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Abstract

This paper is devoted to a new family of distributions called the Box-Cox Gamma-G family
of distributions. It can be viewed as a natural generalization of the useful RB-G family of
distributions, containing a wide variety of power Gamma-G distributions, including the odd
one. The key tool of this generalization is the use of the Box-Cox transformation. Some math-
ematical properties of the new family of distributions are derived. Then a specific member
with three parameters, based on the half-Cauchy distribution as baseline, is studied and con-
sidered as a statistical model. The estimation of its parameters is discussed by the method of
maximum likelihood. A simulation study is provided to support the theoretical convergence
of the estimators. Finally, two real data sets are considered to show the power of adjustment
of the new model compared to other competitive models.

Keywords: Generalized distribution; Box-Cox transformation; Mathematical properties; Max-
imum likelihood estimation; Half-Cauchy distribution.
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1. Introduction

The standard probability distributions do not offer a convincing statistical models for a
large panel of practical data sets. This fact has been the motor of studies dedicated to the
creation of new probability distributions by various approaches. One of the most popular
approach is the use of generators of probability distributions. The most popular ones include
the Marshall-Olkin-G by Marshall and Olkin (1997), the exp-G by Gupta et al. (1998), the
beta-G by Eugene et al. (2002), the gamma-G by Zografos and Balakrishnan (2009), the
Kumaraswamy-G by Cordeiro and de Castro (2011), the RB-G (also called gamma-G type
2) by Ristić and Balakrishnan (2012), the exponentiated generalized-G by Cordeiro et al.
(2013), the logistic-G by Torabi and Montazeri (2014), the TX-G by Alzaatreh et al. (2013),
the Weibull-G by Bourguignon et al. (2014), the exponentiated half-logistic-G by Cordeiro
al. (2014), the odd generalized exponential family by Tahir et al. (2015), the odd Burr III-
G by Jamal et al. (2017), the cosine-sine-G by Chesneau et al. (2018), the generalized odd
Gamma-G by Hosseini et al. (2018) and the extended odd-G family by Bakouch et al. (2019).

Email address: afarrukhjamalmphil@gmail.com, bchristophe.chesneau@unicaen.fr (Farrukh Jamala,
Christophe Chesneaub)



In this paper, we propose a new family of distributions, based on a new generator, with
interesting features for the statistician. For a first approach, we can say that generalize,
in some sense, the RB-G by Ristić and Balakrishnan (2012) by the use of the Box-Cox
transformation. Let us now briefly present the RB-G. Let G(x;φ) be a cumulative distribution
function (cdf), where φ denotes one parameter or several parameters. Then the RB-G is
characterized by the following cdf:

F (x; δ, φ) = 1− 1

Γ(δ)
γ (δ,− log[G(x;φ])) , (1)

where γ(δ, u) denotes the lower incomplete gamma function defined by γ(δ, u) =
∫ u
0 t

δ−1e−tdt.
The RB-G family of distributions is very rich, providing successful solutions for modeling
various kinds of data. We refer to the extensive survey of Cordeiro and Bourguignon (2016),
and the references therein. The success of the RB-G family of distributions is a motivation
to introduce natural extensions, with a great potential of applicability, as the one studied in
this paper. Our idea is to introduce an additional parameter λ > 0 and to consider the cdf
given by

F (x;λ, δ, φ) = 1− 1

Γ(δ)
γ

(
δ,
G(x;φ)−λ − 1

λ

)
. (2)

Thus, in comparison to the RB-G cdf given by (1), we have replaced the logarithmic term
− log[G(x;φ]) = log

[
G(x;φ)−1

]
by the affine power transformation [G(x;φ)−λ − 1]/λ, which

corresponds to the so-called Box-Cox transformation of G(x;φ)−1 with parameter λ. In-
deed, introducing the Box-Cox transformation defined by bλ(y) = (yλ − 1)/λ, we have
[G(x;φ)−λ − 1]/λ = bλ

[
G(x;φ)−1

]
. The advantages to consider the Box-Cox transformation

in our context are the following: (i) When λ → 0, we have bλ
[
G(x;φ)−1

]
= − log[G(x;φ])

and the cdf F (x;λ, δ, φ) given by (2) becomes the RB-G cdf given by (1), (ii) When λ = 1,
we have bλ

[
G(x;φ)−1

]
= G(x;φ)−1 − 1 = (1 − G(x;φ))/G(x;φ), which corresponds to the

odd transformation of G(x;φ), widely used this last decades to define new flexible families
of distributions, with physical interpretations (in the context of Gamma-G, see Hosseini et
al. (2018), and the references therein) (iii) In full generality, the consideration of the power
transform of G(x;φ) increases its flexibility and the flexibility of the related family (see, for
instance, Gupta et al. (1998) for the former power family of distributions). The family of
distributions characterized by the cdf (2) will be called the Box-Cox Gamma-G family of
distributions, with BCG-G as an abbreviation of Box-Cox Gamma-G.

In this paper, we aim to study the BCG-G family (of distributions) in detail, by examining
both the theoretical and practical aspects, with discussions. For the practice, the half-Cauchy
cdf is considered for G(x;φ), offering a new solution for modelling data presenting highly
skewed distribution to the right. In particular, we show that our model outperforms, in some
sense, well established competitors, highlighting the importance of the BCG-G family.

This paper is organized as follows. In Section 2, we present the two other crucial functions
of the BCG-G family: the probability density function and the hazard rate function. Then
some members of the BCG-G family with a potential of interest are listed. In Section 3,
we derive the general mathematical properties of the BCG-G family such as the asymptotic
behavior of the crucial functions, their shapes, some immediate characterizations of the family,
the quantile function, a result on stochastic ordering, the useful series expansions of the
crucial functions, the moments, the incomplete moments with some derivations, the moment
generating function, the Rényi entropy, the probability density function of order statistics
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with moments and some generalities on the maximum likelihood estimates. Section 4 is
devoted to a member of the BCG-G family defined with the half-Cauchy distribution as
baseline. The most interesting features of this new distribution are then presented with
illustration by numerical results and graphics. Section 5 is devoted to the statistical inference
of this distribution via the use of the maximum likelihood method. Analysis of two practical
data sets are also performed. The paper is concluded in Section 6.

2. Description of the BCG-G family

First of all, let us recall that the BCG-G family is characterized by the cdf F (x;λ, δ, φ)
given by (2). By derivation, the associated probability density function (pdf) is given by

f(x;λ, δ, φ) =
1

Γ(δ)
g(x;φ)G(x;φ)−λ−1

(
G(x;φ)−λ − 1

λ

)δ−1
e
−
(
G(x;φ)−λ−1

λ

)
, x ∈ R. (3)

The associated hazard rate function (hrf) is given by

h(x;λ, δ, φ) =
f(x;λ, δ, φ)

1− F (x;λ, δ, φ)

=
1

γ
(
δ, G(x;φ)−λ−1

λ

)g(x;φ)G(x;φ)−λ−1
(
G(x;φ)−λ − 1

λ

)δ−1
e
−
(
G(x;φ)−λ−1

λ

)
, x ∈ R. (4)

Some members of the BCG-G family are presented in Table 1, taking standard distributions
for the baseline cdf G(x;φ), with various supports and number of parameters. To the best of
our knowledge, none of them has been studied in the literature.

Table 1: Some members of the BCG-G family described by their cdfs.

Distribution G Support cdf of the BCG-G Parameters

Uniform (0, θ) 1− 1
Γ(δ)γ

(
δ, (x/θ)−λ−1

λ

)
(λ, δ, θ)

Exponential (0,+∞) 1− 1
Γ(δ)γ

(
δ, (1−e−θx)−λ−1

λ

)
(λ, δ, θ)

Weibull (0,+∞) 1− 1
Γ(δ)γ

(
δ, (1−e−θx

α
)−λ−1

λ

)
(λ, δ, θ, α)

Fréchet (0,+∞) 1− 1
Γ(δ)γ

(
δ, e

λθx−α−1
λ

)
(λ, δ, θ, α)

Pareto (θ,+∞) 1− 1
Γ(δ)γ

(
δ, [1−(θ/x)k]−λ−1

λ

)
(λ, δ, θ, k)

Burr XII (0,+∞) 1− 1
Γ(δ)γ

(
δ, {1−[1+(x/s)c]−k}−λ−1

λ

)
(λ, δ, s, k, c)

Gamma (0,+∞) 1− 1
Γ(δ)γ

(
δ, [γ(θ,x)/Γ(θ)]−λ−1

λ

)
(λ, δ, θ)

half-Cauchy (0,+∞) 1− 1
Γ(δ)γ

(
δ, [(2/π) arctan(x/θ)]−λ−1

λ

)
(λ, δ, θ)

Logistic R 1− 1
Γ(δ)γ

(
δ, [1+e−(x−µ)/s]λ−1

λ

)
(λ, δ, µ, s)

Gumbel R 1− 1
Γ(δ)γ

(
δ, exp(λe−(x−µ)/σ)−1

λ

)
(λ, δ, µ, σ)

Normal R 1− 1
Γ(δ)γ

(
δ, (Φ((x−µ)/σ))−λ−1

λ

)
(λ, δ, µ, σ)

Cauchy R 1− 1
Γ(δ)γ

(
δ, [(1/π) arctan((x−µ)/θ)+1/2]−λ−1

λ

)
(λ, δ, µ, θ)

Let us mention that the BCG-G member defined with the half-Cauchy cdf as baseline
will be in the center of the applications in Section 4 (for reasons explained later).
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3. General mathematical properties

This section is devoted to general mathematical properties of the BCG-G family.

3.1. Asymptotic behavior

We now investigate the asymptotic behavior of the BCG-G cdf F (x;λ, δ, φ), pdf f(x;λ, δ, φ)
and hrf h(x;λ, δ, φ) given by (2), (3) and (4) respectively. When G(x;φ)→ 0, using the fol-
lowing approximation result:

∫ +∞
u tδ−1e−tdt ∼ uδ−1e−u when u→∞, we have

F (x;λ, δ, φ) ∼ 1

Γ(δ)λδ−1
G(x;φ)−λ(δ−1)e−

G(x;φ)−λ
λ ,

f(x;λ, δ, φ) ∼ 1

Γ(δ)λδ−1
g(x;φ)G(x;φ)−λδ−1e−

G(x;φ)−λ
λ

and

h(x;λ, δ, φ) ∼ f(x;λ, δ, φ) ∼ 1

Γ(δ)λδ−1
g(x;φ)G(x;φ)−λδ−1e−

G(x;φ)−λ
λ .

On the other side, when G(x;φ) → 1, using the following approximation results: γ(δ, u) ∼
uδ/δ and (1− u)−λ ∼ 1 + λu when u→ 0, we have

F (x;λ, δ, φ) ∼ 1− 1

Γ(δ)δ

(
G(x;φ)−λ − 1

λ

)δ
∼ 1− 1

Γ(δ)δ
(1−G(x;φ))δ,

f(x;λ, δ, φ) ∼ 1

Γ(δ)
g(x;φ)

(
G(x;φ)−λ − 1

λ

)δ−1
∼ 1

Γ(δ)
g(x;φ)(1−G(x;φ))δ−1

and

h(x;λ, δ, φ) ∼ δ g(x;φ)

1−G(x;φ)
.

Thus the asymptotic behavior of h(x;λ, δ, φ) is proportional to the hrf associated to G(x;φ),
with δ as coefficient of proportionality. Furthermore, we can notice that, for the three
functions, the impact of the parameter λ is strong when G(x;φ) → 0 and inexistant when
G(x;φ)→∞. So it plays an important role to modulate the left skewness of the distribution.

3.2. Shapes of the BCG-G pdf and the hrf

In what follows, we describe analytically the shapes of the BCG-G pdf and hrf. The
critical points of the BCG-G pdf are the root of the equation ∂ log[f(x;λ, δ, φ)]/∂x = 0,
where

∂

∂x
log[f(x;λ, δ, φ)] =

∂g(x;φ)/∂x

g(x;φ)
− (λ+ 1)

g(x;φ)

G(x;φ)
− λ(δ − 1)

G(x;φ)−λ−1g(x;φ)

G(x;φ)−λ − 1

+G(x;φ)−λ−1g(x;φ).
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We have no guaranty for the uniqueness a critical point for any G(x;φ); more than one root
can exist. Let ξ(x) = ∂2 log[f(x;λ, δ, φ)]/∂x2. Then we have

ξ(x) =
(∂2g(x;φ)/∂x2)g(x;φ)− (∂g(x;φ)/∂x)2

g(x;φ)2
− (λ+ 1)

(∂g(x;φ)/∂x)G(x;φ)− g(x;φ)2

G(x;φ)2

− λ(δ − 1)
(∂g(x;φ)/∂x)G(x;φ)(1−G(x;φ)λ)− g(x;φ)2(1− (λ+ 1)G(x;φ)λ)

G(x;φ)2(1−G(x;φ)λ)2

− (λ+ 1)G(x;φ)−λ−2g(x;φ)2 +G(x;φ)−λ−1∂g(x;φ)/∂x.

If x = x0 is a critical point, then it corresponds to a local maximum if ξ(x0) < 0, a local
minimum if ξ(x0) > 0 and a point of inflection if ξ(x0) = 0.

In the same way, the critical points of the BCG-G hrf are the root of the equation
∂ log[h(x;λ, δ, φ)]/∂x = 0 where

∂

∂x
log[h(x;λ, δ, φ)] =

∂g(x;φ)/∂x

g(x;φ)
− (λ+ 1)

g(x;φ)

G(x;φ)
− λ(δ − 1)

G(x;φ)−λ−1g(x;φ)

G(x;φ)−λ − 1
+G(x;φ)−λ−1g(x;φ)

+
1

γ
(
δ, G(x;φ)−λ−1

λ

)g(x;φ)G(x;φ)−λ−1
(
G(x;φ)−λ − 1

λ

)δ−1
e
−
(
G(x;φ)−λ−1

λ

)
.

Again, more than one root can be obtained. Let ζ(x) = ∂2 log[h(x;λ, δ, φ)]/∂x2. Then we
have

ζ(x) =
(∂2g(x;φ)/∂x2)g(x;φ)− (∂g(x;φ)/∂x)2

g(x;φ)2
− (λ+ 1)

(∂g(x;φ)/∂x)G(x;φ)− g(x;φ)2

G(x;φ)2

− λ(δ − 1)
(∂g(x;φ)/∂x)G(x;φ)(1−G(x;φ)λ)− g(x;φ)2(1− (λ+ 1)G(x;φ)λ)

G(x;φ)2(1−G(x;φ)λ)2

− (λ+ 1)G(x;φ)−λ−2g(x;φ)2 +G(x;φ)−λ−1∂g(x;φ)/∂x

+
1

γ
(
δ, G(x;φ)−λ−1

λ

)[(∂g(x;φ)/∂x)G(x;φ)−λ−1
(
G(x;φ)−λ − 1

λ

)δ−1

− (λ+ 1)g(x;φ)2G(x;φ)−λ−2
(
G(x;φ)−λ − 1

λ

)δ−1
− (δ − 1)g(x;φ)2G(x;φ)−2(λ+1)

(
G(x;φ)−λ − 1

λ

)δ−2
+ g(x;φ)2G(x;φ)−2(λ+1)

(
G(x;φ)−λ − 1

λ

)δ−1 ]
e
−
(
G(x;φ)−λ−1

λ

)

+
1

γ
(
δ, G(x;φ)−λ−1

λ

)2 g(x;φ)2G(x;φ)−2(λ+1)

(
G(x;φ)−λ − 1

λ

)2(δ−1)

e
−2

(
G(x;φ)−λ−1

λ

)
.

If x = x0 is a critical point, then it corresponds to a local maximum if ζ(x0) < 0, a local
minimum if ζ(x0) > 0 and a point of inflection if ζ(x0) = 0. Finally, let us mention that
the critical points can be determined by using symbolic computation software (Mathematica,
Maple. . . ).
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3.3. Characterization

Let Y be a random variable following the Gamma distribution with parameters 1 and δ,
i.e. with pdf r(x) = (1/Γ(δ))xδ−1e−x, x > 0 and QG(y;φ) be the quantile function associated
to G(x;φ), i.e. G[QG(y;φ);φ] = QG[G(y;φ);φ] = y, y ∈ (0, 1). Then the random variable

X = QG

(
[1 + λY ]−1/λ;φ

)
has the BCG-G pdf given by (3). Furthermore, if X is a random variable having the BCG-G
pdf, then the random variable

Y =
G(X;φ)−λ − 1

λ
follows the Gamma distribution with parameters 1 and δ.

3.4. Quantile function, skewness and kurtosis

The quantile function of the BCG family of distributions is defined by

Q(y;λ, δ, φ) = QG

([
1 + λγ−1 (δ, (1− y)Γ(δ))

]−1/λ
;φ
)
, y ∈ (0, 1),

where γ−1(δ, u) denotes the inverse of γ(δ, u). The first quartile is given by Q(1/4;λ, δ, φ),
the median is given by M = Q(1/2;λ, δ, φ) and the third quartile is defined by Q(3/4;λ, δ, φ).

Also, from Q(y;λ, δ, φ), one can defined several robust measures of skewness and kurtosis
as the Galton skewness S introduced by Galton (1883) and the Moors kurtosis K introduced
by Moors (1988). The skewness S measures the degree of the long tail, while the kurtosis K
measures the degree of tail heaviness. They are respectively defined by

S =
Q(6/8;λ, δ, φ)− 2Q(4/8;λ, δ, φ) +Q(2/8;λ, δ, φ)

Q(6/8;λ, δ, φ)−Q(2/8;λ, δ, φ)
(5)

and

K =
Q(7/8;λ, δ, φ)−Q(5/8;λ, δ, φ) +Q(3/8;λ, δ, φ)−Q(1/8;λ, δ, φ)

Q(6/8;λ, δ, φ)−Q(2/8;λ, δ, φ)
. (6)

Their main advantages are to be robust to eventual outliers and to always exist (whatever
the existence of moments).

3.5. Stochastic ordering

A stochastic ordering result on the BCG-G family is now presented. Let δ1 > 0, δ2 >
0, and X1 and X2 be two random variables with X1 having the BCG-G pdf f(x;λ, δ1, φ)
and δ1 and X2 having the BCG-G pdf f(x;λ, δ2, φ). Then, if δ2 ≤ δ1, the ratio function
f(x;λ, δ1, φ)/f(x;λ, δ2, φ) is decreasing. Indeed, we have

f(x;λ, δ1, φ)

f(x;λ, δ2, φ)
=

Γ(δ2)

Γ(δ1)

(
G(x;φ)−λ − 1

λ

)δ1−δ2
,

and

∂

∂x

f(x;λ, δ1, φ)

f(x;λ, δ2, φ)
=

Γ(δ2)

Γ(δ1)
(δ2 − δ1)

(
G(x;φ)−λ − 1

λ

)δ1−δ2−1
G(x;φ)−λ−1g(x;φ) ≤ 0.

This implies that X2 is stochastically greater than X1 with respect to the likelihood ra-
tio order, implying others stochastic ordering informations (see, for instance, Shaked and
Shanthikumar (2007)).
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3.6. Useful expansions

Firstly, let us determine a series expansion for the BCG-G cdf. Using the exponential
series expansion, we have

γ(δ, u) =

∫ u

0
tδ−1e−tdt =

+∞∑
k=0

(−1)k

k!

∫ u

0
tk+δ−1dt =

+∞∑
k=0

(−1)k

k!(k + δ)
uk+δ.

Therefore

F (x;λ, δ, φ) = 1− 1

Γ(δ)

+∞∑
k=0

(−1)k

k!(k + δ)

(
G(x;φ)−λ − 1

λ

)k+δ

= 1− 1

Γ(δ)λδ

+∞∑
k=0

(−1)k

k!(k + δ)λk

(
1−G(x;φ)λ

)k+δ
G(x;φ)−λ(k+δ).

It follows from the general binomial theorem that

(
1−G(x;φ)λ

)k+δ
=

+∞∑
`=0

(
k + δ

`

)
(−1)`G(x;φ)λ`.

Applying the general binomial theorem two times, we obtain

G(x;φ)−λ(k+δ−`) =
+∞∑
m=0

(
−λ(k + δ − `)

m

)
(−1)m(1−G(x;φ))m

=
+∞∑
m=0

m∑
u=0

(
−λ(k + δ − `)

m

)(
m

u

)
(−1)m+uG(x;φ)u

=
+∞∑
u=0

+∞∑
m=u

(
−λ(k + δ − `)

m

)(
m

u

)
(−1)m+uG(x;φ)u.

Hence we can write

F (x;λ, δ, φ) = 1−
+∞∑
u=0

cuWu(x;φ),

where

cu =
(−1)u

Γ(δ)λδ

+∞∑
k=0

+∞∑
`=0

+∞∑
m=u

(−1)k+`+m

k!(k + δ)λk

(
k + δ

`

)(
−λ(k + δ − `)

m

)(
m

u

)
and Wu(x;φ) = G(x;φ)u. Let us notice that Wu(x;φ) is the well-known exp-G cdf with
power parameter u. Further details on this family of distributions can be found in Gupta et
al. (1998).

An alternative expression is given by

F (x;λ, δ, φ) =
+∞∑
u=0

duWu(x;φ), (7)

where d0 = 1− c0 and du = −cu for u ≥ 1. With this configuration, the BCG-G cdf can be
expressed as an infinite linear combination of exp-G cdfs.
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Let us now introduce the pdf of the exp-G distribution with power parameter u + 1,
i.e. wu+1(x;φ) = (u + 1)G(x;φ)ug(x;φ). Then, by derivation of (7), we deduce the series
expansion for f(x;λ, δ, φ) given by

f(x;λ, δ, φ) =
+∞∑
u=0

du+1wu+1(x;φ). (8)

This expansion can be useful to determine important mathematical properties of the BCG-G
family, as moments of different nature. Some of them are presented below.

3.7. Moments

Important note: Hereafter, let X be a random variable having the BCG-G pdf f(x;λ, δ, θ)
given by (3) and, for any integer u, let Yu be a random variable having the exp-G pdf given
by wu+1(x;φ) = (u + 1)G(x;φ)ug(x;φ). Also, when a quantity is introduced, it is assumed
that it exists, which is not necessarily the case depending on the choice for G(x;φ).

The r-th moment of X is given by

µ′r = E(Xr) =

∫ +∞

−∞
xrf(x;λ, δ, φ)dx.

Using the series expansion given by (8), we also have

µ′r =
+∞∑
u=0

du+1E(Y r
u ), (9)

where

E(Y r
u ) =

∫ +∞

−∞
xrwu+1(x;φ)dx = (u+ 1)

∫ 1

0
[QG(y;φ)]ryudy.

If the closed-form expression is not available, the integral term can be evaluated numerically
for a given cdf G(x;φ). The mean of X is given by E(X) = µ′1 and the variance of X is given
by V(X) = E((X − µ′1)2) = µ′2 − (µ′1)

2. In order to complete this part, let us mention that
r-th central moment of X can be determined by using µ′1, . . . , µ

′
r as follows:

µr = E
[
(X − µ′1)r

]
=

r∑
k=0

(
r

k

)
(−1)k(µ′1)

kµ′r−k.

3.8. Cumulants, skewness and kurtosis

As usual, the r-th cumulants of X can be obtained by the following recursion formula:

κr = µ′r −
r−1∑
k=1

(
r − 1

k − 1

)
µ′r−kκk,

with the initial value: κ1 = µ′1. From the cumulants of X, we can define the skewness and
the kurtosis of X, which are respectively defined by

γ1 =
κ3

κ
3/2
2

, γ2 =
κ4
κ22
. (10)

Both of them can be computed numerically for a given cdf G(x;φ).
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3.9. Incomplete moments

The r-th incomplete moment of X is given by

µ∗r(t) = E(Xr1{X≤t}) =

∫ t

−∞
xrf(x;λ, δ, φ)dx, t > 0,

where 1A denotes the indicator function over the event A. Using the series expansion given
by (8), we also have

µ∗r(t) =
+∞∑
u=0

du+1E(Y r
u 1{Y ru≤t}),

where

E(Y r
u 1{Y ru≤t}) =

∫ t

−∞
xrwu+1(x;φ)dx = (u+ 1)

∫ G(y;φ)

0
[QG(y;φ)]ryudy.

From the incomplete moments, several important mathematical quantities related to the
BCG-G family can be expressed. Some of them are presented below.

The mean deviation about the mean given by

δ1 = E(|X − µ′1|) = 2µ′1F (µ′1;λ, δ, φ)− 2µ∗1(µ
′
1).

The mean deviation about the median is given by

δ2 = E(|X −M |) = µ′1 − 2µ∗1(M).

These two mean deviations can be used as measures of the degree of scatter of X.
The Bonferroni curve is given by

B(x) =
µ∗1 [Q(x;λ, δ, φ)]

µ′1Q(x;λ, δ, φ)
, x ∈ (0, 1).

The Lorenz curve is given by

L(x) =
µ∗1 [Q(x;λ, δ, φ)]

µ′1
, x ∈ (0, 1).

These curves find applications in various areas such as econometrics, finance, medicine, in-
surance, demography and insurance. We refer to Sarabia (2008).

Finally, one can also mention the r-th moment of the reversed residual life for an integer
r. Further details and applications on this mathematical object can be found in Nanda et al.
(2003). It is defined by

V (t) = E((t−X)r | X ≤ t) =
1

F (t;λ, δ, φ)

∫ t

−∞
(t− x)rf(x;λ, δ, φ)dx, t > 0.

Using the binomial theorem, on can express it as

V (t) =
1

F (t;λ, δ, φ)

r∑
k=0

(
r

k

)
(−1)ktr−kµ∗r(t).

9



3.10. Moment generating function

The moment generating function of X is given by

M(t;λ, δ, φ) = E(etX) =

∫ +∞

−∞
etxf(x;λ, δ, φ)dx, t ∈ R.

Using the series expansion given by (8), we also have

M(t;λ, δ, φ) =
+∞∑
u=0

du+1E(etYu),

where

E(etYu) =

∫ +∞

−∞
etxwu+1(x;φ)dx = (u+ 1)

∫ 1

0
etQG(y;φ)yudy.

Again, the integral term can be evaluated numerically for a given cdf G(x;φ). We can refind
the r-th moment of X from M(t;λ, δ, φ) by using the formula µ′r = ∂rM(t;λ, δ, φ)/∂tr |t=0.

3.11. Rényi entropy

The Rényi entropy introduced by Rényi (1961) is a useful measure of variation of the
uncertainty used in many areas as engineering, quantum information and ecology. This
subsection is devoted to the Rényi entropy of the BCG-G family. Let υ > 0 with υ 6= 1.
Then the Réyni entropy of the BCG-G family is given by

I(υ) =
1

1− υ
log

[∫ +∞

−∞
f(x;λ, δ, φ)υdx

]
. (11)

We have

f(x;λ, δ, φ)υ =
1

Γ(δ)υ
g(x;φ)υG(x;φ)−υ(λ+1)

(
G(x;φ)−λ − 1

λ

)υ(δ−1)
e
−υ

(
G(x;φ)−λ−1

λ

)
.

Using the exponential series decomposition, we obtain

f(x;λ, δ, φ)υ =
1

Γ(δ)υλυ(δ−1)
g(x;φ)υG(x;φ)−υ(λ+1)

+∞∑
k=0

(−1)k

k!

υk

λk

(
G(x;φ)−λ − 1

)k+υ(δ−1)
=

1

Γ(δ)υλυ(δ−1)
g(x;φ)υ

+∞∑
k=0

(−1)k

k!

υk

λk

(
1−G(x;φ)λ

)k+υ(δ−1)
G(x;φ)−λk−υ(λδ+1).

By the general binomial theorem, we obtain

f(x;λ, δ, φ)υ =
1

Γ(δ)υλυ(δ−1)

+∞∑
k=0

+∞∑
`=0

ek,`G(x;φ)−λ(k−`)−υ(λδ+1)g(x;φ)υ,

where

ek,` =
(−1)k+`

k!

υk

λk

(
k + υ(δ − 1)

`

)
.

10



Putting this series expansion in (11), we can express I(υ) as

I(υ) =
1

1− υ

{
− υ log[Γ(δ)]− υ(δ − 1) log(λ)

+ log

[ +∞∑
k=0

+∞∑
`=0

ek,`

∫ +∞

−∞
G(x;φ)−λ(k−`)−υ(λδ+1)g(x;φ)υdx

]}
.

The last integral term can be expressed as∫ +∞

−∞
G(x;φ)−λ(k−`)−υ(λδ+1)g(x;φ)υdx =

∫ 1

0
y−λ(k−`)−υ(λδ+1)g(QG(y;φ);φ)υ−1dy.

Numerical evaluation of this integral is feasible.

3.12. Order statistics

The order statistics are useful in statistics and probability theory. Here we aim to give
tractable expressions for the pdfs of the order statistics, as well as their moments, in the
context of the BCG-G family. Let X1, . . . , Xn be n random variable having the BCG-G pdf.
Then the pdf of the i-th order statistic of X1, . . . , Xn is given by

fi:n(x;λ, δ, φ) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)jF (x;λ, δ, φ)j+i−1f(x;λ, δ, φ).

It follows from the series expansions for F (x;λ, δ, φ) and f(x;λ, δ, φ) given by (7) and (8)
respectively that

fi:n(x;λ, δ, φ) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

[
+∞∑
u=0

duWu(x;φ)

]j+i−1 +∞∑
v=0

dv+1wv+1(x;φ).

(12)
Since Wu(x;φ) = G(x;φ)u, by virtue of a result by Gradshteyn and Ryzhik (2000), we have
the following equality: [

+∞∑
u=0

duWu(x;φ)

]j+i−1
=

+∞∑
k=0

ξkWk(x;φ),

with ξk defined by the following recursive formula: ξ0 = dj+i−10 and, for k ≥ 1,

ξk =
1

kd0

k∑
`=1

[`(j + i)− k]d`ξk−`.

Now equation (12) becomes

fi:n(x;λ, δ, φ) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
k=0

+∞∑
v=0

ξkdv+1Wk(x;φ)wv+1(x;φ). (13)
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Let Xi:n be the i-th order statistic of X1, . . . , Xn. Then, using (13), the r-th moment of Xi:n

is given by

E(Xr
i:n) =

∫ +∞

−∞
xrfi:n(x;λ, δ, φ)dx

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
k=0

+∞∑
v=0

ξkdv+1

∫ +∞

−∞
xrWk(x;φ)wv+1(x;φ)dx,

with ∫ +∞

−∞
xrWk(x;φ)wv+1(x;φ)dx = (v + 1)

∫ +∞

−∞
xrG(x;φ)k+vg(x;φ)dx

= (v + 1)

∫ 1

0
[QG(y;φ)]ryk+vdy.

The last integral term can be computed numerically for most of the considered cdf G(x;φ).
Proceeding as the subsection above, one can also express other mathematical quantities,

as the incomplete moments and the moment generating function of Xi:n.

3.13. Maximum likelihood: general formula

In this section, we investigate the estimation of the parameters of the BCG-G model by
the method of the maximum likelihood. Let x1, . . . , xn be observations of n independent and
identically distributed random variables having the BCG-G pdf. The log-likelihood function
is given by

`(λ, δ, φ) =

n∑
i=1

log [f(xi, λ, δ, φ)]

= −n log [Γ(δ)] +

n∑
i=1

log [g(xi;φ)]− (λ+ 1)

n∑
i=1

log [G(xi;φ)]

+ (δ − 1)

n∑
i=1

log
[
G(xi;φ)−λ − 1

]
− n(δ − 1) log(λ)−

n∑
i=1

G(xi;φ)−λ

λ
+
n

λ
.

The maximum likelihood estimates (MLEs) for λ, δ and φ are the real numbers λ̂, δ̂ and
φ̂ such that `(λ̂, δ̂, φ̂) is maximal. They are simultaneous solutions of the three nonlinear
equations: ∂`(λ, δ, φ)/∂λ = 0, ∂`(λ, δ, φ)/∂δ = 0 and ∂`(λ, δ, φ)/∂φ = 0, with

∂

∂λ
`(λ, δ, φ) = −

n∑
i=1

log [G(xi;φ)]− (δ − 1)
n∑
i=1

log [G(xi;φ)]

1−G(xi;φ)λ
− n(δ − 1)

1

λ

+
n∑
i=1

G(xi;φ)−λ log [G(xi;φ)]

λ
+

n∑
i=1

G(xi;φ)−λ

λ2
− n

λ2
, (14)

∂

∂δ
`(λ, δ, φ) = −nΓ′(δ)

Γ(δ)
+

n∑
i=1

log
[
G(xi;φ)−λ − 1

]
− n log(λ) (15)
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and

∂

∂φ
`(λ, δ, φ) =

n∑
i=1

∂g(xi;φ)/∂φ

g(xi;φ)
− (λ+ 1)

n∑
i=1

∂G(xi;φ)/∂φ

G(xi;φ)

− λ(δ − 1)
n∑
i=1

(∂G(xi;φ)/∂φ)G(xi;φ)−λ−1

G(xi;φ)−λ − 1
+

n∑
i=1

(∂G(xi;φ)/∂φ)G(xi;φ)−λ−1.

(16)

Naturally, λ̂, δ̂ and φ̂ can be determined numerically via a statistical software as R. Under
specific regularity conditions, their random versions have the features to be asymptotic unbi-
ased and asymptotic normal. This allows to construct confidence intervals (Wald interval. . . ),
hypothesis testing (Likelihood-ratio test. . . ) and various measures of goodness of fit. This
aspect will be developed for a special cdf G(x;φ) in Section 5.

4. Box-Cox Gamma-half-Cauchy distribution

Among all the distributions belonging to the BCG-G family, we now focus on the one
defined with the half-Cauchy distribution as baseline. The reasons are threefold: (i) The
half-Cauchy distribution has the feature to be a simple distribution with heavy tailed, highly
skewed to the right (ii) The few existing generalizations of the half-Cauchy distribution give
models that demonstrates nice goodness of fit properties (see Alzaatreh et al. (2016), and the
references therein) (iii) Since the parameter λ has a great influence on the BCG pdf and hrf
on the neighborhood of x = 0, one can expect to add more flexibility on the left tail of the
half-Cauchy distribution (with sucess as we shall see in Section 5).

Let θ > 0. The cdf of the half-Cauchy distribution with parameter θ is given by

G(x; θ) =
2

π
arctan

(x
θ

)
, x > 0.

The associated pdf is given by

g(x; θ) =
2

πθ

1

1 + (x/θ)2
, x > 0.

Putting these expressions into the BCG-G cdf given by (2), we obtain the cdf given by

F (x;λ, δ, θ) = 1− 1

Γ(δ)
γ

(
δ,

[(2/π) arctan(x/θ)]−λ − 1

λ

)
, x > 0. (17)

The related distribution is called the Box-Cox Gamma-half-Cauchy distribution (BCG-HC
for short). Then all the general mathematical properties presented in Section 2 can be applied
to this special case (with φ = θ and a quantile function QG(y; θ) that will be presented later).
In the following, we present and discuss the most useful mathematical properties of this new
distribution.

The associated pdf is given by

f(x;λ, δ, θ) =
1

Γ(δ)

2

πθ

1

1 + (x/θ)2

[
2

π
arctan

(x
θ

)]−λ−1( [(2/π) arctan(x/θ)]−λ − 1

λ

)δ−1

× e
−
(

[(2/π) arctan(x/θ)]−λ−1
λ

)
, x > 0. (18)
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The associated hrf is given by

h(x;λ, δ, θ) =
2

πθ

1

γ
(
δ, [(2/π) arctan(x/θ)]

−λ−1
λ

) 1

1 + (x/θ)2

[
2

π
arctan

(x
θ

)]−λ−1

×

(
[(2/π) arctan(x/θ)]−λ − 1

λ

)δ−1
e
−
(

[(2/π) arctan(x/θ)]−λ−1
λ

)
, x > 0.

Let us now investigate the asymptotic behavior of the BCG-HC pdf only. When x → 0,
we have g(x; θ) ∼ 2/(πθ) and G(x; θ) ∼ (2/(πθ))x. Then, when x→ 0, we have

f(x;λ, δ, θ) ∼ 1

Γ(δ)λδ−1

(
2

πθ

)−λδ
x−λδ−1e

− (πθ)λx−λ

λ2λ → 0.

When x → +∞, we have g(x; θ) ∼ (2θ/π)(1/x2) and G(x; θ) = 1 − (2/π) arctan(θ/x) ∼
1− (2θ/π)(1/x). Hence, when x→ +∞, we have

f(x;λ, δ, θ) ∼ 1

Γ(δ)

(
2θ

π

)δ 1

xδ+1
→ 0.

In Figure 1, we have plotted the BCG-HC pdfs and hrfs for selected values of λ, δ and θ.
We see various shapes with different level of bell shaped and right-skewed. In some cases, a
light left tail can be observed. These features are welcome to construct flexible models for a
wide variety of lifetime data.
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Figure 1: Plots of some BCG-HC (a) pdfs and (b) hrfs.

Let us notice that the quantile function of the half-Cauchy distribution with parameter
θ is given by

QG(y, θ) = θ tan
(π

2
y
)
.

Thus we have the following immediate characterization. Let Y be a random variable following
the Gamma distribution with parameters 1 and δ. Then the random variable

X = θ tan
(π

2
[1 + λY ]−1/λ

)
follows the BCG-HC distribution.
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Moreover, the BCG-HC quantile function is given by

Q(y;λ, δ, θ) = θ tan
(π

2

[
1 + λγ−1 (δ, (1− y)Γ(δ))

]−1/λ)
, y ∈ (0, 1).

From this quantile function, we can express the Galton skewness S defined by (5) and the
Moors kurtosis K defined by (6). Figure 2 presents the graphics of these two measures for
θ = 2.5, α ∈ (1, 5) and δ ∈ (1, 5). We see that the skewness S increases when δ increases,
with a various magnitude according to λ. Varying shapes are observed for the kurtosis K.
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Figure 2: Plots of (a) the Galton skewness S and (b) the Moor kurtosis K for the BCG-HC distribution with
parameters θ = 2.5, α ∈ (1, 5) and δ ∈ (1, 5).

A random variable X following the BCG-HC distribution has no moment of all order.
More precisely, µ′r exists if and only if we have δ > r. Indeed, when x→ +∞, we have

xrf(x;λ, δ, θ) ∼ 1

Γ(δ)

(
2θ

π

)δ 1

xδ−r+1

which converge as Riemann integral if and only if δ > r (there is no problem of convergence
for xrf(x;λ, δ, θ) at x = 0). Under this condition, the r-th moments are given by (9). As
consequences, if δ > 2, the variance exists and, if δ > 4, the skewness γ1 and the kurtosis γ2
given by (10) exist. Table 2 provides a numerical evaluation of these quantities for selected
values for λ, δ and θ.

The same numerical approach can be performed to compute the r-th incomplete moments
with a given value for t, the moment generating function (defined with t < 0), the Rényi
entropy, the moments of the order statistics and the maximum likelihood estimates (as done
in Subsection 5.3 for two practical data sets).

5. Statistical inference and data analysis with the BCG-HC model

The BCG-HC distribution with parameters λ, δ and θ, characterized by the cdf (17) (and
having the pdf (18)), can be considered as a parametric model. Statistical inference and
applications of the BCG-HC model are explored in this section.
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Table 2: Some moments, skewness and kurtosis of X for BCG-HC distribution for the following selected
parameters values in order (λ, δ, θ): (i): (5, 5, 2.5), (ii): (0.8, 12, 15), (iii): (1, 8, 8), (iv): (0.2, 7, 10), (v):
(9, 10, 0.3) and (vi): (6, 6, 8).

(i) (ii) (iii) (iv) (v) (vi)

E(X) 2.8163 41.7295 20.1226 61.23518 31.71016 9.656562

E(X2) 8.1589 2575.5120 542.6544 13840.32 6980.461 94.88158

E(X3) 24.4395 172252.4 16508.19 4368337 2240102 950.4667

E(X4) 76.3290 12359349 557195.4 1595868914 824905608 9732.13

V(X) 0.2271 834.1558 137.7351 10090.58 5974.927 1.632379

γ1 1.6795 -0.2009 0.02808 2.254328 3.550561 1.299637

γ2 10.8262 2.04022 2.8966 7.808801 16.24243 7.022025

5.1. Maximum likelihood method

The MLEs λ̂, δ̂ and θ̂ of the parameters λ, δ and θ respectively can be obtained by solving
the nonlinear equations (14), (15) and (16) with

∂

∂θ
g(x; θ) =

2

π

x2 − θ2

(x2 + θ2)2
,

∂

∂θ
G(x; θ) = − 2

π

x

x2 + θ2
.

These estimates will be considered in the rest of study.

5.2. Simulation study

Here we provide a numerical evaluation of the performance of the MLEs λ̂ δ̂ and θ̂ in the
estimation of λ, δ and θ respectively via a graphical (Monte Carlo) simulation study. The R
program is used. We generate N = 3000 samples samples of size n = 5, 10, 20, 40,. . . ,140
from BCG-HC distribution with the following parameters values: λ = 3.5, δ = 5 and θ = 2.
We, for h ∈ {λ, δ, θ}, we calculate

• the empirical bias of the MLEs defined by B̂iash = (1/N)
N∑
i=1

(ĥi − h)

• the empirical mean square error (MSE) of the MLEs defined by

M̂SEh = (1/N)
N∑
i=1

(ĥi − h)2.

The results of this simulation study can be viewed in Figure 3 for the empirical bias and in
Figure 4 for the empirical MSE. From these figures, we observe that, when the sample size
increases, the empirical biases and MSEs approach to 0 in all cases, which is consistent with
the theoretical properties of the MLEs.

5.3. Data analysis

In this subsection, we prove empirically the flexibility of the BCG-HC distribution by
means of two practical data sets. The BCG-HC distribution will be compared with some
competitive models listed in Table 3. We compare the fitted distributions by using the follow-
ing usual goodness of fit measures: −̂̀ (where ̂̀ the maximized log-likelihood), AIC (Akaike
information criterion), BIC (Bayesian information criterion), CVM (Cramér-Von Mises), AD
(Anderson-Darling) and KS (Kolmogorov Smirnov with its p-value (PV)) statistics. These
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Figure 3: The empirical biases of the MLEs (a) λ̂, (b) δ̂ and (c) θ̂ for the selected parameter values for
BCG-HC distribution.
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Figure 4: The empirical MSEs of the MLEs (a) λ̂, (b) δ̂ and (c) θ̂ for the selected parameter values for BCG-HC
distribution.
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Table 3: The competitive models of the BCG-HC distributions.

Distribution Author(s)

Half-Cauchy (HC) (Standard)
Exponential half-Cauchy (EHC) Gupta et al. (1998)
Marshall Olkin half-Cauchy (MHC) Jacob and Jayakumar (2012)
The gamma-exponentiated exponential distribution (GEE) Ristić and Balakrishnan (2012)
Kumaraswamy half-Cauchy (KHC) Ghosh (2014)
The gamma half-Cauchy distribution (GHC) Alzaatreh et al. (2016)

measures typically summarize the discrepancy between the data and the expected values un-
der the considered model. Again, we mention that the R program is used.

The two considered data sets are described below.

Data set 1: We consider the actual taxes data set used by Mead (2010). The data con-
sists of the monthly actual taxes revenue in Egypt from January 2006 to November 2010.
An immediate histogram plot shows that the distribution is highly skewed to the right. The
actual taxes revenue data (in 1000 million Egyptian pounds) are given by: 5.9, 20.4, 14.9,
16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5,5.1,6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7,
9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2,21.9,16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1,
16.5, 11.9, 7,8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8.

Data set 2: The second data set was obtained in Proschan (2000) and corresponds to the
time of successive failures of the air conditioning system of jet airplanes. These data were
also studied by Dahiya and Gurland (1972), Gupta and Kundu (2001), Kus (2007) and De
Andrade et al. (2017), among others. The data are given by: 194, 413, 90, 74, 55, 23, 97, 50,
359,50, 130, 487, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9 , 254, 493, 18, 209, 41, 58, 60, 48, 56,
87, 11, 102, 12, 5, 100, 14,29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 57, 33, 100, 61, 502, 220,
120, 141, 22, 603, 35, 98, 54, 181, 65, 49, 12, 239,14, 18, 39, 3, 12, 5, 32, 9, 14, 70, 47, 62,
142, 3, 104, 85, 67, 169, 24, 21, 246, 47, 68, 15, 2, 91,59, 447, 56, 29, 176, 225,77, 197, 438,
43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27,
21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35,
5, 82, 5, 61, 31, 118, 326, 12, 54, 36,34, 18, 25, 120, 31, 22, 18, 156, 11, 216, 139, 67, 310, 3,
46, 210, 57, 76, 14, 111, 97, 62, 26, 71, 39, 30, 7, 44, 11, 63,23, 22, 23, 14, 18, 13, 34, 62, 11,
191, 14, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95.

The descriptive statistics of these two data sets are presented in Table 4.
Firstly, let us analyze Data set 1. Table 5 lists the MLEs and their corresponding standard

errors (SEs) (in parentheses) for the BCG-HC model and other fitted models.

To show the uniqueness of the obtained MLEs for the BCG-HC model, we provide the
profiles plots of the log-likelihood function of λ, δ and θ in Figure 5.
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Table 4: Descriptive statistics for Data sets 1 and 2.

Statistics n Mean Median Standard deviation Skewness Kurtosis

Data 1 59 13.4900 10.6000 8.0500 1.5700 2.0800
Data 2 213 93.1400 57.0000 106.7600 2.1000 4.8500

Table 5: MLEs and SEs (in parentheses) for Data set 1.

Model Estimates

BCG-HC 1.1642 2.5801 19.4444

(λ, δ, θ) (0.5017) (1.1276) (2.5591)

GHC 17.7164 0.1176 2.3306

(α, β, σ) (19.2298) (0.0576) (3.1104)

GEE 0.2457 37.5865 0.5408

(α, λ, δ) (0.1011) (4.6796) (0.2810)

KHC 20.8633 4.9716 1.6795

(δ, a, b) (3.2415) (1.2284) (2.9067)

MHC 1.0729 10.9676 –

(α, σ) (0.5804) (4.4320) –

EHC 5.6949 2.6629 –

(α, σ) (3.5708) (1.5689) –

HC 11.52048 – –

(σ) (1.6603) – –

Table 6 gives the confidence intervals of the parameters of the BCG-HC model for Data
set 1 at the levels 95% and 99%.

Table 6: Confidence intervals of the parameters of the BCG-HC model for Data set 1.

CI λ δ θ

95% [0.1808 1.8144] [0.3700 4.7901] [14.4285 24.4602]
99% [0 2.4585] [0 5.4893] [12.8419 26.0468]

Table 7 provides the values of goodness of fit measures for the BCG-HC model and other
fitted models. Based on these numerical results, we see that the BCG-HC model provide
better fit to Data set 1 than the competitors (smallest value of AIC, BIC, KS. . . ).

The PP, QQ, epdf and ecdf plots of the BCG-HC are shown in Figure 6. The Box plot
and the Kaplan Meier survival plot are presented in Figure 7. The nice fits of the different
estimated curves indicate that the BCG-HC model yields the best fit to Data set 1.

Let us now focus on the analysis of Data set 2 with the same tools as for Data set 1.
Table 8 lists the MLEs and their corresponding standard errors (SEs) (in parentheses) for
the BCG-HC model and other fitted models.
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Figure 5: Profiles log-likelihood function of the log-likelihood function of the BCG-HC distribution for Data
set 1.

Table 7: Goodness of fit measures for Data set 1.

Model −̂̀ AIC BIC CVM AD KS PV

BCG-HC 188.3004 382.0049 388.2375 0.0465 0.2762 0.0660 0.9589

GHC 188.5255 383.0510 389.2836 0.0597 0.3441 0.0708 0.9282

GEE 197.4691 400.9382 407.1708 0.1826 1.1285 0.1602 0.0966

KHC 188.7694 383.5388 389.7714 0.0683 0.3903 0.0767 0.8781

MHC 219.7464 443.4928 447.6478 0.1057 0.6053 0.2483 0.0013

EHC 209.5714 423.1428 427.2979 0.0498 0.2919 0.2817 0.0001

HC 219.7548 441.5097 443.5872 0.1071 0.6133 0.2504 0.0012
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Figure 6: PP, QQ, epdf and ecdf plots of the BCG-HC distribution for Data set 1.
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Figure 7: Plots of (a) Box plot and (b) Kaplan Meier survival plot of the HCG-HC model for Data set 1.

21



Table 8: MLEs and SEs (in parentheses) for Data set 2.

Model Estimates

BCG-HC 0.1291 3.1037 375.5790

(λ, δ, θ) (0.0277) (0.7969) (2.5457)

GHC 46.6670 0.1919 0.0100

(α, β, σ) (7.0641) (0.0218) (0.0051)

GEE 0.0026 5.0801 4.7598

(α, λ, δ) (0.0025) (1.4180) (0.2454)

KHC 0.9911 2.234 132.2408

(δ, a, b) (0.1110) (0.7374) (3.7441)

MHC 0.4511 100.3208 –

(α, σ) (0.3240) (5.1647) –

EHC 1.1920 43.1570 –

(α, σ) (0.1658) (8.0007) –

HC 52.8000 – –

(σ) (4.9808) – –
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The uniqueness of the obtained MLEs for the BCG-HC model is observed in Figure 8.
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Figure 8: Profiles log-likelihood function of the log-likelihood function of the BCG-HC distribution for Data
set 2.

Table 9 gives the confidence intervals of the parameters of the BCG-HC model for Data
set 1 at the levels 95% and 99%.

Table 9: Confidence intervals of the parameters of the BCG-HC model for Data set 2.

CI λ δ θ

95% [0.0748 0.1649] [1.5417 4.6656] [370.5894 380.5685]
99% [0.0576 0.2005] [1.0476 5.1597] [369.0110 382.1469]

Table 10 provides the values of goodness of fit measures for the BCG-HC model and
other fitted models. Based on these numerical results, we see that the BCG-HC model
provide better fit to Data set 2 than the competitors.

Table 10: Goodness of fit measures for Data set 2.

Model −̂̀ AIC BIC CVM AD KS PV

BCG-HC 1174.7000 2355.4000 2365.5000 0.0335 0.2541 0.0380 0.9200

GHC 1185.4000 2376.7000 2386.8000 0.2197 1.5109 0.0712 0.2300

GEE 1177.4000 2360.9000 2371.0000 0.0847 0.5412 0.0571 0.4900

KHC 1178.4000 2362.8000 2372.9000 0.0983 0.6798 0.0501 0.6600

MHC 1185.5000 2375.1000 2381.8000 0.0885 0.6624 0.0562 0.5100

EHC 1185.6000 2375.2000 2381.9000 0.1764 1.1690 0.0600 0.4300

HC 1186.4000 2374.9000 2378.2000 0.1303 0.9009 0.0620 0.3900

The PP, QQ, epdf and ecdf plots of the BCG-HC are shown in Figure 9. The Box plot
and the Kaplan Meier survival plot are presented in Figure 10. These plots indicate that the
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BCG-HC model yields the best fit to Data set 2.
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Figure 9: PP, QQ, epdf and ecdf plots of the BCG-HC distribution for Data set 2.
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Figure 10: Plots of (a) Box plot and (b) Kaplan Meier survival plot of the HCG-HC model for Data set 2.
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6. Concluding remarks

In this paper, a new family of distributions called the BCG-G family is studied. This new
family can be viewed as a generalization of the RB-G family of distributions introduced by
Ristić and Balakrishnan (2012) by the use of the Box-Cox transformation. The mathemat-
ical and practical properties of the BCG-G family are investigated in detail. A member of
the BCG-G family using the half-Cauchy distribution as baseline distribution is introduced
and considered as statistical model. It is called the BCG-HC distribution. The maximum
likelihood estimation of the parameters of the BCG-HC model is discussed. In terms of the
statistical significance of the model adequacy, we show that it leads to a better goodness of
fit than some serious competitors of the literature.
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