Asma Hassannezhad 
  
Laurent Miclo 
  
  
  
Higher order Cheeger inequalities for Steklov eigenvalues

Keywords: Dirichlet-to-Neumann operator, Steklov problem, eigenvalues, isoperimetric ratios, higher order Cheeger inequalities, finite Markov processes, jump Markov processes, Brownian motion on Riemannian manifolds, Laplace-Beltrami operator opérateur de transfert Dirichlet-Neumann, problème de Steklov, valeurs propres, rapports isopérimétriques, inégalités de Cheeger d 15A18, 35P15, 58J50, 58J65, 60J25, 60J27, 60J60, 60J75

We prove a lower bound for the k-th Steklov eigenvalues in terms of an isoperimetric constant called the k-th Cheeger-Steklov constant in three different situations: finite spaces, measurable spaces, and Riemannian manifolds. These lower bounds can be considered as higher order Cheeger type inequalities for the Steklov eigenvalues. In particular it extends the Cheeger type inequality for the first nonzero Steklov eigenvalue previously studied by Escobar in 1997 and by Jammes in 2015 to higher order Steklov eigenvalues. The technique we develop to get this lower bound is based on considering a family of accelerated Markov operators in the finite and measurable situations and of mass concentration deformations of the Laplace-Beltrami operator in the manifold setting which converges uniformly to the Steklov operator. As an intermediary step in the proof of the higher order Cheeger type inequality, we define the Dirichlet-Steklov connectivity spectrum and show that the Dirichlet connectivity spectra of this family of operators converges to (or is bounded by) the Dirichlet-Steklov spectrum uniformly. Moreover, we obtain bounds for the Steklov eigenvalues in terms of its Dirichlet-Steklov connectivity spectrum which is interesting in its own right and is more robust than the higher order Cheeger type inequalities. The Dirichlet-Steklov spectrum is closely related to the Cheeger-Steklov constants.

Résumé

Pour tout k P N, une borne inférieure pour la k-ième valeur propre de Steklov en termes d'une constante isopérimétrique, appelée la k-ième constante de Cheeger-Steklov, est obtenue dans trois situations différentes : espaces finis, espaces mesurables et variétés riemanniennes. Ces bornes inférieures peuvent être considérées comme des inégalités de type Cheeger d'ordre supérieur pour les valeurs propres de Steklov. En particulier, elles étendent l'inégalité de type Cheeger pour la première valeur propre non nulle de Steklov étudiée par Escobar en 1997 et par Jammes en 2015. La technique développée pour obtenir ces bornes inférieure utilise une famille d'opérateurs de Markov accélérés dans les situations finies et mesurables et une famille d'opérateurs de Laplace-Beltrami déformés et concentrés près de la frontière. Lors d'une étape intermédiaire de la preuve de l'inégalité de type Cheeger d'ordre supérieur, nous définissons le spectre de connectivité de Dirichlet-Steklov et nous montrons que les spectres de connectivité de Dirichlet de cette famille d'opérateurs convergent uniformément vers (ou sont bornés par) le spectre de Dirichlet-Steklov. De plus, nous obtenons des bornes pour les valeurs propres de Steklov en termes du spectre de connectivité de Dirichlet-Steklov, ce dernier étant intéressant en lui-même. Il est aussi plus robuste que les inégalités de type Cheeger d'ordre supérieur. Le spectre de Dirichlet-Steklov et les constantes de Cheeger-Steklov sont étroitement liés.

Introduction

Let pM, gq be a compact Riemannian manifold of dimension n with smooth boundary, the Steklov eigenvalue problem is

" ∆f " 0, in M Bf Bν " σf, on BM (1) 
where ∆ " div ∇ is the Laplace-Beltrami operator on M and ν is the unit outward normal vector along BM . Its spectrum consists of a sequence of nonnegative real numbers with accumulation point only at infinity. We denote the sequence of the Steklov eigenvalues by 0 " σ 1 ď σ 2 ď ¨¨¨ď σ k ď ¨¨¨Õ 8

The Steklov eigenvalues can be also considered as the eigenvalues of the Dirichlet-to-Neumann operator

S : C 8 pBM q Q f Þ Ñ BF Bν P C 8 pBM q
where F is the harmonic extension of f into the interior of M . The Steklov problem was first introduced by Steklov [START_REF] Stekloff | Sur les problèmes fondamentaux de la physique mathématique (suite et fin)[END_REF] in 1902 for bounded domains of the plane. Many interesting developments and progress in the study of the Steklov problem have been attained in recent years. We refer the reader to the survey paper [START_REF] Girouard | Spectral geometry of the Steklov problem (survey article)[END_REF] and the references therein for recent developments, and to [START_REF] Kuznetsov | The legacy of Vladimir Andreevich Steklov[END_REF] for a historical account. The relationship between the Steklov eigenvalues and geometry of the underlying space, and also its similarity and difference with the Laplace eigenvalues have been a main focus of interest and a source of inspiration, see for example [START_REF] José | The geometry of the first non-zero Stekloff eigenvalue[END_REF][START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF][START_REF] Colbois | Isoperimetric control of the Steklov spectrum[END_REF][START_REF] Hassannezhad | Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem[END_REF][START_REF] José | An isoperimetric inequality and the first Steklov eigenvalue[END_REF][START_REF] Fraser | Sharp eigenvalue bounds and minimal surfaces in the ball[END_REF][START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF].

The focus of this paper is on obtaining lower bounds for the k-th Steklov eigenvalue σ k in terms of some isoperimetric constants in three different settings. Our results can be viewed as counterparts of the higher order Cheeger inequalities for the Laplace eigenvalues in discrete setting proved by Lee, Oveis Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF], and in manifold setting by the second author [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF]. It is also an extension of Escobar's [START_REF] José | The geometry of the first non-zero Stekloff eigenvalue[END_REF][START_REF] José | An isoperimetric inequality and the first Steklov eigenvalue[END_REF] and Jammes' [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF] results for σ 2 . We first recall previous results known in this direction. Let A denote the family of all nonempty open subsets A of M with piecewise smooth boundary. For every A P A let µpAq denote its Riemannian measure and µpBAq denote the pn ´1q-dimensional Riemannian measure of BA. We define for every A P A the isoperimetric ratios ηpAq µpB i Aq µpAq η 1 pAq µpB i Aq µp Ā X BM q [START_REF] Alon | λ 1 , isoperimetric inequalities for graphs, and superconcentrators[END_REF] where B i A :" BAXInt M . Here Int M denotes the interior of M . Consider the following isoperimetric constants h 2 pM q :" inf A maxtηpAq, ηpM zAqu h 1 2 pM q :" inf A maxtη 1 pAq, η 1 pM zAqu

The constant h 2 pM q is the well-known Cheeger constant [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis[END_REF]. Motivated by the celebrated result of Cheeger [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis[END_REF], Escobar [START_REF] José | The geometry of the first non-zero Stekloff eigenvalue[END_REF][START_REF] José | An isoperimetric inequality and the first Steklov eigenvalue[END_REF] introduced the isomerimetric constant h 1 2 pM q and obtained a lower bound for σ 2 in terms of this isoperimetric constant and the first nonzero eigenvalue of a Robin problem. Recently, Jammes [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF] obtained a simpler and more explicit lower bound for σ 2 in terms of an isoperimetric h1

2 pM q similar to the one introduced by Escobar, and the Cheeger constant h 2 pM q:

(MS) Measurable state spaces: pM, µq is a probability measure space with σ´algebra M, and V is a measurable subset of M such that 0 ă µrV s ă 1. Here, L is a Markov generator of the form P ´I, where P is a Markov kernel reversible with respect to µ and I is the identity, and H " L 2 pµq.

(RM) Riemannian manifolds: M is a compact Riemannian manifold with smooth boundary BM , µ is its Riemannian measure, L is the Laplace-Beltrami operator ∆, and H is the Sobolev space H 1 pµq. Here V is equal to BM .

With the help of L we define an operator S on V and call it the Steklov operator. In setting (RM), the operator S we consider is in fact the Dirichlet-to-Neumann operator discussed above. For the definition of S in (FS) and (MS) settings we refer to definitions [START_REF] Cheng | Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain[END_REF] in Section 2, and [START_REF] Lohkamp | Discontinuity of geometric expansions[END_REF] in Section 3, respectively. We denote the eigenvalues of S by σ k pM q or simply σ k . Let A be a family of admissible sets in M :

• in (FS) settings, A is the set of all nonempty subsets of M ;

• in (MS) setting, A is the set of all non-negligible elements of M, i.e. A P M such that 0 ă µrAs ď 1;

• in (RM) setting, A is the set of all nonempty open domains A in M such that B e A :" Ā X BM and B i A :" BA X M are smooth manifolds of dimension n ´1 when they are nonempty.

In (FS) and (MS) settings, we introduce the boundary of any A P A via BA tpx, yq : x P A, y P A c u and define the following isoperimetric ratios ηpAq µpBAq µpAq η 1 pAq µpBAq µpA X V q where µ is a measure on M ˆM . We refer to [START_REF] Dodziuk | Difference equations, isoperimetric inequality and transience of certain random walks[END_REF] and [START_REF] Saloff-Coste | Lectures on finite Markov chains[END_REF] for the definition of µ in (FS) and (MS) settings respectively. In (RM) setting, the isoperimetric rations ηpAq and η 1 pAq are already defined in the beginning, see [START_REF] Alon | λ 1 , isoperimetric inequalities for graphs, and superconcentrators[END_REF]. We then consider ρpAq :" min BPA BĎA ηpBq , ρ 1 pAq :" min

B 1 PA B 1 ĎA η 1 pB 1 q
in (FS) and (MS) settings. And in (RM) setting we take ρpAq :" inf BPA BĂA BXB i A"H ηpBq , ρ 1 pAq :" inf

B 1 PA B 1 ĂA B1 XB i A"H η 1 pB 1 q
The constant ρpAq in (RM) setting is the Cheeger constant of A when the Dirichlet boundary condition on B i A is imposed, we refer to [START_REF] Buser | On Cheeger's inequality λ 1 ě h 2 {4[END_REF][START_REF] Shing | Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold[END_REF] for more information on the Cheeger constant on manifolds with Dirichlet and Neumann boundary conditions. We are now ready to define the higher order Cheeger-Steklov constants. For any k P N and for any of three settings (FS), (MS) and (RM), we define the k-th Cheeger-Steklov constant of M by

ι k pM q inf pA 1 ,¨¨¨,A k qPA k max lP k ρpA l qρ 1 pA l q
where k :" t1, . . . , ku and A k is the set of all k-tuples pA 1 , ¨¨¨, A k q of mutually disjoint elements of A. We recall the definition of the higher order Cheeger constants for the eigenvalues of a Markov generator in settings (FS) and (MS) and for the eigenvalues of the Laplace-Beltrami operator in setting (RM):

h k pM q inf pA 1 ,¨¨¨,A k qPA k max lP k ηpA l q
The sequence of the higher order Cheeger constants is called the connectivity spectrum. One can see how closely h k and ι k are related. We now state our main theorems.

Theorem A In setting (FS), there exists a universal positive constant c 0 such that

@ k P v , σ k pM q ě c 0 k 6 ι k pM q }L}
where }L} is the largest absolute value of the elements of the diagonal of L.

The following theorem is an extension of Theorem A to setting (MS).

Theorem B In setting (MS), there exists a universal positive constant c 1 such that @ k P N, σ k pM q ě c 1 k 6 ι k pM q

The higher order Cheeger-Steklov inequality in setting (RM) which is an extension of Escobar and Jammes results to higher Steklov eigenvalues states Theorem C In setting (RM), there exists a universal positive constant c 2 such that @ k P N, σ k pM q ě c 2 k 6 ι k pM q

We recall that for k " 2, the Cheeger inequality in setting (FS) was studied in [START_REF] Alon | Eigenvalues and expanders[END_REF][START_REF] Alon | λ 1 , isoperimetric inequalities for graphs, and superconcentrators[END_REF][START_REF] Dodziuk | Difference equations, isoperimetric inequality and transience of certain random walks[END_REF], and in settings (MS) in [START_REF] Lawler | Bounds on the L 2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality[END_REF], see also the lecture notes by Saloff-Coste [START_REF] Saloff-Coste | Lectures on finite Markov chains[END_REF] for a review. The higherorder Cheeger inequality in setting (FS) was conjectured by the second author [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF], see also [START_REF] Daneshgar | On nodal domains and higher-order Cheeger inequalities of finite reversible Markov processes[END_REF]. This conjecture was proved by Lee, Oveis Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF]. Later, the second author [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF] extended their result to (MS) and (RM) settings; see also [START_REF] Funano | Eigenvalues of laplacian and multi-way isoperimetric constants on weighted riemannian manifolds[END_REF] for the result on closed manifolds. The higher order Cheeger inequality in (FS) setting for the operator L states (see [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF]Theorem 3.8] and [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF]Theorem 2])

@ k P v , λ k pM q ě c 3 k 8 h 2 k pM q }L} (4) 
and in (MS) and (RM) settings states [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF] @ k P N,

λ k pM q ě c 4 k 6 h 2 k pM q (5)
where c 3 and c 4 are universal positive constants. As we mentioned before, our main results, Theorems A, B and C for Steklov eigenvalues, can be viewed as a counterpart of the higher order Cheeger inequalities for the Laplace spectrum. We remark that even for k " 2, Theorem A and Theorem B are new.

We now discuss about an improvement of the dependency on k in Theorems A, B, and C. In [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF]Theorem 4.1] and [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF]Theorem 13], it is shown that one can obtain a better lower bound when λ k is replaced by λ 2k in (4) and ( 5)

λ 2k pM q ě $ & % c3 logpk`1q h 2 k pM q }L} in setting (FS) c4 log 2 pk`1q h 2 k pM q in settings (MS) and (RM) (6) 
For Steklov eigenvalues we obtain analogous results.

Proposition A There are universal positive constants c1 and c2 such that

σ 2k pM q ě $ & % c1 log 2 pk`1q ι k pM q }L} @ k P v , in setting (FS) c2 log 2 pk`1q ι k pM q @ k P N, in settings (MS) and (RM) (7) 
Remark 1 The sharpness of the coefficient of h k in (6) was investigated in [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF] using the noisy hypercube graph, and in [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] using the Ornstein-Uhlenbeck process. Understanding the asymptotic sharpness of the coefficient of ι k in ( 7) is an interesting problem which needs a further investigation and remains open. We now briefly discuss the idea of the proof of the main Theorems. To prove the main theorems we first introduce the Dirichlet-Steklov connectivity spectrum of S on M . Second we show that eigenvalues of S can be viewed as a limit of eigenvalues of a family of operators. Then we prove that the Dirichlet connectivity spectrum (introduced in [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF] and in [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF]) of this family of operators converges to Dirichlet-Steklov connectivity spectrum of S. Moreover, we show that this convergence is uniform in some sense. Then we use the known lower bounds [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF][START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF] for eigenvalues of this family of operators in terms of their Dirichlet connectivity spectra to show that the Steklov eigenvalues have similar lower bounds in term of the Dirichlet-Steklov connectivity spectrum. The final step is to relate the Dirichlet-Steklov connectivity spectrum to the higher order Cheeger-Steklov constants. This is done using the co-area formula in each setting (FS), (MS) and (RM). Although the main idea of the proof in these three settings are the same, the details and technicalities that we need to deal with in each setting are different. This makes the investigation of each setting interesting in its own and not only as a straightforward consequence of another setting. We aim to explore a deeper underlying connection between these three settings in future studies.

It is also interesting to study the higher order Cheeger-Steklov inequality when L is a diffusion operator and when we also have a density on V . Here the associated Dirichlet-to-Neumann map S (known as the voltage-to-current map) appears in the study of the electrical impedance tomography [START_REF] Borcea | Electrical impedance tomography[END_REF][START_REF] Uhlmann | Electrical impedance tomography and Calderón's problem[END_REF]. The techniques and methods that we develop in this paper can be used to obtain the higher order Cheeger-Steklov inequality in this setting in terms of a weighted version of the higher order Cheeger-Steklov constants. The classical Cheeger inequality for weighted manifolds is studied in [START_REF] Brooks | The bottom of the spectrum of a Riemannian covering[END_REF], see also [START_REF] Cheng | Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain[END_REF][START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF]. We will address this in more details in a forthcoming work.

The paper is organized as follows. Section 2 deals with (FS) setting and the proof of Theorem A and Proposition A. In Section 3 we extends results in (FS) setting to (MS) setting. We also show that under the Dirichlet gap assumption on M zV the proof of Theorem B can be simplified. In Section 4 we prove Theorem C. We also provide examples which show the necessity of both isoperimetric ratios appearing in the definition of ι k . Although the ideas and techniques in three sections 2, 3, and 4 are related, the reader does not need to read the sections in order.
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The finite state space framework

Let L Lpx, yq x,yPM be an irreducible Markov generator on the finite set M . Recall that L is Markovian if @ x ‰ y P M, Lpx, yq ě 0, and

ÿ yPM Lpx, yq " 0
and is called irreducible if for every x, y P M there exists a sequence x " x 0 , x 1 , . . . , x l " y of elements of M such that Lpx j , x j`1 q ą 0 for any j P 0, l ´1 :" t0, . . . , l ´1u. Denote by µ pµpxqq xPM its unique invariant probability, characterized by

@ y P M, ÿ xPM µpxqLpx, yq " 0
Let V be a proper subset of M , i.e. H Ł V Ł M . Define the corresponding Steklov operator S on FpV q, the space of functions on V , via the following procedure. Given f P FpV q, let F be its harmonic extension on M , namely the unique

F P FpM q satisfying # LrF spxq " 0 , if x P M zV F pxq " f pxq , if x P V (8) 
Then we consider

@ x P V, Srf spxq LrF spxq (9) 
The following observation should be classical.

Proposition 2

The operator S is an irreducible Markov generator on V whose invariant measure is ν, the normalized restriction of µ to V .

Assume that µ is furthermore reversible for L, namely @ x, y P M, µpxqLpx, yq " µpyqLpy, xq

It follows that S is equally reversible with respect to ν, and the spectra of ´S and ´L are nonnegative. Denote by 0 " σ 1 , σ 2 , σ 3 , . . . , σ v , with v cardpV q, the eigenvalues of ´S in R with multiplicities, indexed so that 0 " σ 1 ă σ 2 ď σ 3 ď ¨¨¨ď σ v . Our goal is to investigate these eigenvalues.

For any r ą 0, consider the Markov generator defined by

@ x ‰ y P M, L prq px, yq # rLpx, yq , if x P M zV Lpx, yq , if x P V
Since µ is reversible for L, we will see (in Lemma 11) that L prq is reversible with respect to its invariant measure µ prq . Hence the eigenvalues of ´Lprq are non-negative. Let 0 " λ Remark 4 We believe that the above proposition should be true in the non-reversible case (where in the last convergence, λ prq k is replaced by its real part). We would like to estimate these eigenvalues via Cheeger type inequalities. Denote by A the set of nonempty subsets from M . We associate to any A P A a Dirichlet-Steklov operator S A on FpA X V q in the following way: given f P FpA X V q, consider F P FpM q such that

$ ' & ' % LrF spxq " 0 , if x P AzV F pxq " 0 , if x P M zA F pxq " f pxq , if x P A X V (10) 
The existence and uniqueness of such a F are similar to those of the solution of [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis[END_REF], see e.g. the proof of Proposition 2. Indeed, one is brought back to this situation by replacing V by V Y pM zAq and by extending f to this set by making it vanish on M zA.

Next define

@ x P A X V, S A rf spxq LrF spxq
When A X V ‰ H, we will check that S A is always a subMarkovian generator (i.e. S A px, yq ě 0, for any x ‰ y, and ř yPV S A px, yq ď 0) maybe not irreducible, but Perron-Frobenius' theorem enables to consider the smallest eigenvalue σ 1 pAq of ´SA . By convention, when A X V " H, FpHq t0u and σ 1 pAq " `8. Next we introduce the Dirichlet-Steklov connectivity spectrum pκ 1 , κ 2 , ..., κ v q of S via

@ k P v , κ k min pA 1 ,...,A k qPA k max lP k σ 1 pA l q (11)
where A k is the set of k-tuples pA 1 , A 2 , ..., A k q of disjoints elements from A. Notice that definition [START_REF] Verdière | Construction de laplaciens dont une partie finie du spectre est donnée[END_REF] can be written as

@ k P v , κ k min pA 1 ,...,A k qPA k pV q max lP k σ 1 pA l q (12)
where A k pV q is the set of all disjoint k-tuple in ApV q tA P A : A X V P Au. The above definitions are valid in all generality, but (for the moment) they are mainly useful under the reversibility assumption:

Theorem 5 Assume that L is reversible. There exists a universal constant c ą 0 such that

@ k P v , c k 6 κ k ď σ k ď κ k
The interest of the Dirichlet-Steklov connectivity spectrum is that it is strongly related to higher order inequalities. We need further definitions. Introduce the boundary of any A P A via BA tpx, yq : x P A, y P A c u

Consider the measure µ defined on M ˆM by @ x, y P M, µpx, yq "

" µpxqLpx, yq , if x ‰ y 0 , if x " y (13) 
it enables to measure BA through µpBAq. As a consequence, we can define the isoperimetric ratios ηpAq µpBAq µpAq η 1 pAq µpBAq µpA X V q By convention η 1 pAq " `8 if A X V " H. The ratio η 1 pAq is the discrete analogue of quantities introduced by Escobar [START_REF] José | The geometry of the first non-zero Stekloff eigenvalue[END_REF] and Jammes [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF], since in their terminology, BA and A X V can be seen respectively as the interior and exterior boundaries, when the set V itself is seen as a boundary of M .

Next consider ρpAq :" min BPA BĎA ηpBq ρ 1 pAq :" min

B 1 PA B 1 ĎA η 1 pB 1 q
For any k P v , introduce the k-th Cheeger-Steklov constant of V by

ι k min pA 1 ,...,A k qPA k max lP k ρpA l qρ 1 pA l q
Remark that ι 1 " 0 by taking A " M . The next result can be seen as an extension to higher order Cheeger inequalities (in the discrete case) of Théorème 1 of Jammes [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF]:

Theorem 6 Assume that L is reversible and let c be the constant of Theorem 5. We have

@ k P v , σ k ě c k 6 ι k }L}
where }L} is the largest absolute value of the elements of the diagonal of L.

Let us consider

h 1 k min pA 1 ,...,A k qPA k pV q max lP k η 1 pA l q
Proposition 7 Assume that L is reversible. We have

@ k P v , σ k ď h 1 k Remark 8
Let L be a reversible Markov generator but not necessarily irreducible. Let X pX t q tě0 be a Markov process generated by L, starting from x under the probability P x . Assume that the reaching time of V denoted by τ : τ inftt ě 0 : X t P V u is almost surely finite. Then all of the results above are valid without irreducibility condition. In particular, σ k " 0 if and only if h 1 k " 0. Indeed one way is obvious due to Proposition 7. For the "only if" part, σ k " 0, implies ι k " 0 by Theorem 6. Therefore there exists pA 1 , ..., A k q P A k pV q such that µpBA l q " 0 for all l P k . It follows h 1 k " 0. Note that the number of zeros determines the number of communicating classes. Recall that for the eigenvalues of L " L p1q , the result of Lee, Oveis Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] It is based on the following simple probabilistic interpretation of S. Let X pX t q tě0 be a Markov process generated by L, starting from x under the probability P x . Denote by τ its reaching time of V :

τ inftt ě 0 : X t P V u
it is a.s. finite, since L is irreducible. A usual application of the martingale problem associated to X shows that for any function G P FpM q, we have

E x rGpX τ qs " Gpxq `Ex "ż τ 0 LrGspX s q ds 
In particular, for any f P FpV q, it appears that its harmonic extension defined in (8) is given by @ x P M, F pxq " E x rf pX τ qs " ν x rf s where ν x is the law of X τ under P x . More precisely, we get the existence and uniqueness of the solution of (8), even without assuming that L is irreducible (only the finiteness of τ is needed). We deduce that for any f P FpV q and any x P V , Srf spxq "

ÿ yPM ztxu
Lpx, yqpF pyq ´F pxqq "

ÿ yPM ztxu ÿ zPV
Lpx, yqν y pzqpf pzq ´f pxqq namely, the matrix associated to S is given by @ x, z P V, Spx, zq

# ř yPM ztxu Lpx, yqν y pzq , if x ‰ z ´řyPV ztxu Spx, yq , if x " z
On this expression, it is clear that S is a Markov generator, namely that it satisfies Spx, zq ě 0 for any x ‰ z P V and ř zPV Spx, zq " 0 for any x P V . It is also irreducible: for any x, z P V , let x 0 " x, x 1 , x 2 , ..., x l " z be a sequence of elements of M such that Lpx j , x j`1 q ą 0 for any j P 0, l ´1 . Let py j q jP 0,k be the subsequence of px j q jP 0,l consisting of the elements belonging to V . We have y 0 " x, y k " z and from the above description of S, it follows that Spx j , x j`1 q ą 0 for any j P 0, k ´1 .

It remains to check that ν, the normalized restriction of µ to V , is invariant for S. For any f P FpV q, we have, with F constructed as in [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis[END_REF],

νrSrf ss " 1 µpV q ÿ xPV µpxqSrf spxq " 1 µpV q ÿ xPV µpxqLrF spxq " 1 µpV q ÿ xPM µpxqLrF spxq " µrLrF ss µpV q " 0
It shows that ν is invariant for S.

Remark 9 (probabilist point of view) A Markov process Y pY t q tě0 associated to the generator S and starting from x P V can be obtained from a Markov process X pX t q tě0 associated to the generator L and also starting from x, by erasing its passages in M zV . More precisely, let pτ n q nPZ be the sequence of jump intertimes of X:

τ 0 0 @ n P Z `, τ n`1 inftt ě 0 : X t`τn ‰ X τn u
Let pN n q nPZ `be the sequence of integers for which X τ 1 `τ2 `¨¨¨`τ Nn P V and consider

@ n P Z `, τ n ÿ pP n τ Np
Then we can construct the Markov process Y through the relation

@ t ě 0, Y t X τ 1 `τ2 `¨¨¨`τ Nn , if t P rτ n , τ n`1 r
This observation inspired the introduction of the generators L prq , for r ą 0: heuristically the generator of Y is L p8q , namely X is accelerated with an infinite speed in M zV and only its passages on V remain.

The above probabilistic interpretation also enables to see directly that S is irreducible and that the invariant measure ν of S is just µ conditioned on V . Indeed, for the latter assertion, by the ergodic theorem, we must have a.s.

@ y P V, νpyq " lim tÑ`8 1 t ż t 0 1 tyu pY s q ds
so it follows that for any y, z P V ,

νpyq νpzq " lim tÑ`8 ş t 0 1 tyu pY s q ds ş t 0 1 tzu pY s q ds " lim tÑ`8
ş t 0 1 tyu pX s q ds ş t 0 1 tzu pX s q ds " µpyq µpzq Remark 10 (analytic point of view) Recall that the Dirichlet form associated to L (and µ) is the bilinear form E L given by @ F, G P FpM q, E L pF, Gq ´ż F LrGs dµ

It is symmetrical, if and only if µ is reversible with respect to L.

The carré du champ associated to L is the bilinear functional Γ L defined by @ F, G P FpM q, @ x P M, Γ L rF, Gspxq LrF Gspxq ´F pxqLrGspxq ´GpxqLrF spxq [START_REF] José | The geometry of the first non-zero Stekloff eigenvalue[END_REF] It is not difficult to compute more explicitly that @ F, G P FpM q, @ x P M, Γ L rF, Gspxq

ÿ yPM

Lpx, yqpF pyq ´F pxqqpGpyq ´Gpxqq

In particular, when F " G, the r.h.s. looks like a weighted discrete gradient square, explaining the name carré du champ. From ( 14), we get that @ F, G P FpM q, ż Γ L rF, Gs dµ " E L pF, Gq `EL pG, F q and in particular

@ F P FpM q, ż Γ L rF s dµ " 2E L pF, F q
where Γ L rF s stands for Γ L rF, F s. Furthermore, when µ is reversible with respect to L, we get

@ F, G P FpM q, ż Γ L rF, Gs dµ " 2E L pF, Gq
These definitions are valid for any finite Markov generator L and we can consider similarly E S and Γ S . For any f, g P FpV q, let F and G be their harmonic extensions. It is clear that

E S pf, gq " E L pF, Gq µpV q (15)
and as a consequence, we have

ż Γ S rf, gs dν " 1 µpV q ż Γ L rF, Gs dµ
which is an important relation in the analytical approach to the usual Steklov (or Dirichlet to Neumann) operators.

It follows immediately from ( 15) that ν is reversible for S when µ is assumed to be reversible for L.

Since for any r ą 0, the generator L prq is irreducible, it admits a unique invariant probability µ prq .

Lemma 11

The probability measure µ prq is given by

@ x P M, µ prq pxq " # µpxq Zr , if x P V µpxq rZr , if x P M zV
where Z r µpV q `p1 ´µpV qq{r is the normalisation constant. Furthermore, if µ is reversible for L, then µ prq is reversible for L prq .

Proof

These are consequences of more general facts: assume that H P FpM q is positive: H ą 0. Consider the operator HL acting on FpM q via @ F P FpM q, @ x P M, HLrF spxq HpxqLrF spxq

It is an irreducible Markov generator. Let p1{Hq ¨µ be the positive measure admitting 1{H for density with respect to µ. We have @ F P FpM q, pp1{Hq ¨µqrHLrF ss " µrLrF ss " 0 Thus the invariant probability measure of HL is proportional to p1{Hq ¨µ.

Considering H 1 V `r1 M zV (where 1 V is the indicator function of V ) leads to the first announced result.

For the second result, note that in general, when µ is reversible for L, for any F, G P FpM q, pp1{Hq ¨µqrF pHLqrGss " µrF LrGss " µrGLrF ss " pp1{Hq ¨µqrGpHLqrF ss

Proof of Proposition 3

In the reversible case, ´L is diagonalisable with real eigenvalues. In view of Lemma 11, for any r ą 0, the same is true for ´Lprq , denote by 0 " λ prq

1 ă λ prq 2 ď λ prq 3 ď ¨¨¨ď λ prq m its eigenvalues. Let 1 " Φ prq 1 , Φ prq 2 , Φ prq 3 , . . . , Φ
prq m be corresponding eigenvectors. They are not unique (especially in the case of multiplicities larger than 1), but we can and do choose them so that they are orthogonal with respect to µ prq :

@ r P p0, `8q, @ k ‰ l P m , µ prq rΦ prq l Φ prq k s " 0
Normalize them with respect to the supremum norm }¨} 8 instead of the L 2 pµ prq q norm: @ r P p0, `8q, @ l P m ,

› › ›Φ prq l › › › 8 " 1 Consider l P m such that # lim inf rÑ`8 λ prq l ă `8 lim inf rÑ`8 λ prq l`1 " `8 (16) 
By compactness, we can find an increasing sequence of positive numbers pr n q nPN and for any k P l , a non-negative number λ p8q k P r0, `8q and a positive function Φ

p8q k P FpM q with › › ›Φ p8q k › › › 8 " 1 such that lim nÑ8 r n " `8 lim nÑ8 λ prnq k " λ p8q k lim nÑ8 Φ prnq k " Φ p8q k
Passing to the limit in the relations

@ x P V, LrΦ prnq k spxq " L prnq rΦ prnq k spxq " ´λprnq k Φ prnq k pxq
we get

@ x P V, LrΦ p8q k spxq " ´λp8q k Φ p8q k pxq
For x P M zV , we have instead

r n LrΦ prnq k spxq " ´λprnq k Φ prnq k pxq
Since the r.h.s. converges to ´λp8q k Φ p8q k pxq for large n P N, we deduce that

@ x P M zV, LrΦ p8q k spxq " lim nÑ8 LrΦ prnq k spxq " 0 Thus denoting ϕ k the restriction of Φ p8q k to V , it appears that Φ p8q k
is the harmonic extension of ϕ k .

Note that ϕ k ‰ 0, otherwise we would conclude that Φ p8q k " 0, in contradiction with

› › ›Φ p8q k › › › 8 " 1.
Thus

λ p8q k
is an eigenvalue of ´S. Furthermore, passing to the limit in the relations

@ j ‰ k P l , µ prnq rΦ prnq j Φ prnq k s " 0 we see that @ j ‰ k P l , νrϕ j ϕ k s " 0
It follows that the λ p8q k , for k P l , correspond to different eigenvalues of ´S (with multiplicities). Namely, there exists an increasing mapping N : l Ñ v (recall that v cardpV q) such that

@ k P l , λ p8q k " σ N pkq
and in particular, v ě l. Conversely, consider ψ 1 , ψ 2 , ..., ψ v a basis of FpV q consisting of eigenvectors of ´S associated respectively to the eigenvalues σ 1 , σ 2 , ..., σ v . Since ν is reversible for S, we can and do choose these functions to be orthogonal in L 2 pνq. Let Ψ 1 , Ψ 2 , ..., Ψ v be the harmonic extensions of ψ 1 , ψ 2 , ..., ψ v . We furthermore impose that }Ψ k } 8 " 1 for all k P v . Consider the vector space W Ă FpM q generated by these functions

W VectpΨ k : k P v q
Due to the variational principle, we have for any r ą 0,

λ prq v ď sup F PW zt0u
´µprq rF L prq rF ss µ prq rF 2 s

Since the functions from W are harmonic on M zV , we have for any r ą 0, with the notation of Lemma 11,

@ F P W, ´µprq rF LrF ss " ´µpV q Z r νrF LrF ss " ´µpV q Z r νrf Srf ss ď µpV q Z r σ v νrf 2 s
where f is the restriction of F to V . We also have

µ prq rF 2 s " µr1 V f 2 s `µr1 M zV F 2 s{r Z r ě µpV q Z r νrf 2 s
We deduce from these two bounds that

λ prq v ď σ v and lim sup rÑ`8 λ prq v ă `8 (17) 
i.e. l ě v and finally l " v. It follows that

@ k P v , lim nÑ8 λ prnq k " σ k (18) 
Taking into account [START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF], for any increasing subsequence pR n q nPN of positive numbers diverging to `8, we can extract another subsequence pr n q nPN such that ( 18) is true, we conclude by compactness that

@ k P v , lim rÑ`8 λ prq k " σ k
The last assertion of Proposition 3 is a consequence of l " v and of the definition of l in [START_REF] Stewart | Markov processes[END_REF].

Before coming to the proof of Theorem 5, let us check that for any A P ApV q, S A is a subMarkovian generator. The argument is similar to that of the proof of Proposition 2 and is based on the probabilistic representation of the solution F of (10):

@ x P M, F pxq " E x rf pX τ AXV q1 τ AXV ăτ M zA s (19) 
where pX t q tě0 is a Markov process generated by L and starting from x, and for any B Ă M , τ B is the hitting time of B:

τ B inftt ě 0 : X t P Bu
As a consequence, the first eigenvalue σ 1 pAq of ´SA is non-negative. It vanishes, if and only if there is no path (whose transitions are permitted by L) going out of A without passing through A X V . Assume that µ is reversible with respect to L. By the variational formulation of eigenvalues and using the notation of Remark 9, we have for A P A,

σ 1 pAq " inf " E S A pf, f q ν AXV rf 2 s : f P FpA X V qzt0u * ( 20 
)
where ν AXV is the normalized restriction of µ to A X V , which is reversible with respect to S A . As in [START_REF] José | An isoperimetric inequality and the first Steklov eigenvalue[END_REF], in the above formula, E S A pf, f q can be replaced by E L pF, F q{µpA X V q, where F is associated to f via [START_REF] Colbois | Isoperimetric control of the Steklov spectrum[END_REF].

We can now come to the

Proof of Theorem 5

The upper bound of σ k is a direct consequence of the variational characterization of σ k σ k " min

HPF k pV q max f PHzt0u E S pf, f q νrf 2 s
where F k pV q is the set of all k-dimensional subspace of FpV q, by taking H as the space spanned by the first eigenfunctions of S A l , l P k . The proof of the lower bound is based on the higher order Dirichlet-Cheeger inequalities for finite irreducible and reversible Markov generators. So assume that µ is reversible with respect to L and let 0 " λ 1 pLq ă λ 2 pLq ď λ 3 pLq ď ¨¨¨ď λ m pLq be the eigenvalues of ´L. Associate to any A P A its first Dirichlet eigenvalue

λ 1 pAq inf " E L pF, F q µrF 2 s : F P FpM q with F vanishing on M zA *
This is the same definition as (20) if we had taken V " M . Next define for any k P m ,

Λ k pLq min pA 1 ,...,A k qPA k max lP k λ 1 pA l q
The higher order Dirichlet-Cheeger inequalities of Lee, Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] (see also [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF] for its Markovian reformulation) assert that there exists a universal constant c ą 0 such that

@ k P m , λ k pLq ě c k 6 Λ k pLq
In particular, we can apply them to L prq for r ą 0:

@ k P m , λ prq k " λ k pL prq q ě c k 6 Λ k pL prq q ": Λ prq k (21) 
From Proposition 3, we know the behavior for large r ą 0 of the l.h.s., for k P v , so it remains to investigate the r.h.s. Fix A P A and consider for r ą 0,

λ prq 1 pAq inf " E L prq pF, F q µ prq rF 2 s : F P FpM q with F vanishing on M zA * It is the smallest eigenvalue of ´Lprq A ,
where L prq A is the subMarkovian generator acting on FpAq whose matrix is the pA ˆAq-restriction of the matrix corresponding to L prq . The proof of Proposition 3 can easily be adapted to this situation to show that as r goes to `8, the first cardpA X V q eigenvalues of ´Lprq A converge to the eigenvalues of ´SA . In particular we get lim rÑ`8

λ prq 1 pAq " σ 1 pAq
Since A k is a finite set, it follows that

@ k P v , lim rÑ`8 Λ prq k " κ k
where the r.h.s. is defined in [START_REF] Verdière | Construction de laplaciens dont une partie finie du spectre est donnée[END_REF]. The wanted result is thus obtained by passing to the limit in [START_REF] Girouard | Spectral geometry of the Steklov problem (survey article)[END_REF] as r goes to `8.

Proof of Theorem 6

To relate the κ k , for k P v , to isoperimetric quantities, we will adapt a computation of Jammes [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF] to the finite setting. Fix A P A and let us come back to [START_REF] Girouard | On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem[END_REF]. More precisely, consider f P FpA X V q a minimizer of the infimum in the r.h.s. of [START_REF] Girouard | On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem[END_REF] and F the associated solution of [START_REF] Colbois | Isoperimetric control of the Steklov spectrum[END_REF]. From the Perron-Frobenius' theorem, we know that we can and do choose f to be non-negative and from [START_REF] Funano | Eigenvalues of laplacian and multi-way isoperimetric constants on weighted riemannian manifolds[END_REF], we also have F ě 0. We are looking for a lower bound on the ratio

E L pF, F q µrf 2 1 AXV s " ř x‰yPM µpxqLpx, yqpF pyq ´F pxqq 2 2 ř xPAXV µpxqf 2 pxq
So multiply the numerator and the denominator by ř x 1 ‰y 1 PM µpx 1 qLpx 1 , y 1 qpF py 1 q `F px 1 qq 2 . In the numerator we get

ÿ x 1 ‰y 1 PM µpx 1 qLpx 1 , y 1 qpF py 1 q `F px 1 qq 2 ÿ x‰yPM µpxqLpx, yqpF pyq ´F pxqq 2 ě ˜ÿ x‰yPM µpxqLpx, yqpF pyq `F pxqq|F pyq ´F pxq| ¸2 (22) 
" ˜ÿ x‰yPM µpxqLpx, yq|F 2 pyq ´F 2 pxq|

¸2

where for the first bound we used the Cauchy-Schwarz inequality with respect to the measure µ outside the diagonal of M ˆM . Concerning the denominator, we begin by noting that

ÿ x 1 ‰y 1 PM µpx 1 qLpx 1 , y 1 qpF py 1 q `F px 1 qq 2 ď 2 ÿ x 1 ‰y 1 PM µpx 1 qLpx 1 , y 1 qpF 2 py 1 q `F 2 px 1 qq " 4 ÿ x 1 ‰y 1 PM µpx 1 qLpx 1 , y 1 qF 2 px 1 q " 4 ÿ x 1 PM µpx 1 q ˇˇLpx 1 , x 1 q ˇˇF 2 px 1 q ď 4 }L} ÿ x 1 PM µpx 1 qF 2 px 1 q (23)
where we used the reversibility of µ with respect to L for the first equality. For any G P FpM q, denote |dG| the function on M ˆM given by @ px, yq P M, |dG|px, yq |Gpyq ´Gpxq| Putting together the above computations, we have obtained

σ 1 pAq ě 1 8 }L} µr|dF 2 |s µrF 2 s µr|dF 2 |s µrf 2 1 AXV s
To deal with the ratios of the r.h.s., recall the co-area formula (see for instance Formula (3.3.2) page 381 of the lecture notes of Saloff-Coste [START_REF] Saloff-Coste | Lectures on finite Markov chains[END_REF]): for any non-negative G P FpM q vanishing somewhere, we have µr|dG|s "

ż τ 0 µrBD t s dt where @ t ě 0, D t tx P M : Gpxq ě tu τ inftt ě 0 : D t " Hu " inftt ą 0 : µpBD t q " 0u (24) 
We also have µrGs "

ż τ 0 µrD t s dt
Applying these formulas with G F 2 (which vanishes somewhere since A ‰ M ), we deduce that

µr|dF 2 | µrF 2 s ě inf " µpBD t q µrD t s : t ě 0 * ě min tηpBq : B P A, B Ă Au
since we have D t Ă A for all t ě 0. Furthermore we have

µrf 2 1 AXV s " µrF 2 1 AXV s " ż `8 0 µrD t X A X V s dt " ż `8 0 µrD t X V s dt
so we deduce similarly that

µr|dF 2 |s µrf 2 1 AXV s ě min η 1 pBq : B P A, B Ă A (
Finally we have shown that

@ A P A, σ 1 pAq ě ρpAqρ 1 pAq 8 }L} It follows that @ k P v , κ k ě ι k 8 }L} (25) 
and Theorem 6 is now an immediate consequence of Theorem 5.

Proof of Proposition 7

Consider the variational characterisation of σ k :

σ k " min HPF k pV q max f PHzt0u E S pf, f q νrf 2 s " min HPF k pV q max f PHzt0u E L pF f , F f q µrf 2 1 V s
where F k p¨q is the set of all k-dimensional subspace of Fp¨q, and F f is solution to [START_REF] Colbois | Isoperimetric control of the Steklov spectrum[END_REF], the harmonic extension of f to M zV . We can rewrite the variational characterisation in the following equivalent way.

σ k " min

HPF k pM q H| V PF k pV q max F PHzt0u E L pF, F q µrF 2 1 V s
Indeed for every f P FpV q, and all F P FpM q with F | V " f we have

E L pF f , F f q ď E L pF, F q
This is due to the harmonic property of F f , for more details see [START_REF] Shing | Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold[END_REF]. Let pA 1 , ..., A k q P A k pV q and consider H :" Vectp1 A l : l P k q P F k pM q. It is also clear that H| V P F k pV q.

E L p1 A l , 1 A l q µr1 A l XV s " ř x‰yPM µpxqLpx, yqp1 A l pyq ´1A l pxqq 2 2µpA l X V q " ř xPA l , yPA c l µpxqLpx, yq `µpyqLpy, xq 2µpA l X V q " η 1 pA l q It implies σ k ď min pA 1 ,...,A k qPA k pV q max lP k η 1 pA l q " h 1 k
and completes the proof.

We conclude this section by the proof of Proposition A in the introduction.

Proposition 12 There is a universal positive constant c 1 such that Theorem 4.6] and [31, Section 2], we have

@ k P v , σ 2k ě c 1 log 2 pk `1q ι k }L} Proof By [27,
@ k P v , λ prq k ě c log 2 pk `1q Λ prq k
where c is a universal positive constant. Passing to the limit and using (25) we get

@ k P v , σ k " lim rÑ8 λ prq k ě c log 2 pk `1q κ k ě c 8 log 2 pk `1q ι k }L}
and the statement follows.

The measurable state space framework

Let pM, M, µq be a probability measure space, endowed with a Markov kernel P leaving µ invariant (i.e. µrP rF ss " µrF s, for any bounded measurable function F ). The Markov kernel P defines a map P : L 2 pµq Ñ L 2 pµq by P rF spxq :" ş M P px, dyqF pyq. It has the following properties P r1s " 1, and @ F ě 0 ñ P rF s ě 0

We assume that P is weakly mixing, in the following sense. Let Z pZpnqq nPZ `be a Markov chain whose transition kernel is P . As usual, we indicate that Z is starting from x P M , i.e. Zp0q " x, by putting x in index of the underlying probability P x and expectation E x (more generally, this index will stand for the initial law of Zp0q). Denote by A the set of A P M such that 0 ă µpAq ď 1. For any A P A, define the hitting time of A by Z via

τ A inftn P Z `: Zpnq P Au (26) 
The weak mixing assumption asks for τ A to be P x -a.s. finite, for any x P M and any A P A (but what follows can be adapted to the situation where τ A is a.s. finite, µ-a.s. in x P M and for any A P A). Fix some V P A, we introduce corresponding Steklov Markov kernel K and Steklov generator S in the following way: let BpV q be the set of bounded measurable mappings defined on V . To any f P BpV q, we associate the mapping F f P BpM q given by

@ x P M, F f pxq E x rf pZpτ V qqs (27) 
and we define

@ x P V, " Krf spxq P rF f spxq Srf spxq Krf spxq ´f pxq (28) 
Note that K is a Markov transition operator, in the sense that it preserves the non-negativity of functions, as well as 1 V (the mapping always taking the value 1 on V ). It is immediate to check that the function F f defined in ( 27) is given by

F f " ÿ nPZ `p1 M zV P q n 1 V rf s
where the indicator functions are seen as multiplication operators. It follows that the transition kernel of K is ř nPZ `pP 1 M zV q n P 1 V . The function F f is called the harmonic extension of f to M , because we have

@ x P M zV, pP ´IqrF f spxq " 0 ( 29 
)
where I stands for the identity operator (it will always be so in the sequel, even when the underlying space will not be the same). Indeed, we have on M zV ,

P rF f s " 1 M zV P rF f s " 1 M zV P ÿ nPZ `p1 M zV P q n 1 V rf s " ÿ nPN p1 M zV P q n 1 V rf s " ÿ nPZ `p1 M zV P q n 1 V rf s ´1V rf s " ÿ nPZ `p1 M zV P q n 1 V rf s " F f
where we used that 1 V " 0 on M zV in the last but one equality.

Let ν be the normalisation into a probability measure of the restriction of µ to V .

Lemma 13

The probability measure ν is invariant for K.

Proof

Indeed, we compute that for any f P BpV q, νrKrf ss " 1 µpV q µr1 V Krf ss " 1 µpV q `µrKrf ss ´µr1 M zV Krf ss By invariance of µ with respect to P , we have

µr1 M zV Krf ss " µrP r1 M zV Krf sss " µ » -P 1 M zV ¨ÿ nPZ `pP 1 M zV q n P r1 V f s 'fi fl " µ « ÿ nPN pP 1 M zV q n P r1 V f s ff " µrKrf ss ´µrP r1 V f ss " µrKrf ss ´µr1 V f s
In conjunction with the previous identity, we get νrKrf ss " 1 µpV q µr1 V f s " νrf s as wanted.

From now on, we will only be concerned with the more specific reversible situation where P is symmetric in L 2 pµq (or equivalently µpdxqP px, dyq " µpdyqP py, dxq). It follows that P can be extended into a bounded self-adjoint operator on L 2 pµq. Then ν is also reversible with respect to K: for any f, g P BpV q, we have νrf Krgss "

1 µpV q µr1 V f Krgss " 1 µpV q µ » -1 V f ¨ÿ nPZ `pP 1 M zV q n P r1 V gs 'fi fl " 1 µpV q µ » -1 V g ¨ÿ nPZ `P p1 M zV P q n r1 V f s 'fi fl " 1 µpV q µ » -1 V g ¨ÿ nPZ `pP 1 M zV q n P r1 V f s 'fi fl " νrgKrf ss
As a consequence, K can also be extended into a bounded self-adjoint operator on L 2 pνq. It leads us to introduce the following quantities for k P N,

σ k inf HPH k pV q sup f PHzt0u νrf pI ´Kqrf ss νrf 2 s ( 30 
)
where H k pV q is the set of subspaces of dimension k of L 2 pνq. In the above definition and subsequently, the convention inf H `8 is enforced. When K has no essential spectrum, the finite elements of pσ k q kPN are eigenvalues of I ´K " ´S. due to their variational characterization. We want to estimate them via higher order Cheeger inequalities. To go in this direction, let us consider ApV q tA P A : A X V P Au and for A P ApV q, the Dirichlet-Steklov Markov kernel K A defined on BpA X V q as follows. For any f P BpA X V q, consider

@ x P M, F A,f pxq E x rf pZpτ AXV qq1 tτ AXV ďτ M zA u s
where τ AXV is the hitting time of A X V by Z according to [START_REF] Lawler | Bounds on the L 2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality[END_REF]. The operator K A is then given by

@ x P A X V, K A rf spxq P rF A,f spxq
Let ν A be the normalisation into a probability measure of the restriction of µ (or ν) to A X V . It can be easily checked as above that K A is Markovian and symmetric in L 2 pν A q, so that K A can be extended into bounded self-adjoint operator on L 2 pν A q. As in [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF], we could introduce the quantities pσ k pAqq kPN , but only its first element will be important for us:

σ 1 pAq inf f PL 2 pν A qzt0u ν A rf pI ´KA qrf ss ν A rf 2 s (31) 
More precisely, for any k P N, let A k pV q be the set of k-tuples pA 1 , A 2 , ..., A k q of disjoint elements from ApV q. We introduce the Dirichlet-Steklov connectivity spectrum pκ k q kPN of K via

@ k P N, κ k inf pA 1 ,...,A k qPA k pV q max lP k σ 1 pA l q
Definition (31) can be considered for any A P A, but with the usual convention, we get σ 1 pAq " `8 when A R ApV q, because L 2 pν A q " t0u in this case (and we are left with the trivial K A " 0). Nevertheless, it enables to write

@ k P N, κ k " inf pA 1 ,...,A k qPA k max lP k σ 1 pA l q (32) 
where A k be the set of k-tuples pA 1 , A 2 , ..., A k q of disjoint elements from A.

The goal of this section is to show that the extension of Theorem 5 holds in this setting:

Theorem 14 There exists a universal constant c ą 0 such that

@ k P N, c k 6 κ k ď σ k ď κ k
As in the finite setting, the above result leads to higher order Cheeger inequalities presented below. Nevertheless Theorem 14 is more robust than the latter inequalities [START_REF] Stekloff | Sur les problèmes fondamentaux de la physique mathématique (suite et fin)[END_REF] and [START_REF] Uhlmann | Electrical impedance tomography and Calderón's problem[END_REF], as it will appear in its proof. In a future work, we hope to take advantage of Theorem 14 to give an alternative proof, as well as extensions, of Theorem C of the introduction.

We need the natural extensions of the definitions given in the finite case to our present mesurable state space setting. The boundary of any A P A is given by BA tpx, yq : x P A, y P M zAu It is a measurable subset of M ˆM endowed with its product σ-field M b M. Consider the measure µ on M ˆM defined by µpdx, dyq " µpdxqP px, dyq

Here there is a slight difference with the finite case, as we do not impose that the diagonal D tpx, xq : x P M u is negligible with respect to µ: we cannot do so, because we are not sure D belongs to M b M. It is not important, since we will only integrate with respect to µ functions which vanish on the diagonal. In particular µ enables to measure BA through µpBAq. As a consequence, we can define for A P A the isoperimetric ratios ηpAq µpBAq µpAq η 1 pAq µpBAq µpA X V q (by convention, η 1 pAq " `8 if A R ApV q). Again, the ratio η 1 pAq is the measurable analogue of quantities introduced by Escobar [START_REF] José | The geometry of the first non-zero Stekloff eigenvalue[END_REF] and Jammes [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF], since in their terminology, BA and A X V can be seen respectively as the interior and exterior boundaries, when the set V itself is seen as a boundary of M .

Next consider ρpAq :" inf BPA BĎA ηpBq ρ 1 pAq :" inf

B 1 PA B 1 ĎA η 1 pB 1 q
For any k P N, introduce the k-th Cheeger-Steklov constant of V by

ι k inf pA 1 ,...,A k qPA k max lP k ρpA l qρ 1 pA l q
The next result can be seen as an extension to higher order Cheeger inequalities of Théorème 1 of Jammes [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF], as in Theorem 6:

Theorem 15 Let c be the constant of Theorem 14. We have

@ k P N, σ k ě c k 6 ι k (34) 

Proof

The deduction of Theorem 15 from Theorem 14 is very similar to that of Theorem 6 from Theorem 5.

For any function f P L 2 pν A qzt0u, due to Remark 10 for the measurable situation and Lemma 17 below, we have

ν A rf pI ´KA qrf ss ν A rf 2 s " µrF A,f pI ´P qrF A,f ss µr1 V XA f 2 s " ş M ˆM µpdxqP px, dyq1 F A,f pyq‰F A,f pxq pF A,f pyq ´FA,f pxqq 2 2µr1 V XA f 2 s
We multiply the numerator and the denominator by ş M ˆM µpdxqP px, dyq1 F A,f pyq‰F A,f pxq pF A,f pyq FA,f pxqq 2 and follow the same calculation as in the proof of Theorem 6. The key point is that the statement of the co-area formula is the same in the finite and measurable situations, replacing sums by integrals. To illustrate the kind of slight modifications to be taken into account (also that }L} of Theorem 5 can be replaced by 1 here), let us present the equivalent of the computation ( 23)

ż M ˆM µpdxqP px, dyq1 F A,f pyq‰F A,f pxq pF A,f pyq `FA,f pxqq 2 ď 2 ż M ˆM µpdxqP px, dyq1 F A,f pyq‰F A,f pxq pF 2 A,f pyq `F 2 A,f pxqq " 4 ż M ˆM µpdxqP px, dyq1 F A,f pyq‰F A,f pxq F 2 A,f pxq ď 4 ż M µpdxqF 2 A,f pxq
The measurable indicator 1 F A,f py 1 q‰F A,f pxq is inherited from the Cauchy-Schwarz' inequality in [START_REF] Hassannezhad | Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem[END_REF] and must be kept to avoid the possible drawback that D R M b M.

In the same spirit, in [START_REF] Kuznetsov | The legacy of Vladimir Andreevich Steklov[END_REF] τ should be defined as the r.h.s. Then we apply the above calculation to a family of functions f n P L 2 pν A q such that ν A rfnpI´K A qrfnss ν A rf 2 n s Ñ σ 1 pAq as n tends to 8.

As in the previous section we consider

h 1 k inf pA 1 ,...,A k qPA k pV q max lP k η 1 pA l q (35) 
and by the same proof, Proposition 7 is valid in the measurable situation, i.e.

@ k P N, σ k ď h 1 k
The proof of Theorem 14 follows the same pattern as in the finite case: it will be deduced from the higher order Cheeger inequalities from [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF], once the above quantities will be shown to be limits of spectra associated to speed-up Markov processes. More precisely, for r ą 0, consider the jump Markov generator L prq on M given by the kernel where Z r µpV q `p1 ´µpV qq{r is the normalisation constant. The proof of Lemma 11 is still valid and leads to

L prq px

Lemma 16

The operator L prq is self-adjoint in L 2 pµ prq q.

Similarly to ( 30) and ( 31), consider

λ prq k inf HPH k sup F PHzt0u
µ prq rF p´L prq qrF ss µ prq rF 2 s where H k is the set of subspaces of dimension k of L 2 pµq " L 2 pµ prq q, and for any A P A,

λ prq 1 pAq inf F PL 2 pA,µqzt0u
µ prq rF p´L prq qrF ss µ prq rF 2 s where L 2 pA, µq is the space of F P L 2 pµq which vanish on M zA. The larger λ prq 1 pAq is, the easier it is for a (continuous time) Markov process associated to the generator L prq to exit A: the quantity λ prq 1 pAq corresponds to the first Dirichlet eigenvalue of A and measures the asymptotical rate of exit from A.

The numerators in the above r.h.s. are only slightly dependent on r ě 1 and related to the similar quantities relative to K: where we used the reversibility (under the form µpdxqP px, dyq " µpdyqP py, dxq) in the last equality. Note that the last but one r.h.s. is just µrF pI ´P qrF ss{Z r . Similarly, we compute that for any f P L 2 pνq, νrf pI ´Kqrf ss "

Lemma
ż V ˆV νpdxqKpx, dyqpf pxq ´f pyqqf pxq " ż V νpdxqKrf pxq ´f spxqf pxq " ż V νpdxqP rf pxq ´Ff spxqf pxq " ż V ˆM νpdxqP px, dyqpf pxq ´Ff pyqqf pxq " ż V ˆM νpdxqP px, dyqpF f pxq ´Ff pyqqF f pxq " ż M ˆM νpdxqP px, dyqpF f pxq ´Ff pyqqF f pxq " 1 µpV q µrF f pI ´P qrF f ss
where in the last but one equality, we used that F f is harmonic on M zV according to [START_REF] Miclo | An example of application of discrete Hardy's inequalities. Markov Process[END_REF]. It remains to see that inftµrF pI ´P qrF ss : F |V " f u " µrF f pI ´P qrF f ss [START_REF] Shing | Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold[END_REF] namely that among all F P L 2 pµq coinciding with f on V , the quantity µrF pI ´P qrF ss is minimum when F " F f . This is a well-known fact, due to the harmonic property of F f , let us recall the argument. Write any such function F under the form F f `G where G P L 2 pµq vanishes on V . We have Our first approximation results are:

µrF
Theorem 18 Assume that λ λ p1q 1 pM zV q ą 0 (this quantity will be subsequently called the Dirichlet gap of M zV ), namely that it is quite easy for the Markov chains pZq xPM to enter into V . Then for any k P N, we have More precisely, the latter convergence is uniform, in the following sense: let d be a distance on the compact set r0, `8s compatible with its usual topology. We have More generally, the proof of (37) will show that lim rÑ`8 λ prq k pAq " σ k pAq, for any k P N, but it will not be useful for our purposes.

Proof

The proof is mainly concerned with the first convergence, since the second one will follow by recycling the obtained quantitative bounds.

We begin by checking that for any k P N, we have lim sup

rÑ`8 λ prq k ď σ k (38) 
This result does not require that λ p1q 1 pM zV q ą 0. Note that any H P H k pV q can be seen as an element of H k , through the one-to-one mapping

L 2 pνq Q f Þ Ñ F f P L 2 pµq so that we have λ prq k ď inf HPH k pV q max f PH µ prq rF f p´L prq qrF f ss µ prq rF 2 f s
According to Lemma [START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF], for any f P L 2 pνq,

µ prq rF f p´L prq qrF f ss " 1 Z r µrF f pI ´P qrF f ss " µpV q Z r νrf pI ´Kqrf ss
Furthermore, we compute that

µ prq rF 2 f s " 1 Z r `µr1 V f 2 s `µr1 M zV F 2 f s{r ˘ě 1 Z r µr1 V f 2 s " µpV q Z r νrf 2 s
Thus we get that

λ prq k ď inf HPH k pV q max f PH
νrf pI ´Kqrf ss νrf 2 s " σ k from which (38) follows at once. Conversely, to any subspace H Ă L 2 pµq associate r H the subspace of L 2 pνq generated by the functions F |V for F P H. For k P N, let H k stand for the set of H P H k which are such that r H P H k pV q, namely such that r H has dimension k. We begin by remarking that for k P N such that k ď dimpL 2 pνqq (ď `8) and for any r ą 0,

λ prq k " inf HPH k max F PHzt0u
µ prq rF p´L prq qrF ss µ prq rF 2 s (39) Indeed, fix some H P H k and choose F 1 , F 2 , ..., F k a basis of H. Consider for l P k , f l the restriction of F l to V . If pf l q lP k is not an independent family of L 2 pV q, then we can find another family p p f l q lP k of L 2 pV q such that for any P p0, 1s, the family pf l ` p f l q lP k is independent. For P p0, 1s, consider H the space generated by pF l ` p F l q lP k , where the p F l , l P k , are the functions coinciding with p f l on V and e.g. vanishing outside. Since r H belongs to H k pV q, we have that µrF pP ´IqrF ss µrF 2 s " inf

F PL 2 pµq 1 M zV F ‰0 µr1 M zV F pI ´P qr1 M zV F ss µr1 M zV F 2 s
It follows that for any F P L 2 pµq,

µr1 M zV F 2 s ď 1 λ µr1 M zV F pI ´P qr1 M zV F ss ď 1 λ µrpF ´1V F qpI ´P qrF ´1V F ss ď 2 λ pµrF pI ´P qrF ss `µr1 V F pI ´P qr1 V F ssq ď 2 λ
`µrF pI ´P qrF ss `2µr1 V F 2 s where we used that the mapping L 2 pµq Q F Þ Ñ µrF pI ´P qrF ss is a (non-negative) quadratic form (called the Dirichlet form associated to the Markov generator P ´I, see Remark 10) and that the spectrum of the operator I ´P is included into r0, 2s. We deduce that for any r ą 0, For the second convergence, note that for A P A, the definition of σ 1 pAq is similar to that of σ 1 where V is replaced by V Y pM zAq, except we only consider functions that vanish on M zA. It leads us to consider

µ prq rF 2 s " 1 Z r ˆµr1 V F 2 s `1 r µr1 M zV F 2 s ď 1 Z r ˆˆ1 `4 rλ ˙µr1 V F 2 s `2
λ A λ p1q 1 pAzV q
and for r ą 0, the mapping φ A,r given by

φ A,r : r0, `8s Q u Þ Ñ u 1 `4 λ A r `2u λ A r
The above computations show that for any r ą 0,

σ 1 pAq ě λ prq 1 pAq ě φ A,r pσ 1 pAqq Note that the mapping A Q B Þ Ñ λ p1q
1 pBq is non-increasing with respect to the inclusion of sets (because λ p1q 1 pBq corresponds to an infimum over the space of functions L 2 pB, µqzt0u, which is nondecreasing with respect to B), so we deduce 

λ A ě λ @ r ą 0, φ A,
ˇˇˇ1 u ´1 φ r puq ˇˇˇ¸" 0 Remark 19
The assumption of positive Dirichlet gap in Theorem 18 is really needed. Indeed, remark that when λ p1q 1 pM zV q " 0, then for any r ą 0, we have λ prq 1 pM zV q " 0. Due to Lemma 17, this is an immediate consequence of " 0 But it may happen that σ 2 ą 0. Consider for instance an ergodic birth and death transition kernel P on Z `: we take M " Z `endowed with a probability measure µ charging all the points. The reversible transition kernel P is defined via a Metropolis procedure: @ x, y P Z `, P px, yq

@ F P L 2 pµq, 1 
$ ' & ' % 1 2 ´µpxq µpyq ^1¯, if |y ´x| " 1 0 , if |y ´x| ě 2 1 ´řzPZ `ztxu P px, zq , if x " y
where p ^q :" mintp, qu. The definition of P via the above Metropolis procedure implies that it is irreducible with respect to µ (see for example [START_REF] Benaïm | Promenade aléatoire. Chaînes de Markov et simulations, martingales et stratégies[END_REF]Section 3.1]). Recall that by definition, P is ergodic if and only if

@ F P L 2 pµq, P rF s " F ñ F P Vectp1q
Thus, irreducibility implies ergodicity in the above example. As a result, P is also weakly mixing.

Assume that the queues of µ are sufficiently heavy, in the sense that lim xÑ8 µpxq µprx, 8qq " 0 An application of discrete Hardy's inequalities (see [START_REF] Miclo | An example of application of discrete Hardy's inequalities. Markov Process[END_REF], they are given for finite birth and death processes, but are also valid in the denumerable setting) implies that λ p1q 1 pZ `zt0, 1uq " 0. Nevertheless considering for instance V " t0, 1u we get that σ 2 ą 0, as a consequence of Kp0, 1q " P p0, 1q ą 0 and Kp1, 0q " P p1, 0q ą 0. More generally it can be proven that σ 2 ą 0 for any finite subset of Z ǹon-empty and not reduced to a singleton.

Note that under the weak mixing assumption (or under the ergodicity assumption), λ p1q 2 " 0 means that 0 is the lower bound of the essential spectrum, so that λ p1q k " 0 for all 1 ď k ă dimpL 2 pµqq `1 and similarly, λ prq k " 0 for any r ą 0 and 1 ď k ă dimpL 2 pµqq `1.

To prove Theorem 14 without the assumption of a positive Dirichlet gap on M zV , we will accelerate the Markov process associated to the generator P ´I more strongly on the slow points of M zV (near 8 in the above remark). More precisely, we look for a measurable function ϕ : M Ñ r1, `8q, taking the value 1 on V , such that by defining for r ą 0, the jump Markov generator L prq by

L prq px, dyq " rϕpxqpP px, dyq ´δx pdyqq , if x P M zV ϕpxqpP px, dyq ´δx pdyqq , if x P V (41) 
we have that L p1q admits a positive Dirichlet gap on M zV . Then, with the corresponding spectra, Theorem 18 will hold. Note that the notions of harmonic functions on M zV with respect to P ´I and L prq , for all r ą 0, coincide and the corresponding Steklov Markov kernels and generators are the same.

Let X pXptqq tě0 be a jump Markov process of generator P ´I (see Chapter 4 in [START_REF] Stewart | Markov processes[END_REF] for the definition). Fix some χ P p0, 1q and consider the function ϕ defined by

@ x P M, ϕpxq 1 
E x rχ τ s
where τ inftt ě 0 : X t P V u. Note that when x P M zV is a point from which it is difficult to hit V , namely such that τ has a propensity to be large, then ϕpxq is quite large also: the jump Markov process X p1q pX p1q ptqq tě0 associated to L p1q is strongly accelerated at x in comparison with X, as wanted. From now on, the notation L prq , for r ą 0, will only refer to the operators given in (41). Here is the consequence of the acceleration procedure: Lemma 20 We have, with τ p1q inftt ě 0 :

X p1q t P V u, @ x P M, E x rτ p1q s ď 1 lnp1{χq

Proof

Let us recall the time change transformations (cf. for instance Chapter 6 from the book of Ethier and Kurtz [START_REF] Stewart | Markov processes[END_REF]), which enable to construct X p1q from X when both processes start from a fixed x P M . Due to [START_REF] Stewart | Markov processes[END_REF]Theorem 1.4], if we define pθ t q tě0 via @ t ě 0,

ż θt 0 1 ϕpX s q
ds " t then we can take @ t ě 0, X p1q ptq Xpθ t q

In particular, we get

τ p1q " ż τ 0 1 ϕpX s q ds It follows that E x rτ p1q s " E x "ż τ 0 1 ϕpX s q ds  " ż `8 0 E x " 1 sďτ 1 ϕpX s q  ds " ż `8 0 E x r1 sďτ E Xs rχ τ ss ds " ż `8 0 E x " 1 sďτ χ ´sE x rχ τ |pX u q uPr0,ss s ‰ ds " ż `8 0 E x " 1 sďτ χ ´sχ τ ‰ ds
where we use the measurability of the event ts ď τ u with respect to the σ-field generated by pX u q uPr0,ss , the fact that on ts ď τ u, we have τ " s `τ ˝θs , where θ s is the shift of the trajectories by an amount s of time, and the Markov property, stating that for any measurable functional F on the trajectories, we have a.s. E x rF ˝θs |pX u q uPr0,ss s " E Xs rF s. In this formula, E Xs is the expectation with respect to a diffusion X starting from X s at time 0. Since all the integral elements are non-negative, we can use again Fubini's formula to get that the last integral is equal to

E x "ż `8 0 1 sďτ χ ´sχ τ ds  " E x "ż τ 0 χ τ ´s ds  " E x "ż τ 0 χ s ds  " E x " χ τ ´1 lnpχq  ď 1 lnp1{χq
as announced.

From the previous uniform boundedness of the expectations of τ p1q , we deduce uniform exponential bounds on its queues: Lemma 21 We have, with α lnp2q lnp1{χq{2, @ x P M, @ s ě 0, P x rτ p1q ě ss ď 2 expp´αsq

Proof

For any n P Z `, we have

@ x P M, P x rτ p1q ě ans ď 2 ´n where a 2 lnp1{χq
This is shown by iteration on n P Z `. It is clear for n " 0 and if it is true for some n P Z `, then by the Markov property and Lemma 20: for any x P M , P x rτ p1q ě apn `1qs " E x r1 τ p1q ěa P X p1q paq rτ p1q ě anss ď 2 ´nP x rτ p1q ě as

ď 2 ´n E x rτ p1q s a ď 2 ´n 1 a lnp1{χq " 2 ´pn`1q
where in the third line we use the Markov inequality.

For any s P R `, write n ts{au P Z `, so that for any @ x P M , P x rτ p1q ě ss ď P x rτ p1q ě nas ď 2 ´n " 2 ´ts{au ď 2p2 ´s{a q " 2 expp´αsq as announced.

To simplify the notation, we now take χ " expp´2{ lnp2qq, so that α " 1. Uniform exponential bounds on the queues of exit times from a domain are well-known to imply that the associated Dirichlet gap is positive. Here is a simple proof of this fact:

Lemma 22 We have λ p1q 1 pM zV q ě 1 2
where the l.h.s. is relative to the accelerated generator L p1q .

Proof

As in Lemma 11, we see that the measure 1 ϕpxq µpdxq is reversible for L p1q . Its total weight is

Z p1q ż E x rχ τ p1q s µpdxq P p0, 1q
which leads us to define µ p1q pdxq 1 Z p1q ϕpxq µpdxq, the invariant probability for L p1q . Our goal is to show that λ p1q 1 pM zV q inf F PL 2 pM zV,µ p1q qzt0u µ p1q rF p´L p1q qrF ss

µ p1q rF 2 s ě 1 2 (42) 
So consider F a bounded and measurable function on M , vanishing on V . By the martingale problems associated to X p1q , there exists a L 2 martingale pM t q tě0 such that

@ t ě 0, F 2 pX p1q ptqq " F 2 pX p1q p0qq `ż t 0 L p1q rF 2 spX p1q psqq ds `Mt
Replace in this relation t by t ^τ p1q and take the expectation to get ErF 2 pX p1q pt ^τ p1q qqs " ErF 2 pX p1q p0qqs `E « ż t^τ p1q 0 L p1q rF 2 spX p1q psqq ds ff where we use the martingale property EpM t q " EpM 0 q " 0. Via dominated convergence, we can let t go to infinity to obtain

ErF 2 pX p1q pτ p1q qqs " ErF 2 pX p1q p0qqs `E « ż τ p1q 0 L p1q rF 2 spX p1q psqq ds ff
Note that since X p1q pτ p1q q P V the l.h.s. vanishes, we deduce

ErF 2 pX p1q p0qqs " ´E « ż τ p1q 0 L p1q rF 2 spX p1q psqq ds ff
We have not yet specified the initial distribution of X p1q p0q, but take it now to be µ p1q , so the l.h.s. is

E µ p1q rF 2 pX p1q p0qqs " ż µ p1q pdxqF 2 pxq " µ p1q rF 2 s
Concerning the r.h.s., recall that the carré du champs Γ p1q associated to L p1q and defined on any bounded and measurable function G on M by Γ p1q rGs L p1q rG 2 s ´2GL p1q rGs is a non-negative function (cf. for instance the book of Bakry, Gentil and Ledoux [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]). It follows that

´Eµ p1q « ż τ p1q 0 L p1q rF 2 spX p1q psqq ds ff ď ´2E µ p1q « ż τ p1q 0 F pX p1q psqqL p1q rF spX p1q psqq ds ff ď 2E µ p1q « ż τ p1q 0 |F pX p1q psqqL p1q rF spX p1q psqq| ds ff " ż `8 0 E µ p1q " 1 sďτ p1q |F pX p1q psqqL p1q rF spX p1q psqq| ı ds
For any s ě 0, taking into account Lemma 21, we have

E µ p1q " 1 sďτ p1q |F pX p1q psqqL p1q rF spX p1q psqq| ı " E µ p1q
" P X p1q psq rs ď τ p1q s|F pX p1q psqqL p1q rF spX p1q psqq| ı ď 2 expp´sqE µ p1q " |F pX p1q psqqL p1q rF spX p1q psqq| ı " 2 expp´sqµ p1q r|F L p1q rF s|s where we used the invariance of µ p1q (meaning that for any s ě 0, the law of X p1q psq is equal to µ p1q when the initial law is µ p1q ). We have thus proven that µ p1q rF 2 s ď ż `8 0 2 expp´sqµ p1q r|F L p1q rF s|s ds " 2µ p1q r|F L p1q rF s|s ď 2 b µ p1q rF 2 sµ p1q rpL p1q rF sq 2 s i.e.

µ p1q rF 2 s ď 4µ p1q rpL p1q rF sq 2 s

The fact that L p1q is a non-positive self-adjoint operator enables to see that this relation extend to any function in the domain of L p1q with Dirichlet condition on V . It follows that the spectrum of ´Lp1q with Dirichlet condition on V is above 1/2, which amounts to (42).

As already mentioned, the Steklov Markov kernel K p1q associated to L p1q and V is the same as K. Since in general the generator L p1q cannot be written under the form P p1q ´I, where P p1q would be a Markov kernel on M , the definitions ( 27) and ( 28) must be slightly generalized: denote for any f P BpV q, @ x P M, F p1q f pxq E x rf pX p1q pτ p1q qqs (43)

@ x P V, K p1q rf spxq L p1q rF p1q f spxq `f pxq
where τ p1q was defined in Lemma 20. The latter expression for K p1q may appear strange at first view; it is due to the fact that it is a Markov kernel operator. If we rather consider the Steklov generator S p1q K p1q ´I, we get the more natural formulation: S p1q rf s " L p1q rF f s, for f P BpV q, as in the section on finite Markov process. Coming back to our previous convention of Steklov Markov kernels, note that for any x P V , we have

L p1q rF p1q f spxq `f pxq " LrF p1q f spxq `F p1q f pxq " ż F p1q f pyq P px, dyq " P rF p1q f spxq
more in adequacy with [START_REF] Lohkamp | Discontinuity of geometric expansions[END_REF]. Note furthermore that the function F p1q f defined by ( 43) is the L p1qharmonic extension of f to M : it satisfies

# L p1q rF f s " 0 , on M zV F p1q f " f , on V
Since L p1q " ϕL, with ϕ non-vanishing, the condition L p1q rF f s " 0 is the same as LrF f s " 0. It follows that F p1q f " F f and finally K p1q rf s " Krf s. By completion, this is true on L 2 pνq, i.e. K p1q " K. The equality F p1q f " F f is also obvious from the probabilistic point of view, since X p1q is a time change of X (as seen in the proof of Lemma 20), which itself is the Poissonisation of the Markov chain Z with the same initial condition and associated to P : let pE n q nPN be independent exponential random variables of parameter 1, X can be constructed from Z via @ t ě 0, X t " Z n , where n P Z `is such that

ř n p"1 E p ď t ă ř n`1 p"1 E p
The previous considerations are also valid for the operators K p1q A , defined in a similar fashion for A P ApV q and we get that K p1q A " K A . We can now apply Theorem 18 with respect to the generator L p1q , which by construction admits a Dirichlet gap on M zV . The l.h.s. in the two convergences of Theorem 18 correspond to the generators given by (41) and the r.h.s. are given by ( 30) and [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF], according to the above discussion. These convergences are our final approximation results for the quantities pσ k q kPN and pσ 1 pAqq APA .

We can now come to the

Proof of Theorem 14

The upper bound is an immediate consequence of the definition of σ k . Indeed for every pA 1 , ..., A k q P A k it is enough to consider the vector space generated by a family tf l,n P L 2 pA l , µq : l P k u of test functions such that ν A l rf n,l pI´K A l qrf n,l ss ν A l rf 2 n,l s tends to σ 1 pA l q as n Ñ 8.

For the lower bound, similarly to [START_REF] Provenzano | On mass distribution and concentration phenomena for linear elliptic partial differential operators[END_REF], define for any r ą 0,

@ k P N, Λ prq k " inf pA 1 ,...,A k qPA k max lP k λ prq 1 pA l q
We have seen in [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF], extending the similar result Lee, Oveis Gharan and Trevisan [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF] gave in a finite setting, that there exists a universal constant c ą 0 such that @ r ą 0, @ k P N, λ " κ k so we can pass to the limit in (44) to obtain the announced inequality.

We end this section with Proposition A in the introduction.

Proposition 23 There is a universal positive constant c 1 such that

@ k P N, σ 2k ě c 1 log 2 pk `1q ι k
Proof By [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF], the proof of Proposition 12 can be extended here. In particular, we have

@ k P N, λ prq 2k ě c log 2 pk `1q Λ prq k and @ k P v , Λ k ě 1 8 ι k
and the statement follows.

The Riemannian manifold framework

Let pM, gq be a compact Riemannian manifold of dimension n with smooth boundary. We assume that M is connected. Recall the Steklov problem (1) considered in the introduction:

" ∆f " 0 , in M Bf Bν " σf , on BM
where ν is the unit outward normal to the boundary. Our goal, as in the previous sections, is to relate its eigenvalues 0 " σ 1 ă σ 2 ď ¨¨¨ď σ k ď ¨¨¨Õ 8 to some isoperimetric constants. We first show that that (1) can be seen as a limit of a family of Laplace eigenvalue problems. This is already known due to the results of Lamberti and Provenzano [START_REF] Pier | Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues[END_REF][START_REF] Provenzano | On mass distribution and concentration phenomena for linear elliptic partial differential operators[END_REF]. They showed that the Steklov eigenvalue problem (1) can be considered as the limit of the family of Neumann eigenvalue problems

" ∆f `λρ f " 0 , in M Bf Bν " 0 , on BM (45) 
for small enough (one can choose for example smaller than the focal distance of BM ). Here M :" tx P M : dpx, BM q ă u, and ρ pxq "

" , if x P M zM 1 , if x P M (46)
We denote the eigenvalues of problem (45) by 0 " λ 1 ă λ 2 ď ¨¨¨ď λ k ď ¨¨¨Õ 8

Then we have

Theorem 24 [START_REF] Pier | Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues[END_REF][START_REF] Provenzano | On mass distribution and concentration phenomena for linear elliptic partial differential operators[END_REF] For every k P N

lim Ñ0 λ k " σ k (47) 
Remark 25 We remark that Lamberti and Provenzano [START_REF] Pier | Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues[END_REF][START_REF] Provenzano | On mass distribution and concentration phenomena for linear elliptic partial differential operators[END_REF] stated the above convergence for bounded domains in R n with smooth boundary, and the definition of ρ on BM is slightly different. However, a verbatim proof also results in the convergence (47) on a compact Riemannian manifold pM, gq with smooth boundary, see [START_REF] Provenzano | On mass distribution and concentration phenomena for linear elliptic partial differential operators[END_REF]Chapter 3] for the details of the proof. Őne can see the similarity of the above theorem with the statement of Proposition 3 and Theorem 18. It would be very interesting to have an alternative approach to prove Theorem 24 and Theorem 28 below by using the results of the previous section. We hope to obtain a unified approach in a future work.

Let A Ă M be a nonempty open domain in M . Let B e A :" Ā X BM and B i A :" BA X Int M be smooth manifolds of dimension n ´1 when they are nonempty sets. We consider the mixed Dirichlet-Steklov eigenvalue problem

$ & % ∆f " 0 in A Bf Bν " σf on B e A f " 0 on B i A (48) 
We also need to consider the following mixed Dirichlet-Neumann eigenvalue problem

$ & % ∆f `λρ f " 0 in A Bf Bν " 0 on B e A f " 0 on B i A ( 49 
)
where ρ is defined in (46).

If B i A " H, then A " Int M and the first eigenvalue is zero. Otherwise the first eigenvalues of the eigenvalue problem (48) and ( 49) are not zero and we denote their eigenvalues by 0 ă σ 1 pAq ď σ 2 pAq ď ¨¨¨ď σ k pAq ď ¨¨¨Õ 8 and 0 ă λ 1 pAq ď λ 2 pAq ď ¨¨¨ď λ k pAq ď ¨¨¨Õ 8

respectively. When B e A " H, our convension is that σ k pAq " 8, for every k P N. Denote by A the set of nonempty open domains in M such that B i A and B e A are smooth sub-manifolds of dimension n ´1 when they are nonempty. Let A k be the set of k-tuple pA 1 , ..., A k q of mutually disjoint elements of A. We define

Λ k :" inf pA 1 ,...,A k qPA k max lP k λ 1 pA l q (50) 
The higher order Cheeger inequality for eigenvalues λ k pM q, k P N was proved by Miclo in [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF]:

Theorem 26 ( [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF]) There exists a universal constant c ą 0 such that for any compact Riemannian manifold M with smooth boundary, the eigenvalues λ k of Neumann eigenvalue problem (45) satisfy

c k 6 Λ k ď λ k ď Λ k @ k P N Remark 27
The above theorem in [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF] is originally stated for the Laplace eigenvalue problem with smooth coefficients on closed manifolds. But the argument remains the same when we consider the Neumann eigenvalue problem (45) on a compact manifold with smooth boundary. Similar to Defintion (50), we define

κ k :" inf pA 1 ,...,A k qPA k max lP k σ 1 pA l q
Theorem 28 There exists a universal constant c 1 such that for any compact Riemannian manifold M with boundary and for any k P N, the eigenvalues σ k pM q of problem (1) satisfy

c 1 k 6 κ k ď σ k ď κ k
As a consequence of Theorem 

BPA BĂA BXB i A"H ηpBq ρ 1 pAq :" inf B 1 PA B 1 ĂA B1 XB i A"H η 1 pB 1 q (51)
For any k P N we define the k-th Cheeger-Steklov constant of M by

ι k :" inf pA 1 ,¨¨¨,A k qPA k max lP k ρpA l qρ 1 pA l q.
The following theorem extends the results of Escobar [START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF] and Jammes [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF].

Theorem 29 There exists a universal constant c such that for any compact Riemannian manifold M with smooth boundary and for any k P N, the eigenvalues σ k pM q of problem (1) satisfy

σ k ě c k 6 ι k Remark 30 
i) One can check that for every k P N one has ι k ď ι k`1 . This is also true in finite and measurable situation.

ii) Note that η 1 pBq is scale invariant. Hence, as mentioned in [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF], the power of ηpBq has to be one so that ι k has the same scaling as σ k .

Note that for k " 2, Theorem 29 gives a version of Jammes' result [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF]. The above theorem is the direct sequence of Theorem 28 and Lemma 31 below.

Lemma 31 Let σ 1 pAq be the first eigenvalue of the Dirichlet-Steklov eigenvalue problem (48). Then we have

σ 1 pAq ě 1 4 ρpAqρ 1 pAq

Proof

Let f be the eigenfunction associated with σ 1 pAq. We repeat the same argument as Jammes' argument in [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF] to estimate σ 1 pAq. 

σ 1 pAq " ş A |∇f | 2 dµ ş A f 2 dµ ş BeA f 2 dµ ş A f 2 dµ ě `şA |f ∇f |dµ ˘2 ş BeA f 2 dµ ş A f 2 dµ ě 1 4 ˜şA |∇f 2 |dµ ş BeA f 2 dµ ¸ˆş A |∇f 2 |dµ ş A f 2 dµ

Proof of Theorem 28

Recall that by the variational characterisation of Steklov eigenvalues

σ k ď max jP k E ∆ pf j , f j q ş BM f 2 j dµ
where tf j u is a family of test functions in H 1 pM q with mutually disjoint supports and E ∆ pf, f q :" ş M |∇f | 2 dµ is the Dirichlet form associated to ∆. Hence, the upper bound of σ k is a direct consequence of the variational characterisation of Steklov eigenvalues. We now prove the lower bound. We need the following key lemma.

Lemma 32

The following inequality holds.

lim Ñ0 Λ k ě 1 4 κ k

Proof

Let pA 1 , ¨¨¨, A k q P A k and H 1 0 pA j , B i A j q be the closure of tf P C 8 pA j q : f " 0 on B i A j u in H 1 pA j q. We can assume B e A j ‰ H. For any small enough (will be determined below) and every f P H 1 0 pA j , B i A j q, j P k we give an upper bound for the denominator of ş

A j |∇f | 2 dµ ş A j ρ f 2 dµ " ş A j |∇f | 2 dµ 1 ş A j,e f 2 dµ ` ş A j zA j,e f 2 dµ (52) 
where A j,e :" tx P A j : dpx, BM q ă u. For every f P H 1 0 pA j , B i A j q consider 1 A j f as an element of

H 1 pM q. Then 1 ż A j,e f 2 dµ " 1 ż M 1 A j f 2 dµ
There exists 0 ą 0 such that for every P p0, 0 q the map 

E : BM ˆp0, q Q px, tq Þ Ñ exp x p´tνpxqq
F 2 dµ ď 1 ż 0 ż BM F 2 px, tq| det DEpx, tq|dµdt ď 1 ż 0 ż BM ˆ|F px, 0q| `ż t 0 ˇˇˇB F Bs px, sq ˇˇˇd s ˙2 | det DEpx, tq|dµdt ď 2 ż 0 ż BM F px, 0q 2 | det DEpx, tq|dµdt `2 ż 0 ż BM ˆż t 0 ˇˇˇB F Bs px, sq ˇˇˇd s ˙2 | det DEpx, tq|dµdt ď 4 ż BM F px, 0q 2 dµ `2 ż 0 ż BM t ż t 0 ˇˇˇB F Bs px, sq ˇˇˇ2 | det DEpx, sq| | det DEpx, tq| | det DEpx, sq| ds dµdt ď 4 ż BM F 2 dµ `2 ż M |∇F | 2 dµ
Taking F " 1 A j f in the above inequality we get

1 ż A j,e f 2 dµ ď 4 ż BeA j f 2 dµ `2 ż A j |∇f | 2 dµ (53) 
We proceed with bounding the second term

ş A j zA j,e f 2 dµ. Let ξ : M Ñ R `be a Lipschitz function such that |∇ξ| ď 1 and $ ' & ' % ξ " 1 , in M zM 0 ď ξ ď 1 , in M ξ " 0 , on BM We get ż A j zA j,e f 2 dµ ď ż A j ξf 2 dµ " ż M ξ1 A j f 2 dµ ď P 1 ż M |∇pξ1 A j f 2 q|dµ " P 1 ż A j |∇pξf 2 q|dµ ď P 1 ˜żA j |∇ξ|f 2 dµ `2 ż A j ξf |∇f |dµ ḑ P 1 ¨1 ż A j,e f 2 dµ `2 ˜żA j pξf q 2 dµ ¸1 2 ˜żA j |∇f | 2 dµ ¸1 2 ' (53) ď P 1 ˜4 ż BeA j f 2 dµ `2 ż A j |∇f | 2 dµ 2 P 1 λ1 pM q ´1{2 ˜żA j |∇pξf q| 2 dµ ¸1 2 ˜żA j |∇f | 2 dµ ¸1 2 ď 4 P 1 ż BeA j f 2 dµ `2 2 P 1 ż A j |∇f | 2 dµ `2P 1 λ1 pM q ´1{2 ¨? ˜1 ż A j,e f 2 dµ ¸1 2 ˜żA j |∇f | 2 dµ ¸1 2 ` ż A j |∇f | 2 dµ ' (53) ď 4 P 1 ż BeA j f 2 dµ `2 P 1 p `λ 1 pM q ´1 2 q ż A j |∇f | 2 dµ `2? P 1 λ 1 pM q ´1{2 ˜4 ż BeA j f 2 dµ `2 ż A j |∇f | 2 dµ ¸1 2 ˜żA j |∇f | 2 dµ ¸1 2 ď 4 P 1 ż BeA j f 2 dµ `2 P 1 ´ `p1 `?2q λ1 pM q ´1 2 ¯żA j |∇f | 2 dµ `4? P 1 λ1 pM q ´1{2 ˜żBeA j f 2 dµ ¸1 2 ˜żA j |∇f | 2 dµ ¸1 2 
where P 1 is the L 1 -Poincaré constant and λ1 pM q is the first Dirichlet eigenvalue of M . In the second and fifth inequalities we used the Poincaré inequality on Sobolev spaces W 1,1 0 pM q and W 1,2 0 pM q respectively. Hence, for any P p0, 0 q we get ş

A j |∇f | 2 dµ ş A j ρ f 2 dµ ě ş A j |∇f | 2 dµ 4p1 ` P 1 q ş BeA j f 2 dµ `C1 p q ş A j |∇f | 2 dµ `C2 p q ´şBeA j f 2 dµ ¯1 2 ´şA j |∇f | 2 dµ ¯1 2 " ψ ˜şA j |∇f | 2 dµ ş BeA j f 2 dµ
where C 1 p q :" 2 ´1 `P1

´ `p1 `?2q λ1 pM q ´1 2 ¯¯, C 2 p q :" 4 ? P 1 λ1 pM q ´1{2 and ψ : p0, 8q Ñ p0, 8q defined as ψ puq :" u 4p1 ` P 1 q `C1 p qu `C2 p q ? u is an increasing function. Remark that 0 is independent of the set A j and depends only on pM, gq. Let f j be the eigenfunction associated with λ 1 pA j q.

max jP k λ 1 pA j q " max jP k ş A j |∇f j | 2 dµ ş A j ρ f 2 j dµ ě max jP k ψ ˜şA j |∇f j | 2 dµ ş BeA j f 2 j dµ ȩ max jP k ψ pσ 1 pA j qq " ψ pmax jP k σ 1 pA j qq ě ψ p inf pA 1 ,¨¨¨,A k qPA k max jP k σ 1 pA j qq Therefore, lim Ñ0 Λ k ě 1 4 κ k
which completes the proof.

We continue the proof of the theorem. By Theorem 26, we have

λ k ě c k 6 Λ k
Passing to the limit and applying Lemma 32 and Theorem 24 we conclude:

σ k " lim Ñ0 λ k ě c k 6 lim Ñ0 Λ k ě c 5k 6 κ k
Similar to Propositions 12 and 23, we have the following improvement on manifolds.

Proposition 33 There is a universal positive constant c 1 such that @ k P N, σ 2k ě c 1 log 2 pk `1q ι k

Proof

Due to [START_REF] Lee | Multi-way spectral partitioning and higher-order Cheeger inequalities[END_REF][START_REF] Miclo | On hyperboundedness and spectrum of Markov operators[END_REF], there is a universal positive constant c 1 such that @ k P N, λ 2k ě c 1 log 2 pk `1q Λ k

Passing to the limit and using Lemmas 31 and 32 we get @ k P N, σ 2k ě c 1 4 log 2 pk `1q κ k ě c 1 16 log 2 pk `1q ι k

Remark 34

The methods and results above can be adapted to a more general Steklov eigenvalue problem

" divpφ∇f q " 0 , in M Bf Bν " σγf , on BM
where γ is a continuous positive function on BM and φ is a smooth positive function on M . But in this paper we stick to the so-called homogenous Steklov problem when φ " 1 and γ " 1. Remark

35 We now give a more explicit relationship between the higher order Cheeger constants and the higher order Cheeger-Steklov constants. Let ρ k pM q :" inf We show that ρ k pM q " inf pA 1 ,¨¨¨,A k qPA k max lP k ηpA l q ": h k pM q (54)

where h k pM q denotes the k-th Cheeger constant. Indeed, it is easy to check that ρpAq ď ηpAq which implies ρ k pM q ď h k pM q. Thus it is enough to show that for every ą 0, we have h k pM q ď ρ k pM q` . Note that @ B Ă A, ρpBq ě ρpAq

Recall the definition of ρpAq in (51). For every ą 0, there exists B P A subset of A such that B X B i A " H and 0 ď ηpBq ´ρpBq ď ηpBq ´ρpAq ă (55)

Let A k be a subset of A k such that @ pA 1 , ¨¨¨, A k q P A k , 0 ď ηpA l q ´ρpA l q ă , @ l P k

We claim inf ηpA l q ´ ě h k pM q ´ This proves identity (54). Now for a given pA 1 , ¨¨¨, A k q P A k , let l max P k be such that ηpA lmax q " max lP k ηpA l q

Then we define h1 k pM q inf pA 1 ,¨¨¨,A k qPA k ρ 1 pA lmax q

It is easy to check that we have the following lower bound for ι k pM q ι k pM q ě h k pM q h1 k pM q (56)

Similarly we can define ρ 1 k pM q :" inf With the same argument as above, the following equality holds.

ρ 1 k pM q " inf pA 1 ,¨¨¨,A k qPA k max lP k η 1 pA l q ": h 1 k pM q
For a given pA 1 , ¨¨¨, A k q P A k , let l 1 max P k be such that η 1 pA l 1 max q " max lP k η 1 pA l q

Then define hk pM q :" inf pA 1 ,¨¨¨,A k qPA k ρpA l 1 max q and we get ι k pM q ě hk pM qh 1 k pM q Jammes in [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF] considered several examples to show that for k " 2 the geometric quantities ηpBq and η 1 pBq appearing in the definition of ι k pM q are both necessary in the lower bound of σ 2 pM q. Inspired by his examples, we give examples which show the necessity of quantities such as ηpBq and η 1 pBq in the lower bound for all k P N.

Example 1 Exemple 4 of [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF] can be used to show the necessity of quantities such as ηpBq and η 1 pBq in the definition of ι k for all k ě 2: Consider M m " N ˆp´L m , L m q, where N is a closed manifold and L m " 1 m . The Steklov spectrum of M m can be calculated explicitly, see [START_REF] Colbois | Isoperimetric control of the Steklov spectrum[END_REF]Lemma 6.1]. They are ! 0 , L m ´1, a λ k pN q tanhp a λ k pN qL m q, a λ k pN q cothp a λ k pN qL m q : k P N ) (57)

where λ k pN q are the Laplace eigenvalues of N . It is clear that for every k P N, σ k " Op 1 m q as m Ñ 8, while h 2 pM m q ě c for some positive constant c independent of m as shown in [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF]Exemple 4]. Note that h k pM m q is a non-decreasing sequence in k. Hence we have h k pM q ě h 2 pM m q ě c, for every k ě 2. This together with (56) and Theorem 29 show the necessity of a quantity such as η 1 pBq in the definition of ι k pM m q for all k P N.

Example 2 Let S 1 be the unit circle and S 1 m denote a circle of radius m with their standard metric. Consider the sequence pM m :" S 1 m ˆp0, m 3{2 qq mPN with product metric. The set of Steklov eigenvalues σ k pM m q is given by (57) with L m m 3{2 . Note that λ k pS 1 m q " 1 m 2 λ k pS 1 q. Hence, for any fixed k P N we have σ k pM m q " m 3{2 λ k pS 1 m q " 1 ? m λ k pS 1 q as m Ñ 8

Therefore @ k P N, lim mÑ8 σ k pM m q " 0 It is easy to check that for every k P N, lim mÑ8 h k pM m q " 0. Indeed, if we choose A l " S 1 m p pl´1qm 3{2 k , lm 3{2 k q, l P k then h k pM m q ď max lP k µpB i A l q µpA l q " 4πm 2πm 5{2 {k " 2k m 3{2 Ñ 0, m Õ 8

We now show that there exists a positive constant C independent of m such that h 1 k pM m q ě C. Note that h 1 k pM m q is a non-decreasing sequence in k. Thus, it is enough to show that h 1 2 pM m q ě C for some constant C ą 0 independent of m. Let pA 1 , A 2 q be a partition of M m (w.l.o.g. we can assume A 1 is connected). Let assume B i A 1 only intersects one of the boundary components of M m . Fixing the area of A 1 , max

! µ m pB i A 1 q µ m pBeA 1 q , µ m pB i A 2 q µ m pBeA 2 q )
is minimized when B i A 1 " S 1 m ˆtxu for some x P p0, mq (where µ m is the one-dimensional Riemannian measure of a set in M m ). Thus, 1 ď max " µ m pB i A 1 q µ m pB e A 1 q , µ m pB i A 2 q µ m pB e A 2 q * We now assume otherwise, i.e. B i A 1 intersects both boundary components of M m . We have max " µ m pB i A 1 q µ m pB e A 1 q , µ m pB i A 2 q µ m pB e A 2 q * ě 2m We conclude that for m ą π 2 , h 1 k pM m q ě h 1 2 pM m q ě 1 This example shows the necessity of a quantity such as ηpBq in the definition of ι k pM m q for all k P N. For k " 2, a similar example has been studied in [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF].

Example 3 (Cheeger dumbbell) Girouard and Polterovich in [START_REF] Girouard | On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem[END_REF] studied a family of Cheeger dumbbells M and showed that lim Ñ0 σ k pM q " 0 for every k P N. In their example, M is a domain in R 2 consisting of the union of two Euclidean unit disks D 1 Y D 2 connected with a thin rectangular neck L of length and width 3 . It is easy to check that h 2 pM q Ñ 0 as Ñ 0. We show that for k ě 3, h k pM q ě c ą 0, where c is a constant independent of . Since h k pM q ě h 3 pM q, it is enough to show that h 3 pM q ą c. By contrary, we assume that h 3 pM q Ñ 0 as Ñ 0. Hence there is a family of pA 1 , A 2 , A 3 q such that max " µpB i A 1 q µpA 1 q , µpB i A 2 q µpA 2 q , µpB i A 3 q µpA 3 q * Ñ 0, Ñ 0

Hence we have B i A l Ă L , for all l P 3 . Therefore, there exists l P 3 such that A l Ă L . (Notice that the argument uses the fact that M is a subset of R 2 .) Taking " 1 m , m P N, and then using the similar argument as in [START_REF] Jammes | Une inégalité de Cheeger pour le spectre de Steklov[END_REF]Exemple 4 ], we conclude that for any small enough µpB i A l q µpA l q ě c ą 0 where c is independent of . It is a contradiction. This example as in Example 1 shows the necessity of η 1 pBq in ι k pM q. However, in Example 1 the volume of the family of manifolds tends to zero, while in this example the area and the boundary length of M are uniformly controlled.

Proposition 3

 3 m cardpM q, be the eigenvalues of ´Lprq in R with multiplicities, indexed so that 0 " λ prq Assume that L is reversible. For any k P v t1, ..., vu, we have lim

lim rÑ` 8 λ

 8 prq k " σ k and for any A P A, lim rÑ`8 λ prq 1 pAq " σ 1 pAq (37)

1

 1 pAq, σ 1 pAqq " 0

Fix 8 .

 8 some k P N. The first convergence of Theorem 18 shows that the l.h.s. converges to σ k as r goes to `Its uniform convergence leads to lim

pA 1 ,

 1 ¨¨¨,A k qPA k max lP k ρpA l q

pA 1 ,¨¨¨,A k qPA k max lP k ρpA l q " inf pA 1 ,¨¨¨,A k qPA k max lP k ρpA l q Indeed, let rpA 1 ,

 111 ¨¨¨, A k qs :" " p Ã1 , ¨¨¨, Ãk q P A k : maxlP k ρpA l q " max lP k ρp Ãl q *The definition of ρ k pM q does not change if we choose a representation in each class rpA 1 , ¨¨¨, A k qs and take infimum only over the family of representations. By (55), it is clear that each class has a representation in A k . This proves the claim. Thereforeρ k pM q " inf pA 1 ,¨¨¨,A k qPA k max lP k ρpA l q ą inf pA 1 ,¨¨¨,A k qPA k max lP k

pA 1 ,

 1 ¨¨¨,A k qPA k max lP k ρ 1 pA l q

  implies that λ k " 0 if and only if the k-th Cheeger constant h k

	h k :"	min pA 1 ,...,A k qPA k	max lP k	ηpA l q
	is zero. In comparison, we see that the h 1 k plays the role of h k for the Steklov problem .
				Proof
	of Proposition 2			

  [START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF] We have for any r ą 0 and F P L 2 pµq,ProofBy definition, for any r ą 0 and F P L 2 pµq, we have µ prq rf p´L prq qrF ss " ´żMˆM µ prq pdxqL prq px, dyqF pxqF pyq " ´żV ˆM µ prq pdxqL prq px, dyqF pxqF pyq ´żpMzV qˆM µ prq pdxqL prq px, dyqF pxqF pyq

	µ prq rF p´L prq qrF ss " Furthermore, for any f P L 2 pνq, 1 2Z r νrf pI ´Kqrf ss " 1 µpV q inftµrF pI ´P qrF ss : F |V " f u " ż µpdxqP px, dyqpF pyq ´F pxqq 2 " µpV q 1 Z r 1 ż 1 Z r V ˆM µpdxqpδ x pdyq ´P px, dyqqF pxqF pyq `1 Z r ż pM zV qˆM µpdxqpδ x pdyq ´P px, dyqqF pxqF pyq µrF pI ´P qrF ss " 1 Z r ż M ˆM µpdxqP px, dyqpF pxq ´F pyqqF pxq µrF " " ż 1 2Z r M ˆM µpdxqP px, dyqpF pyq ´F pxqq 2

f pI ´P qrF f ss where F |V stands for the restriction of F to V .

  When k ą dimpL 2 pνqq, for any H P H k , we can find F ˚P Hzt0u such that F |V " 0 and so

							İt
							rλ	µrF pI ´P qrF ss
	follows that					
	µ prq rF p´L prq qrF ss µ prq rF 2 s	ě	µrF pI ´P qrF ss `1 `4 λr ˘µr1 V F 2 s `2 rλ µrF pI ´P qrF ss	" φ r	µr1 V F 2 s ˆµrF pI ´P qrF ss	ẇhere
						φ r : r0, `8s Q u Þ Ñ	u 1 `4 λr	`2u
	F PHzt0u	µ prq rF p´L prq qrF ss µ prq rF 2 s	ě max f P r Hzt0u	φ r	νrf 2 s ˆνrf pI ´Kqrf ss	"
							φ r ˜max f P r Hzt0u	νrf pI ´Kqrf ss νrf 2 s	¸ě φ r pσ k q
	since r H P H k pV q.				
	When k ď dimpL 2 pνqq, it follows from (39) that
							λ prq k	ě φ r pσ k q
	and it remains to let r go to `8 to get
						lim inf rÑ`8	λ	prq k	ě lim rÑ`8	φ r pσ k q " σ k	(40)
	max F PHzt0u	µ prq rF p´L prq qrF ss µ prq rF 2 s	ě	µ prq rF ˚p´L prq qrF ˚ss µ prq rF ˚2s	ě φ r p`8q " λr
	It follows that λ	prq k ě λr{2 and letting r go to `8 we get
						lim inf rÑ`8	λ	prq k	" `8 " σ

λr Note that the latter mapping is increasing, so taking into account

Lemma 

17, we have, with f F |V , φ r ˆµrF pI ´P qrF ss µr1 V F 2 s ˙ě φ r ˆµrF f pI ´P qrF f ss µpV qνrf 2 s ˙" φ r ˆνrf pI ´Kqrf ss νrf 2 s Ẇe deduce from the above computations that for H P H k , max k Thus (40) is always true and in conjunction with (38), we obtain the first announced convergence.

  r ě φ r

	It follows that to get the wanted uniform convergence, it is sufficient to show that
		lim rÑ`8	uPr0,`8s sup	dpu, φ r puqq " 0
	which is an elementary computation, since it can be reduced to
	lim rÑ`8	max ˜sup uPr0,1s	|u ´φpuq|, sup uPr1,`8s

  [START_REF] Lohkamp | Discontinuity of geometric expansions[END_REF] we get the higher order Cheeger-Steklov inequalities, see Theorem 29 below. We first define the Cheeger-Steklov constants in this setting similar to those already discussed in the previous sections. For any open subset A of M with piecewise smooth boundary, let µpAq denote its Riemannian measure and µpBAq be the induced pn ´1q-dimensional Riemannian measure of BA. We define for every A P A the isoperimetric ratios

	ηpAq	µpB i Aq µpAq	η 1 pAq	µpB i Aq µpB e Aq
	Note that η 1 pAq " 8 if Ā X BM " H. Let		
	ρpAq :"	inf		

  ẇhere dµ and dµ are n-dimensional and pn´1q-dimensional Riemannian volume elements respectively. Let h :" f 2 and H t :" h ´1rt, 8q. Note that H t P A almost surely in t. Then by the co-area formula we have

	˜şA |∇h|dµ ş BeA h dµ	¸ˆş A |∇h|dµ ş A h dµ	˙" ˜ş8 0 µpB i H t qdt ş 8 0 µpB e H t q dt	¸˜ş 8 0 µpB i H t qdt ş 8 0 µpH t q dt	¸ě ρpAqρ 1 pAq
	which completes the proof.			

It remains to prove Theorem 28.
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