation. Theorems and [3] are proved
in Sections and[5] Section [f] treats a simple random walk on the affine group
mod p. It uses the analytic bounds to show that order p? steps are necessary and
sufficient for convergence. It may be consulted now for further motivation. The
final section gives the limiting distribution of the bulk of the spectrum of M, (a)
using the Kac-Murdock-Szego theorem.

2. BACKGROUND

Our work in this area starts with the finite Heisenberg group:

1 =z =z
Hyi(n) = 01 y x,y,z € Z/nZ
0 0 1
Write such a matrix as (x,y, 2), so
(x,y,2)(2",y, ") = (@ + 2",y +y, 2+ 2/ +2y)).
Let
(3) S ={(1,0,0),(-1,0,0),(0,1,0),(0,—1,0)} and

% ge s
0 otherwise

(4) Q) = {

Thus S is a minimal symmetric generating set for Hq(n) and @ is the probability
measure associated with ‘pick an element in S at random and multiply.” Repeated
steps of this walk correspond to convolution. For (z,y,z2) € Hi(n),

Q= Y Q.. (w2 y 2)7Y).

(z',y',2")€H1 (n)
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When £ is large, Q*k converges to the uniform distribution U(z,y,2) = % The
rate of convergence of Q*k to U can be measured by the chi-squared distance:

) Y QM@ Uy )P /Uy, 2) = 3 dQ0)"I.
(z,y,2)€EH pEH,
p#1
On the right, the sum is over nontrivial irreducible representations of H;(n) with p
of dimension d, and Q(p)* = 2 ey.e) Q" (z,y,2)p(x,y, z). For background on the
Fourier analysis approach to bounded convergence see [8], Chapter 3.
For simplicity, (see [5] for the general case) take n = p a prime. Then H;(p)

has p? 1-dimensional representations p p(z,y, z) = e 5 (artby) g5 a,bin Z,. It has

p — 1 p-dimensional representations. These act on V = {f : Z, — C} via

27

pa(@,y,2)f(w) = e > W f(z +w), 0<a<p—1.

The Fourier transform of @ at p, is the matrix M, (a) as in with cos (2%)

replaced by cos (2’“”) for0<j<p-—1.

The chi-squared norm in is the sum of the (2k)th power of the eigenvalues
so proceeding needs bounds on these. The details are carried out in [5]. The main
results show that k of order n? steps are necessary and sufficient for convergence.
That paper also summarizes other appearances of the matrices M, (a). They occur
in discrete approximations of the ‘almost Mathieu’ operator in solid state physics.
In particular, see [31], [3], and [I]. If F,, is the discrete Fourier transform matrix

((]—' )ik = ﬁe%n '); it is easy to see that F, M, (1) = M,(1)F,. Diagonalizing
Fn has engineering applications and having a ‘nice’ commuting matrix should help.

For this reason, there is engineering interest in the eigenvalues and vectors of M, (1).
See [I4] and [25].

3. PROOF oF THEOREM [I]

Throughout this section C' is an n X n Hermitian circulant with eigenvalues
A(C) > Xa(C) = -+ > A\ (C) and D is a real diagonal matrix with eigenvalues
A(D) > Xa(D) > -+ > A\(D). Let z be an eigenvector of C + D corresponding

ik

to A\1(C + D). Recall that <(]—'n)jk = ﬁehﬁ] ) for j,k € Z/nZ. This has rows

or columns which simultaneously diagonalize all circulants. Write # = F,,z and 2"
for the conjugate transpose. We use ||z||? = z"z.

Our aim is to prove that for kk’ < n,

(6) A\(C+ D) <\ (C)+ Ai(D)

2
1 . kK
- § mln{)\l(D) — )\k+1(D), )\1(0) — >\k’+1(0)} (1 — n)
The first step is to write z"*Cx in terms of a Fourier transform pair & = F,z.
A subtle point is that although F,, diagonalizes C, the resulting diagonal matrix
does not necessarily have entries in decreasing order, necessitating a permutation
indexing in the following lemma.



BOUNDS ON EIGENVALUES FOR HARPER’S OPERATORS 5

Lemma 1. Define a permutation o such that

eTtoy b
I
is the eigenvector corresponding to \;(C). Then
(7) e"Cx = i"D'
with D' = diag(Ay, (C), ..., Ao, (C)).
Proof. Since C is diagonalized by F", F,CF" = D'. Thus
e"Cx = 2" FI F,CF!' Fox = 2" D'

,0<b<n-1

O

A key tool is the Donoho-Stark [I5] version of the Heisenberg Uncertainty Prin-
ciple. For this, call a vector y ‘e-concentrated on a set S C [n] if |z;| < € for
i¢S.

Theorem 4 (Donoho-Stark). Lety, § be a unit norm Fourier Transform pair with
y eg-concentrated on S and § ep-concentrated on T. Then

(8) ISIIT] = n(1 — (es + er))*.
Let (y)s be the projection onto the subspace vanishing off S:
)Y 1€ 8
(®)s)i = {0 otherwise
A simple consequence of the bound is

Corollary 1. If kk’ < n, z, 2 a unit norm Fourier transform pair and S and T are
sets of size k, k’, then

2
5 1 kk’
() sel® + 1(2) e > 3 <1 - n) :
Proof. Let €g = |[(2)s|| and er = |[(£)re]. Then ||z — (2)s]| = [(#)se| and
12 = ()7l = ||(2)7e]]. Thus z is eg concentrated on S and 2 is er concentrated on
T. Thus () gives
S||T kk' kk'
[S1I7] == >0 —(es+e))or(es+er)>1—4y/—,
n n n

soif kk' <n
2
1 1 kk'
H@yWHWhWZ@?H%22@+WVZ2G_Vn>

Proof of Theorem[1 With notation as above,
M (C+ D) =a2"(C+ D)z =2"Crx +2"Dx = 2"D's + 2" Dx =: *.
Let D =D — \(D)I and D’ = D' — \{(C)I. Then
¥ = 2"\ (O) & + "D’z + 2"\ (D) Iz + 2" Dx
=X\ (C) 4 2"D’i + M\ (D) + 2" Dz
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Now D and D’ have non-positive eigenvalues so our improvement over the Weyl
bounds will follow by showing that x or  have support on suitably negative entries
of D or D.

Let S and T correspond to the largest k, k' entries of D, ﬁ/, respectively. Then
x=(x)s+(x)ge, T = (Z)7 + (). Each of those decomposition is into orthogonal
pieces. Multiplying any of the four pieces by an arbitrary diagonal matrix preserves
this orthogonality. Thus

=M (C) + M(D) + (&)1 D' (@)r + (2)7D'(&)7 + (2)§D(@)s + (2)§: D(2)se.

For the last four terms on the right, terms 1 and 3 are bounded above by zero and
2 and 4 contribute with the following bounds:

£ <M (C) + M D) + it (D) = MDYI@)se | + (e 2(C) — M(O)| (@)
<M(C) + i (D)

2
. 1 kE'
+min{(Ae41(D) = (D)), w41 (C) = M (O)} | 5 (1 - n)
where the last line follows from the corollary. ([
Remarks. (1) These arguments work to give the smallest eigenvalue as well,
so in fact we also have for I’ < n:
(9) M(CH+ D) > X (C)+ M(D)
1 i ’
+ 3 min{A,_;(D) — A\ (D), A1 (C) — A\ (C)} (1 — n) .

(2) Our thanks to a thoughtful anonymous reviewer, who pointed out that
Corollary |1 can be improved using Cauchy- Schwartz to show that for 0 <
a,b <1,

2
! 1 1
(1 — kkj) < (es+er)? < (aet + bex) (a + b) .

Setting a = A\gy1(D) — A1 (D) and b = A\py1(D) — A1 (D), one can improve
the previous theorem:

M (C+ D) <\ (C)+ M\(D)
D) = et (D) M(C) = A (©)) (1 kk)
) |

(AM(D) = Ae41(D)) + (M(C) = A1 (C n

In our case, the result is the same, since the eigenvalues of C' and D are
identical.

(3) Donoho and Stark [I5] give many variations on their uncertainty principle
suitable for other transforms. The techniques above should generalize, at
least to the G-circulants of [9].

(4) There should be similar theorems with C' and D replaced by general Hermit-
ian matrices and perhaps extensions to higher Weyl and Horn inequalities
(see [2] and [I8]).

(5) Further applications/examples are in Section [6]
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4. THE HARMONIC OSCILLATOR AS A LIMIT.

We prove Theorem 2, that for k£ > 1 the kth largest eigenvalue of M, is equal to
1 — pg/n+ o(1/n) and the kth smallest eigenvalue of M, is equal to —1 + puy/n +
o(1/n), where uy is the kth smallest eigenvalue of
1 d?
L= 1 da2 + w2 x?
on (—00,00). By a classical computation (see [19]), ur = (2k — 1)/(27).
The n x n matrix M, has j, k-entry

1 1
i 0 —k—-1)+6(j—k+1)]+ 3 cos(2mk/n)6(5 — k),
where j,k € Z,, = Z/nZ.
We define }
M, =n (I — M,).

This has j, k entry mq(j, k) + ma(j, k), where

10) il =5 (865 - 06~k +86 -+ 1))
(11) ma(j, k) = g (1 — cos(2nk/n)) 6(j — k).

We will show first that if p is any limit of eigenvalues of M, then g is an
eigenvalue of L; and, second, that any eigenvalue p of L has a neighborhood that
contains exactly one eigenvalue, counting multiplicity, of M, for n sufficiently large.
These imply the stated result.

These will be accomplished as follows. Give each point of Z, measure 1/4/n,
so the total measure equals y/n. We then define an isometry T from L?(Z,) to
L?(—+/n/2,+/n/2) (thought of as a subspace of L?(R) with Lebesgue measure) for
which the following hold:

Proposition 1. Suppose {u,} is a sequence of functions of norm one in L*(Zy,)
such that the sequence {(My un,un)} of inner products is bounded. Then {Tu,}
has a strongly (i.e., in norm) convergent subsequence.

Proposition 2. If ¢ is a Schwartz function on R then TM,T*¢$ — L¢ strongly

These will easily give the desired results. (See Propositions [3| and 4| near the
end.) The final section treats the smallest eigenvalues.

4.1. Proofs for the largest eigenvalues. We use two transforms (with, confus-

ingly, the same notation). First, for ¢ in L?(—/n/2,v/n/2) we define

. Vn/2 )
w@:/’ eIV (1) e, (L€ T,
—Jn)2

and we have by Parseval (after making the substitution = — 2y/n in the integral)
(12) 16 = n'/* 4]l
Here [|¢]|* = 3Zcz [0(0).

IThe operator T* acts on L2(—+/1/2,/1/2), so ¢ is first to be restricted to (—v/12/2, /1/2).
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For u € L%(Z,) we have its finite Fourier transform

) =Y e k), (L€ L),

k

and we compute below that

(13) [l = n®* Jull.

al® =y la@P,

the sum over any integer interval of length n. To show , we have

AOP = Y e R ) ulh).

Jik

Here

—2mi(j—k)/n

Since e is an nth root of unity, equal to 1 only when j = k in Z,,, we get

a)* = Z @0 =n Y ulk)]? = n?? |lul*.
k

Now we define the operator T'. Let J be an interval of integers of length n (which
later will be specified further) and set
_ Z 627”[36.

ted
Then T is defined by

1% ( k) u(k).

T(x, k) = %Dn (\jﬁ—z)

By the definition of the inner product on L?(Z,,) we find that
L*(=v/n/2,v/n/2) = L*(Zy)

T*(k,z) = %Dn (fL - %) .

In terms of the transforms we have the following:

3

Thus T has kernel

has kernel

Lemma 2. (a) For u € L*(Z,),

1 ~ .
R LA iflel,
Tu(l) =

0 if 0 J.
(b) For ¢ € L*(—/n/2,y/n/2),
T*(f) = v/n d(¢) when £ € J.
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Proof. For (a), we have

ﬂ([) _ / Z e—Qﬂiéx/\/ﬁeQTrM’(w/\/ﬁ—k/n) u(k) dx

ke

_ 1 /Z (2l ~O/V (1) .
n

ed

S|

—_

The result follows.
For (b), we have when ¢ € J,

Tre i 1 —27 n 2wl n—x n
T30 = - ) /e 2mith/n o2mit! (k/n—2/V7) (1) dy

k., t'eJd

=i [ Y ) do = Vi G0).
O

We show two things about T'. For the second we shall assume now and hereafter
that the end-points of J are £n/2 4+ O(1), although this is a lot stronger than
necessary.

Lemma 3. (o) T*T =1. (b)) TT* — I strongly as n — oo.

Proof. By Lemma [2p,
T*Tu(l) = vn Tu(l'),

where ¢/ € J and ¢/ — ¢ € nZ. By Lemma [2h this in turn equals u(¢'), which equals

u(¢) since u is n-periodic. This gives (a).

For (b) observe that T'T* is self-adjoint. Since (T'T*)? = TT*TT* =TT*, it
is a (nonzero) projection and so has norm one. Therefore it suffices to show that if
¢ is a Schwartz function then T'T*¢ — ¢. We have from Lemma [2h that

— 1 —
TT*p(f) = —=T*p(l
30 = =T0(0)

if £ € J and equals zero otherwise. If ¢ € J then by Lemma [2b it equals QAS(E) It
follows that

ITT6 =6 = l(0).
g
Integrating by parts shows that
(£) = O(v/n/0),

and so, by our assumption on J, the sum on the right side is O(1). Then by
we get

ITT*¢ — ¢|| = O(n~/*).

Now the work begins. First, an identity. We introduce the notations
C(§) =1 —cos(2m€), S(§) = sin(n),
and observe that C(£) = 2 .5(¢)2.
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Lemma 4. For u € L*(Z,),
(M u, ) =n~ 2 |S(/n) G0)|1> + n||S(k/n) uk)|?.

Note. Here and below we display “k” as the variable in the ambient space Z,, and
“¢” as the variable in the space Z,, of the Fourier transform. We abuse notation
and, for example, the “u(k)” above denotes the function k — u(k).

Proof. We consider first the contribution of to the inner product. If we define
the operators A4 by

(Aru)(k) = u(k £ 1),
we see that the contribution to the inner product is

g (u— [Apu+ A_u]/2, ).

Now
Aiu(ﬁ) _ e:i:2m‘£/n ﬂ(ﬁ),
so if we use we see that the above is equal to

S (O ) () = 2 S ()

To complete the proof of the lemma we note that the contribution to the inner
product of is clearly
n —
5 (Clk/n)u(k), u(k)) = n | S(k/n) u(k)]|*
O

Lemma 5. Suppose u,, satisfy (M, u,) = O(1). Then (a) ||z Tu, (z)|| = O(1),
and (b) ||(Tun)'|| = O(1).

Proof of (a). We have

an(g) _ an(é_'_ 1) — Ze—Qwék/n(l _ e—27rik/n) un(k),
k

the finite Fourier transform of (1 — e=27%/")y,, (k). We have,
(1 — 27y, (k)| = 2|S (k/n) un (k).
Therefore from and
1S (k/n) un (k)| = O(n="/?),
which follows from Lemma [ we get
[ (6) = @ (€ + 1) = O(n'?).
It follows from Lemma [2h that fu\n(é) = fu\n(f +1)=0if both /,{+1¢ J and

(14) ST [ Tun(0) = Tun (€ + 1> = O(n~Y/2).
L, 0+1€J

If¢eJbut £+1¢J then fu\n(ﬁ + 1) = 0 and / is the right end-point of J and
therefore n/2 + O(1). From

(15) 1S(¢/n) @, (0)] = O(n'?),



BOUNDS ON EIGENVALUES FOR HARPER’S OPERATORS 11

which also follows from Lemma |4l and that |S(¢/n)| is bounded below for ¢
n/2 + O(1), we have in particular that @,(¢) = O(n'/*), Therefore fu\n(é)
O(n=1/4).

So the bound in holds when the sum is taken over all £ € Z. Since

Tup(f) — Tun (£ +1) = / e~ 2mint/ VR (1 =2/ Py, (2) di,

it follows from that

(/) Tun (@) = O(n~Y/2).
In the interval of integration |x| < +/n/2, so |S(x/y/n)| is bounded below by a
constant times |z|/y/n. This gives (a). O

Proof of (b). We have

E wil(x n 27 § : wilx /1~
(Tun)/(x) = 372 £62 4 /f k/ )’LL (k) = 375 862 ¢ /\/7 ’U,n(é)

k,teJ LeJ

Thus fu\’n(ﬁ) =2l U (¢)/n for £ € J, and it follows from that

w2 = 275 2 e

leJ
Now |S(¢/n)| is bounded below by a constant times |¢/n| for £ € J, so implies

that
S lam )2 = o),
Led
which gives the result. (|

Proof of Proposition[]l Since T is an isometry each ||Tu,|| = 1, and by passing to
a subsequence we may assume {Tu,} converges weakly to some f € L%(R). We
use the fact that strong convergence will follow if we can show that ||f|| > 1. (In
general, if || f,|| = 1 and f,, — f weakly, then || f|| > 1 implies that f,, — f strongly.
Here is the argument. We have that

1o = £I2 = 1 fall® + 117 = 2Re (fa, f)-

By weak convergence, (f,, f) — ||f||?>. Therefore
fn = fI* = 1= lI£I* <0,
so || fn = £ = 0.)

The hypothesis of Lemma [5|is satisfied. It follows from Lemma [5ha that for each
€ > 0 there is a bounded interval A such that

(1 =Xa) Tun|| <€

for all n. So [|xaTuy| > 1—e. It follows from Lemma pp that {Tu,} is equicon-
tinuous, and this combined with ||X 4 Tu,|| < 1 shows that a subsequence of {T'u,,}
converges uniformly on A (to X4 f), and so || x4 f|| > 1 —e. Thus, ||f|| > 1. O

Proof of Proposition[3 Consider first the operator corresponding to m; in .
We call it nA?. (The subscript indicates that it acts on functions of k.) We show
first that

nT AT ¢ — —¢" /4
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in L?(R). We have
n (T AR T ¢)(x)

1 omi (2 /i—k/n) vRZ 2mi € ((k/n—y //7)
= 912 Do Aje o(y) dy
0.0k —/n/2

The exponent in the integral is a function of k/y/n — y. So taking the second
difference Ai in k is the same as taking the second difference A?Q; in y as long as the
differences in the y-variable are 1/4/n. With this understanding, the above equals

LN it/ vk >/ﬁ/2 2 i (ke
wil((z//n n A mil' ((k/n—y/v/n) du.
o1/2 e;k e e y€ o(y) dy

By changing variables in two of the three summands from Ai we can put the Ai
in front of the ¢(y). There is an error because of the little change of integration
domains but (for ¢ a Schwartz function) this is a rapidly decreasing function of n,
and so can be ignored. After this what we get is nT T* A? ¢. Taylor’s theorem
gives
M(A26)(0) = " @)/a+0 (172 max 16" ).
ly—z|<1/vn

from which it follows that n (A2 ¢)(x) — —¢"(z)/4 strongly. Since TT* — I
strongly we deduce that nT A2 T*¢ — —¢" /2 strongly.

Lastly, consider the operator corresponding to , which is multiplication by
nC(k/n)/2 = n(1 — cos(2wk/n))/2. For convenience we call this operator C,,/2.

By Lemma we know that m(f) = \/ﬁqAS(Z) when £ € J. In general,

Cou(t) =n 3 (1 - cos(2rk/n)) e 2754 u(k) = n (A27)(0),
k

where here

(A2)(0) =a(l) — [ul — 1) +a(l + 1)]/2.
Applying this to T*¢ gives

CoT*p(0) = n A T+g(0) = n®/? A% §(0)
as long as £+ 1 are also in J. If £ is in J but one of £+ 1 is not in J then ¢ is near
an end-point of J and the error committed will be rapidly decreasing as n — oo.
For the right side is n®/? times a linear combination of integrals like

Vn/2
/ eFmiTVn o(x) dx,
—v/n/2
and integration by parts many time shows this is rapidly decreasing. For the left
side, if for example £ 4+ 1 ¢ J then it is the same as the value at £ +1 —n € J,
which is rapidly decreasing. So we ignore this little error and use
~ Vn/2 _ _
G = [ e ) i) o) do
—vn/2

We also have m(ﬁ) = \/ﬁﬁ\q&(é) for £ € J. Thus (ignoring the error),

. - Va2
Ca T o(0) — 202 T a2o(0) = v/ / 2RIV (T /\/7) — 27%22) () d.
V)2
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From this we get

—

[CaT 6 — 20> Ta25| < n®* ||(n T/ Vi) — 20°2%) §(a)]| = On ™),
since n C(x/y/n) — 27222 = O(z*/n) and 2* ¢(x) € L2(R). Then we get from
|C T*¢ — 212 T*2%p|| = O(n™1).

Equivalently,
|TC,T*¢ — 212 TT*2%p| = O(n™1).
Since TT* — I strongly, this gives
|TC,T*¢ — 212 2%p|| — 0.

Since the operator corresponding to is multiplication by C,, /2, this completes
the proof of Proposition O

Now we go back to the eigenvalues of M,, and easy consequences of Propositions

[ and 21

Proposition 3. (a) If \,, are eigenvalues of M, and \, — W, then pu is an eigen-
value of L. (b) Any eigenvalue v of L has a neighborhood that contains at most
one eigenvalue (counting multiplicity) of M, for sufficiently large n.

Proof of (a). Suppose that u,, is an eigenvector of M,, of norm one with eigenvalue
An. In particular (M, u,,u,) = \,. By Proposition |1| there is a subsequence of
{Tu,} that converges strongly to some f € L*(R). For a Schwartz function ¢ we
have .

(uf,¢) = lim (A, Tuy, ¢) = lim (T'Mpun, ¢)

= lim (up, M, T*¢) = lim (Tup, TM, T*$),
since T is an isometry. By Proposition [2] TM,T*¢ converges strongly to L.
Thereforeﬂ the limit equals (f, L¢), and we have shown

u(f,¢) = (f, Lo).

It follows that f is an eigenfunction of L with corresponding eigenvalue u. Here
is why. The eigenfunctions of L are the harmonic oscillator wave functions ¢;, and
therefore Schwartz functions. If the corresponding eigenvalues are u;, then

(b= pa) (f, 0i) = w(f, 0i) — (f, L) = 0.
Since the ¢; are complete and f # 0, some u — ur = 0. And f, being orthogonal
to the ¢; with i # k, must be a multiple of ¢, and therefore a corresponding
eigenfunction. O

Proof of (b). Suppose the contrary were true. Then there would be sequences of
eigenvalues {\,} and {\} of M,,, both converging to j, and corresponding orthog-
onal (since M, is self-adjoint) eigenfunctions u, and u/,. The strong (sub)limits f
and f’ of Tu, and Tu, would be mutually orthogonal eigenfunctions of L corre-
sponding to the same eigenvalue p of L. Since the eigenvalues of L are simple, this
cannot happen. O

2For this we need only weak convergence of one and strong convergence of the other. But we
also need that f # 0, which is no easier to show than strong convergence of T'un, and we shall
need strong convergence of T'M,,T*¢ for Proposition
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Proposition 4. For each eigenvalue pi of L there is a sequence of eigenvalues Ay,
of M., that converges to .

Proof. With corresponding eigenfunction ¢ of L we have, by Proposition 2,
ITMT*¢ — po|| = ITMT*¢ — Ll| = o(1).
From this, and that ||¢ — T'T* ¢| = o(1) by Lemma [3p, we get
IT (M T*¢ — pT*9)|| = o(1).
Since T is an isometry this is the same as
1M T ¢ — pT* 6| = o(1).

Since [|[T*¢|| = [T T*¢|| — ||¢]| # 0, and the other eigenvalues of L are bounded
away from p, this implies that p is within o(1) of an eigenvalue of M, and T* ¢
within o(1) of an eigenvector. See [I1]. O

Combining Propositions [3] and [4] shows that the kth largest eigenvalue of M,
equals 1 — p/n + o(1/n).

4.2. The bottom eigenvalues of M,. We shall find a unitary operator U on
L?(Z,,) such that the quadratic form for n(I+U,, M, U}) is the same as for n(I—M,,)
when n is even and close to it when n is odd. From that it will follow that the kth
bottom eigenvalue of M, equals —1 + py/n + o(1/n).

Recall that Lemma [4] says that

(n(I = M) u, w) = n=2S(¢/n) al* + n | S(k/n) u(k)|* =: Q(u),

where S(¢) = sin(n€). For this we used the identity 1 — cosé = 2sin?(£/2). For
n(I + M,,) this gets replaced by 1+ cos& = 2cos?(£/2). So now we define

C(§) = cos(m§),
and get
(n(I + Mp)u, w) = 0= C(E/n) G| +n || C(k/n) u(k)||.
We consider first the less straightforward case of n odd and define
v(k) = ™%y (k- (n+1)/2),
where o (real) will be determined below. We have
IC O/ k)| = 1CCk/m + 1/2 +1/2n) w(k)|| = 1S (k/n +1/2) o (k)|
Next,
B(0) =Y e Pk e2mioky (| — (n 4 1)/2)
k

— Zef2wi(k+(n+1)/2)f/n 627ria(k+(n+1)/2) u(k)

k
_ (_1)£ e—‘n’ié/n em’a(n—i—l) Ze—2m'k€/n eQTriak u(k)
k
We choose o = —(n+1)/2n. The factor outside the sum has absolute value 1 while

the sum becomes (¢ + (n + 1)/2). Alternatively,
[u(@)| = [o(f = (n+1)/2)|.
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Therefore
[CU/n)ual)]| = [C(¢/n+1/2+1/2n) V(E)|| = [|S(l/n + 1/2n) V().

The map U : v — v is unitary and we have shown

Lemma 6. For n odd we have,
(n(I + UM, U*)v, v) =n~Y2|S(/n+1/2n)5)||* +n||S(k/n + 1/2n) v(k)|>.

Remark. . When n is even we replace the shift (n +1)/2 by n/2 and a by —1/2,
and the extra 1/2n’s do not appear in the arguments of the S’s. The quadratic
form becomes Q(v) exactly, so U, M, U} = —Mnﬂ

Proposition 5. (n(I +UM,U*)v, v) = (1+O(n=?))Q(v) + O(n="/2|jv|]?).
Proof. Since dS/d¢ is bounded,
1S(k/n+1/2n) v(k)|| < [|S(k/n) v(k)l| + O~ u(k)])).-
It follows from the arithmetic-geometric mean inequality that for any € > 0
la+b* < (L+¢e)fal* + (1 +e71) [b]*

We will take ¢ — 0 as n — 00, so we obtain

IS(k/n+1/2n) v(k)[* < (1 + ) [|S(k/n) v(k)* + O™ n 2 |[u(R)[|?).
Similarly,

18(¢/n+1/20)T)* < (1 + ) [IS(¢/n) D)|* + O™ n?[[7)]|?)
= (L+¢) [S(¢/n) 3> + Ol ™2 |lu?),

where we used |7 = n®/*

Thus,

[v]]-

(n(I + UM U*), v) < (14¢) Q) + 0=~ 0 Jo]|?).
Similarly,
(n(I + UM U*)v, v) > (14+e)" Q) — O(e *n~t|jv||?).
We set ¢ = n~!/2 and put the inequalities together to get the statement of the

proposition. O

Recall that Q(v) = (n(I — My, )v,v). If in the statement of the proposition we
take the minimum of both sides over all v with ||v]| = 1 we deduce that

n+nd, = (1+0n"2))(n—nr)+O0n"'?),

where A, is the bottom eigenvalue of M,, and A; the top eigenvalue. Since A\; =
1— p1/n+ o(1/n), we have n — nA\y = 1 + o(1), and then n + nA, = p1 + o(1),
and then A\, = =1+ p1/n+ o(1).

Using the minimax characterization of the eigenvalues we show similarly that
An—k41 = —1 4 pr/n + o(1) for each k.

3This is easy to see directly.
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5. A STOCHASTIC ARGUMENT

This section gives a bound on the largest eigenvalue of the matrix M,, using a

probabilistic argument. By inspection,
1 2
M, = §I + gMn

is a sub-stochastic matrix (with non-negative entries and row sums at most 1). Take
M) asin (2), an (n+ 1) x (n + 1) stochastic matrix corresponding to a Markov
chain absorbing at 0. The first (Dirichlet) eigenvector has first entry 0 and its
corresponding eigenvalue 5* is the top eigenvalue of M/,. Thus

8= M _ 3 B — 1

(2/3) 2 2
is the top eigenvector of M,,.
We will work in continuous time, thus, for any transition matrix M,

M; = Z € o ;,\!thj = M=D),
j=0

The matrix L = I — M, the opposite of the generator of the semigroup {M;}+>o,
has row sums zero, and non-positive off diagonal entriesﬁ If v is a right eigenvector
of M with eigenvalue 3, then v is an eigenvector of L with eigenvalue 1— . A lower
bound for the non trivial eigenvalues of L gives an upper bound for the eigenvalues
of M. Throughout, we specialize to L = I — M, let \* be the lowest non-zero
eigenvalue of L, and 8 the highest eigenvector of M,,.

Standard theory for absorbing Markov chains with all non-absorbing states con-
nected shows that if 7 is the time to first absorption, for any non absorbing state
&, as t tends to infinity,

lim log Pe(1 > t)
t—o0

Thus an upper bound on § will follow from an upper bound on P¢(r > t).
Here is an outline of the proof. Begin by coupling the absorbing chain of interest
with a simple random walk on C, = Z/(nZ). For a fixed b, let 7, be the first
time that the simple random walk travels b from its start. We derive the bound
P:(t > 1) < Gy, where Gy < 1 is a particular constant described below. Define a
sequence of stopping times 7; as follows. 7} = 7, 7 is the first time following 7;}
that the walk travels b, similarly define 7. By the strong law of large numbers,
" /m — wp, = E(7;}) almost surely. Thus

P{r > mu} = P{r > 7"}

Using the Markov property, P{r > 77"} < G}". This implies there are positive ¢,
C2 with

= \"

P{r > cymup} < G* + e~ ™.

4Since some of our readers (indeed some of our authors) may not be probabilists we insert the
following note; given any matrix L(z,y) with row sums zero and non-positive off diagonal entries
one may construct a continuous time Markov process W = (W;);>¢ as follows. Suppose Wy = wg
is fixed. The process stays at wg for an exponential time oo with mean 1/|L(wo,wo)|. (Thus
P{og > t} = e tL(wo,wo) ) Then, choose w; # wo with probability |L(wo,w:)|/L(wo,wo).
Stay at wi for an exponential time o; (with mean 1/L(wi,w1)). Continue, choosing from
L(wi1,.)/L(wi,wr).
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In our problem, classical random walk estimates show p; ~ b%. We show, for
b=+/n, G n 1s bounded away from one. Thus

P{T > cymup} < 2max(Gy',e” ™)

and
/!

log P{T > cymuyp} < d e

my A n
for some ¢, ¢ < 0. Backtracking gives the claimed bound in Theorem

The argument is fairly robust—it works for a variety of diagonal entries. At the
end of the proof, some additions are suggested which should give the right constant
multiplying %

We begin by constructing two processes. For as long as possible, general absorp-
tion rates will be used. Let X = (z,);>¢ be the standard continuous time random
walk on Z with jump rates 1 between neighbors. Take xy = 0. Fix b € Z and let
7p be the first hitting time of {—b—1,b+ 1}:

(16) T =1nf{t > 0: |z =b+ 1}
Let {u;}.ecz be Killing rates, e.g. arbitrary non-negative real numbers. Add a
cemetery state oo to Z. An absorbed process T = (%;)¢>0, behaving as = until it is

absorbed at oo with the rates {u,}.ez can be constructed as follows: Let £ be an
independent exponential random variable with mean 1. Define an absorption time

T € [0, 00] by
t
T=1 . > .
T gf(’){/g uLsds_E}

As soon as {uy }rez does not vanish identically, 7 is characterized by

(17) / Ug,ds = E.
0

Tt ift<7

- for 0 <t < .
oo  otherwise

More simply, T; =

The two processes are defined on the same probability space as are 7 and T7p.
The first goal is to estimate the chance that 7 > 7, in terms of the given rates. Our
bounds are crude but suffice for Theorem Bl

Proposition 6. With notation as above, for any b > 1,

) 1 b 1 b+1
(18)  P{T>m} < <H(b+1)zvo/gkn 1+(b+1)(b+1k)vk>

=1

with vy = min(u_g, ug).
Note that the bound is achievable; if all vy, = 0 then both sides equal 1.

Proof. For any k € Z, vy, < ug. Thus if 7 is the stopping time defined in with
uy, replaced by v, 7 > 7. Therefore it is sufficient to bound P{r > 7} from above.
Now, everything is symmetric about zero. Consider the process ¥ = (Y;);>0 =
(lz¢])e>0. This is Markov with jump rates:

2 ify=0,9/=1

J(y,y) =41 ify=2Z;and |y —yl=1
0 otherwise.
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Clearly 7, = inf;>o{Y? = b+ 1}. Define the family of local times associated to Y
t
L,(t)= / 0y(Ys)ds for y e Zo, t > 0,
0

where d, is the indicator function of y. For any ¢ > 0,

t
/UzstZ Z vy Ly (t).
0

0<y<b
This gives

{T>Tb}—{ZUy (mp) < &}

0<y<b
Taking expectations of both sides with respect to £

(19) P{r>mn}=ESexp |~ > v,Ly(n)
0<y<b
b
(20) < [I E{exp (b + D)o, Ly (7))} 77 .
y=1

The last bound follows from Hélder’s inequality (with b+ 1 functions).

It is well known (see [23] or Claim 2.4 of [26] for the discrete time version) that
for any y, 1 <y <b, L,(7n,) is distributed as an exponential random variable with
mean (b+1—y) and Lo(7) is exponential with mean %L, (The process leaves zero
twice as fast as it leaves other points.) Thus, for 1 <y S b,

b+1-y)~"
O+1-y) L+ O+,

1
1+(b+1)2’U0/2

E{exp(—(b+ vy Ly(m)} =

E{exp(—(b+ 1)voLo()} =

This completes the proof of Proposition [6]
O

The bound of Proposition@suggests introducing functions Fy, G on Rlﬁl. Given
by

1 ° 1 '
(21) Fb(V):{1_’_(b+1)2v0/2l1:[1—|—(b—|—1)(b+1—i)vl}

1

b 1 @+
(22) {II (b+1) b+1kww2} '

They have the following crucial monotonicity properties: say that v,v/ € Rb*!
satisfies v < v’ if this is true coordinate-wise. For v & Rb‘H, let v be the non-
decreasing rearrangement of v. Then

(23) Fy(v) < Gy(v)
(24) v <V = G(v) > Gy(V)
(25) Go(v) < Gu(¥)
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Return now to the process underlying Theorem |3| (still keeping the extinction
rates general.) Let z = (2;);>0 be defined on Z/nZ; it jumps to nearest neighbors at
rate ] and is killed with rates u = (u¢)ecz/nz. Suppose z, = &. Let v,, 0 <p <n—1
denote the non-decreasing rearrangement of u. Let 7 be the absorption time of z.
Fix b, 0 <b<n/2—1 and let

szgg{zfE{f—b—1,£+b+1}}.

Proposition |§| in conjunction with properties , , and , imply that for
any u, with Gp(u) depending only on the first b coordinates of u,

(26) P);:[T > Tb] < Gb(u).

Note that the upper bound is independent of &.
Introduce a sequence &; of further stopping times: &£ = &, and if £,, has been
constructed,

@7) Em1 = f{t > &t 20 € {26, —b— 1,2, +b+1}}

Informally speaking these stopping times end up being good. Because they cannot
be larger than 7, as in the previous treatment of a random walk on Z/nZ coinciding
with z; up to the absorption time, then &, are (almost surely) finite for all m and
the strong law of large numbers gives:

lim & =y = (b+1)?

m—a m
where p, = E{&} = (b+1)? from the Classical Gambler’s Ruin (see Chapter 14 of
[16]).

This suggests that, for m large, the quantities

Pe[T > myp) and Pe[T > ]

should behave similarly. Of course, care must be taken because 7 and &, are not
independent. To proceed, we use a large deviations bound for &,,.

Proposition 7. For &, defined in , there are positive constants, c1, ca, inde-
pendent of b and n such that for all m > 1,

Pl > cimpup) < e ™.

Proof. Observe first that this is simply a large deviations bound for the first hitting
time of the simple random walk so that n does not enter. The law of &; is well
known (see [22], [12], and [I7]). It can be represented as a sum of b+ 1 independent

exponential variables with means aj,as,...,ap+1 given by:
4 m(2k — 1)
= 2 1 — Iy e————— .
a < cos ( 20+1)
Thus for § € (0,a1)
bl
E[e?] = b
[e”1] kl;[l po—:

By simple calculus, there is ¢ > 0 such that for all a € (0, %], —log(l —a) < ca.
Thus, for 6 € (0,a1/2],

b+1 1

E(eefl) < 669 >ty an .
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Taking 6 = %,

b+1 _aj

E[ea1£1/2] < ef2n=0 Zay

Note that a,, is of order (n/b)? so the right side of the last inequality is bounded
uniformly in b, say by & > 1. Now, £, is a sum of m i.i.d. random variables so for
any c¢; > 0

P[ém > clm,ub] S e%E[ealgl/z]Tn S e_m'(clal.ub)/2_10gk_

Since pp = (b+ 1)2%, a1y, can be bounded below by a constant € > 0, uniformly in
b € N. Thus if ¢; = 4logk/e, the claimed bound holds with ¢z = log(k). O

We can now set up a bound for the top eigenvalue. Working on Z/nZ but still
with general absorption rates:

(28) Pelr > exmup] = Pe[T > campip; Em < campup] + Pe[T > cimpia, Em > cimipiy)

(29) < Pe[T > &) + Pelém > cimpu)
(30) <GP(v) +em
It follows that
A=~ lim log(Pe|r > exmmy)) > —— minfes, — log(Gy ()}
1T

m—00 C1MTy

Since up, = (b+1)?, proving that with b of order \/n, —log(Gy(x)) is bounded below
by a positive constant, uniformly in n, will complete the proof.

Up to now, the kill rates u have been general. Specialize now to the rates for
the matrix M" with any scrambling of its diagonal. The vector ¥ is given by the
b+ 1 entries of:

o (mom E () ()
(e (8) oo (2

From the definition of G, at with b = |v/n], a Riemann sum approximation
gives

2
lim Gy(v) =e27.

n— o0
Indeed,
1 2 |y +1
—log(Gp(v)) :m ;IOg (1 +B+DH(b+1-1y) (1 — cos <n {2J>))
o721 b—1 y+1 2
FE (b+1)(b—|—1—y) \‘QJ
y=0
D)
2n? b b/ \b
y=0
7T2b4 1
1— 2
o2 /0 (1 =y)ydy
™
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Combining the pieces, we use [ for the highest eigenvalue of M,, and thus g =
%5* - % Using this notation, we have shown that = < \* =1 — (% + %B . Thus
f<1— %‘; This completes the argument and ends the proof of Theorem

Remarks. The above argument can be modified to handle quite general diagonal
elements (in particular cos (22‘”) ,0 < j < N —1, needed for the application to the
Heisenberg random walk). Indeed, for a = o(n), the argument goes through with
no essential change with b = \/g to show that with diagonal entries cos (27”” ),

n

0 <j <n—1, the eigenvalue bound 1 — < holds (with ¢ > 0 independent of n and

a).

The use of Holder’s inequality in is crude. The joint distribution of the local
times of birth and death processes is accessible (see [23]). We hope this can be used
to give sharp results for the constant. Finally we note that the approach to bound 3
via an associated absorbing Markov chain was used in [5]. There, a geometric path

argument was used to complete the analysis. This gave cruder bounds (8 < 1—-5)
n3

but the argument worked for diagonal entries cos (%) for any 1 < a < 3 as well

as negative eigenvalues.

6. A RANDOM WALK ON THE AFFINE GROUP (MOD D)

Let A, be the affine group (mod p). Here, p is prime and elements of A, can be
represented as pairs (a,0),1<a<p—-1,0<b<p-—-1

(a1,b1)(az,b2) = (araz,aby + by).
All entries are taken mod p. Fix a generator g of the multiplicative group. Let

S = {(1’0)7 (la 1)’ (17 _1)’ (970)7 (971’0)}.

Set
L oifhes
(31) Qh) =12
0 else.
Convolution powers of @) converge to the uniform distribution U(h) = m. We

use the representation theory of A, and the analytic results of previous sections to
show that order p? steps are necessary and sufficient for convergence.

Theorem 5. With definitions above, there are positive universal constants cy,ca,
and c3 such that for all primes p and k > 1

—co B «* _c2k
cre 77 <|QY —Ullrv <eze »7.
Proof. By the usual Upper Bound Lemma (see [8], Chapter 3):
*F A
Q" = Ullrv <> d,[Q(p)*|1*.
p#1

Here, the sum is over nontrivial irreducible representations p of A, d,, is the dimen-

sion of p, Q(p) = >, Q(h)p(h) and the norm on the right is the trace norm. There
are p—1 one dimensional irreducible representations indexed by a € {1,2,...,p—1}.

(32) Pa(a, b) _ e27riaa(a)/(p71).
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where o : Z;, — Z,_1 is the group morphism such that o(g) = 1. Then

A 3 2 21
Qpa) = 5 g oos (p—l)'

There is one (p — 1) dimensional representation p. This may be realized on

V={f:{1,2,....p—1} = C}

with o
plab)f() =€ flaj), 1<j<p—1.
It is easy to check directly that p is a representation with character
0 a#1
x(a,b) =< -1 a=1,b#0.
p—1 a=1,b6=0

A further simple check shows that <X|X> = p(p ) >ap IX(a b)|? =1 and that y is

orthogonal to the characters p, in . Tt follows that {p,}7_}, p is a full set of
irreducible representations. Choose a ba81s dga () for V, 0 < a < p— 2. Then, for

Qin @),

1+2COS(2W7), 1<j<p-1

Using any of the three techniques above, there is a constant ¢ > 0 such that the
largest and smallest eigenvalues of Q(p) (in absolute value) are bounded above by
1-— %. Combining bounds

K /3 2 275\ \ c\
41QF — U3y < (—l—cos()) —|—p—12(1—) .
o -Vt < 3 (54 5eos (5 (=12 (1-2

Using cos(z) = 1 + %2 + O(z*), the sum is at most c’le_clzp% for universal ¢}, c.
The final term is exponentially smaller proving the upper bound. The lower bound
follows from the usual second moment method. (See [8] Chapter 3 Theorem 2 for
details.) Further details are omitted. (]

Remark. In this example, the matrix Q( ) is again the sum of a circulant and a

diagonal matrix. Here, the circulant has eigenvalues 2 £ cos (2” ) 0<j<p-—2and

the diagonal matrix has entries g + %cos ( ) 1 <j <p-—1. The Weyl bounds

show that the largest and smallest eigenvalues are bounded in absolute value by
1-— 1% for some fixed 6 > 0. Using this to bound the final term in the upper bound

2k
gives (p —1)2 (1 - p%) . This shows that the walk is close to random after order

p?log(p) steps. In the Heisenberg examples the Weyl bounds give a bound of 1
which is useless.
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The methods above can be applied to other walks on other groups. While we
won'’t carry out the details here, we briefly describe two further examples and point
to our companion paper [4] for more.

Example 2 (Borel Subgroup of SLy(F,)). Let G be the 2 x 2 matrices of the form:

{g abl} a €T beF, & (a,b).

A minimal generating set (with the identity) is
S ={id, (¢,0),(g~*,0),(1,1),(1,—1)}, g a generator of Fp-

The group has order p(p — 1) with p — 1 1-dimensional representations and 4 repre-
sentations of dimension (p — 1)/2. They are explicitly described in [6] p. 67. The
Fourier analysis of the measure ) supported on S is almost the same as the analysis
for the affine group. The results are that order p? steps are necessary and sufficient
for convergence to the uniform distribution.

Example 3 (M(p?)). There are two nonabelian groups of order p*: the Heisenberg
group discussed above and M (p3). See [29] Chapter 4 Section 4. One description
of the latter is:

M(p®) ={(a,b) : a € Zp,b € Z2}, (a,b)(a’,b') = (a+a',axb +b)
with a* b = (14 ap)b (mod p?). This group has the same character table as Hy(p).
It thus has p? 1-dimensional representations and p — 1 representations of dimension

p. A minimal generating set (for odd p the identity is not needed to take care of
parity problems) is

S = {(17 0)(_17 0)(07 1)a (07 _1)}
The Fourier transforms of the associated () at the p dimensional representations
have the same form as the matrices in with diagonal elements

2
2cos (W;(Hy‘p)) 0<j<p—1
p

where 1 < ¢ < p—1is fixed (for the cth representation). We have not carried out
the details, but, as shown in [10], it is known that order p? steps are necessary and
sufficient for convergence.

7. EIGENVALUES IN THE BULK

Consider the matrix M,,(a) as in (1)) with

o
cos( 7T‘ja),0<j<n—1

m

as the diagonal elements. The sections above give bounds on the largest and small-
est eigenvalues. It is natural to give bounds for the empirical measure of all the
eigenvalues. This is straightforward, using a theorem of Kac-Murdock-Szego from
[21]. We use the elegant form of Trotter [30]. If \y > A2 > --- > A\, are the
eigenvalues of M, (a), let

1 n
An = ;(ski
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1.5

FIGURE 1. The curve shows the eigenvalues predicted by fo, while
the histogram gives the distribution of the actual eigenvalues of
Mi0,000(= Mi0,000(1)). Note that the curve has a very extreme,
but finite slope around —1 and 1. For example, although it is
clear that fo(—1) = 0, the small point on the left of the picture
corresponds to (—.99, f2(—.99)) ~ .32

be the associated empirical measure. To describe the limit let

2
2 1 1.q.(1=]=
(33) fola) = { T2 <5’5’1’(W) > Thersl

0 else

where Fy; is the hypergeometric function. Let ps be the associated measure.
Distance between A,, and puo is measured in the do Wasserstein distance:

d3(Ap, pi2) = sup E|W — Z|* with W ~ A, Z ~ po.

Theorem 6. Let A, be the empirical measure of the matrix My (a) with 1 < a <
n — 1. Let ps be defined by . Then, with a fized, as n — oo,

d2(An7lJ’2) — 0.
See Figure [I] for an example.

Remark. We have not seen a way to use this kind of asymptotics to bound the
rate of convergence of a random walk. Indeed our limit theorem shows that the
distribution of the bulk does not depend on a while previous results show the
extreme eigenvalues crucially depend on a.
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Proof. Trotter’s version of the Kac-Murdock-Szego theorem applies to M,,. If
o(z,y) = cos(2raz) + cos(2my) 0 < z,y < 1,

consider o as a random variable on [0,1]%, endowed with the Lebesgue measure.

This has distribution cos(2malU;) + cos(2nUs) where Uy and U, are independent

uniform on [0,1]. An elementary calculation shows that cos(2ralU) has an arc-sine

density f(z) no matter what the integer a is.

—L__ _1<z<1
(34) fla)=mim? TEEE
0 else

Trotter shows that the empirical measure is close to ps, the distribution of o.
It follows that the empirical measure of the eigenvalues has limiting distribution
the law of (X +Y)/2 where X and Y are independent with density f(x). This
convolution has density

2 fmin{l,Q:E—‘rl} 1 d 1< <1

s max{— xr— Y ST
(85)  folw)y =4 " R @ )6y

0 else

The arguement below shows that this integral is in fact

2
2 1 1.q.(1=]z]
(36) folz) = 4 FOEED LR (272’1’(1+|x> > “heesl

0 else

The integral in is in fact a well known integral in a different guise. Let
0 < k < 1. Define

! dt
(37) K (k) :/O Vet

This is a complete elliptic integral and equals

T 11
—Foy (=, =51,E%).
2 2,1 <232; i >

(See Section 22.301 of [32].) For ease of notation, we will evaluate

min(1,z+1) dt
Flo = [nax(—l,x—l) VA-2)1-(z-1)?)

for |z| < 2 Making the variable change t — t + § it becomes

/min(—g-i-l,‘;-&-l) dt

where

h(t) = (a2 — £2)(b — 12), “:1+g’ b=1—§

This is an even function of x so it is enough to consider when x > 0. Then we need
to evaluate
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Make the variable change t — bt and the integral becomes

! dt 2 b

The factor of 2 comes from the fact that we are integrating an even function from
—1 to 1, whereas in the integral is from 0 to 1. Thus

o 11 2 — |z|\?
- F P T (i
fg(I) 2+|.’IJ| 2,1 2727 ’<2+|.'13|>

Sending x — 2z and multiplying by the appropriate constant, we have that the
integral in is in fact

2 r 11.1.<1—|w|>2
@ +]z) >\ 272\ 1+ [z
O

Remark. [27] gives a similar expresson for the sum of two general beta variables.
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