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A family of boolean functions with good cryptographic properties

In 2005, [2] Philippe Guillot presented a new construction of Boolean functions using linear codes as an extension of Maiorana-McFarland's construction of bent functions. In this paper, we study a new family of Boolean functions with cryptographically strong properties such as nonlinearity, propagation criterion, resiliency and balance. The construction of cryptographically strong boolean functions is a daunting task and there is currently a wide range of algebraic techniques and heuristics for constructing such functions , however these methods can be complex, computationally difficult to implement and not always produce a sufficient variety of functions. We present in this paper a construction of Boolean functions using algebraic codes following Guillot's work.

Introduction

Let F n 2 be the binary vector space of dimension n over the Galois Field of two elements F2. [START_REF] Thomas | Cryptographic Boolean functions and applications[END_REF] Given two vectors a,b ∈ F n 2 , we define the scalar product a • b = (a1b1 ⊕ . . . ⊕ anbn)

and the sum as a ⊕ b = (a1 ⊕ b1, . . . , an ⊕ bn),

where the product and sum ⊕ (also called XOR) are over F2.

A n-variable boolean function f is a mapping

f : F n 2 -→ F2.
We will denote by Bn the set of all Boolean functions of n variables. The set Bn is a vector space over F2 with the addition ⊕ defined by

(f ⊕ g)(x) = f (x) ⊕ g(x),
for any f, g ∈ Bn and any x ∈ F n 2 . The polar form f : F n 2 -→ R, or sign function, of a boolean function f ∈ Bn, is defined by f (x) = (-1) f (x) .

The support f , denoted by Supp(f ), is the set of vectors in F n 2 whose image under f is 1. That is

Supp(f ) = {x ∈ F n 2 | f (x) = 1}.
The weight of a boolean function f ∈ Bn, denoted by w(f ), is the cardinality of its support, that is w(f ) = |Supp(f )|. We will say that a function

f ∈ Bn is balanced if w(f ) = 2 n-1
, that is, the truth table of f contains the same number of 0 and 1. This property is desirable in a Boolean function to resist differential attacks such as those introduced by A. Shamir against the DES algorithm.

A boolean function f ∈ Bn is called affine if we can write it as

f (x) = a, x ⊕ b
for some a ∈ F n 2 and b ∈ F2. If b = 0, we say that f is linear function. The set of affine functions will be denoted by An. Let f, g ∈ Bn. The distance, d(f, g), between f and g, is the weight of the function f ⊕ g, i.e., d(f, g) = w(f ⊕ g).

The nonlinearity of a boolean function f ∈ Bn, denoted by N f , is the minimum distance between f and the set of affine functions An, i.e.,

N f = min{d(f, ϕ) | ϕ ∈ An}.
A high nonlinearity is desired to reduce the effect of linear cryptanalysis attacks.

The Truth Table of a Boolean function f is the vector, indexed by the elements of F n 2 (in lexicographical order),

(f ( 0), f ( 1), . . . , f (2 n -1))
where 0 = (0, . . . , 0, 0), 1 = (0, . . . , 0, 1), . . . , 2 n -1 = (1, . . . , 1, 1). The polar truth table of f is the (1, -1) sequence defined by (-1) f ( 0) , . . . , (-1) f (2 n -1) .

A Boolean function in F n 2 can be expressed uniquely as a polynomial in

F2 [x1, . . . , xn] / x 2 1 ⊕ x1, . . . , x 2 n ⊕ xn through its Algebraic Normal Form (ANF) f (x) = a∈F n 2 cax a 1 1 • • • x an n , (1) 
where ca ∈ F2 and a = (a1, . . . , an), with ca = x≤a f (x), where x ≤ a means that xi ≤ ai, for all 1 ≤ i ≤ n. That is, ca = g(a1, . . . , an), and g is a function in Bn called the Möbius Transform of f , denoted by g = µ(f ). The Algebraic Degree of a boolean function f is the degree of its ANF. It follows that the algebraic degree of f ∈ Bn does not exceed n -1.

The Walsh-Hadamard Transform of a function f in F n 2 is the mapping H(f ) : F n 2 → R, defined by:

H(f )(h) = x∈F n 2 f (x)(-1) h•x , (2) 
Let f ∈ Bn be a boolean function, let S be an arbitrary subspace of F n 2 and S ⊥ the dual(annihilator) of S, i.e.,

S ⊥ = {x ∈ F n 2 : x • s = 0, ∀s ∈ S} then, u∈S H(f )(u) = 2 dimS u∈S ⊥ f (u). (3) 
From the definition of the Walsh-Hadamard Transform, it follows that H( f )(u) equals the number of zeros minus the number of ones in the binary vector f ⊕ lu(lu ∈ An, or, lu(v) = n i=1 uivi) and such that

H( f )(u) = 2 n -2d(f, n i=1 uivi) (4) 
d(f, n i=1 uivi) = 1 2 (2 n -H( f )(u)) (5) d(f, 1 ⊕ n i=1 uivi) = 1 2 (2 n + H( f )(u)) (6) 
We summarize these earlier results in the following theorem Theorem 1.1. The nonlinearity f is determined by the Walsh-Hadamard Transform of f , i.e.

N f = 2 n-1 - 1 2 max u∈F n 2 |H( f )(u)|. (7) 
In what follows we summarize some factors which are important in the design of Boolean functions with good cryptographic properties [START_REF] Rodríguez | De la búsqueda de funciones booleanas con buenas propiedades criptográficas[END_REF]:

A n-variable boolean function is said to have Correlation immunity of order m if and only if H( f )(u) = 0, with 1 ≤ w(u) ≤ m. A Boolean function with Correlation Immunity of order m and balanced is called mresilient. The fundamental relationship between the number of variables n, algebraic degree d and order of correlation immunity m of a boolean function is

m + d ≤ n.
The autocorrelation function r f (s) for a Boolean function f is defined from its polar representation as

r f (s) = x∈F n 2 f (x) f (x ⊕ s).
This value is proportional to the imbalance of all the first-order derivatives of the Boolean function. Small autocorrelation values are desirable while boolean functions having larger values are considered weak.

We say that a Boolean function has Propagation Criteria of order l,

denoted by P C(l) if f (x)⊕f (x⊕u) is balanced for all u with 1 ≤ w(u) ≤ l.
The Strict Avalanche Criterion (SAC), refers to the effect of changing all input bits. A boolean function f is said to satisfy SAC if

f (x) ⊕ f (x ⊕ u) is balanced for all u with w(u) = 1.
Let q = 2 m , and let Fq be the finite field with q elements. An Fq-linear error correcting code C of length n is an Fq-linear subspace of F n q . The elements of C are called words. The weight wt(x) of a word x in C is the number of its non-zero coordinates. The minimum weight d of the code C is defined as the minimum of the weights among all non-zero words occurring in C. For x, y ∈ C, we define the Hamming distance d(x, y) between x and y as wt(x -y). The minimum distance of a code C is defined as

d = min{d(x, y)|x, y ∈ C, x = y}.
If k is the dimension of C as a vector space over Fq, then we say that C is a [n, k, d]q error correcting code. The Singleton bound states that the parameters of a code C must satisfy n + 1 ≥ k + d.

A code satisfying the previous inequality with equality is called a maximum distance separable code, or simply a MDS-Code. For q ≥ 2, h ≥ 1. Let Q = q h . Consider two codes which we call outer code and inner code. Let C be outer code with parameters [N, K, D]Q and let I be inner code with parameters [n, h, d]q. The concatenation method constructs a code F over Fq out of a code over FQ. The first step is to fix any isomorphism ϕ : FQ -→ I ⊆ F n q . Then

F := {(ϕ(c1)), . . . , ϕ(xN ))|(x1, . . . , xN ) ∈ C}.
The code F has parameters

[N • n, K • h, D • d]q.

Maiorana-McFarland-Guillot's construction

The Maiorana-McFarland construction was originally designed to obtain bent functions. It has been extended to construct resilient functions [START_REF] Guillot | Cryptographical boolean functions construction from linear codes[END_REF].

For n ≥ 2 an integer and F n 2 = E ⊕ F a decomposition into two complementary subspaces: E of dimension p y F of dimension q = n -p.

For any application π : E -→ F n 2 and any application h : E -→ F2 the Maiorana-McFarland(MM) construction defines a Boolean function f as follows:

f

: E ⊕ F -→ F2 x + y → π(x) • y + h(x),
The application π is defined on F n 2 , but since π(x) is wrapped by an internal product with an element of F , the value of f it is invariant when π(x) is moved by a vector of F ⊥ . So, π can be considered to be defined over the space

F n 2 /F ⊥ ∼ = E ⊥ , so π : E -→ E ⊥ .
One of the properties we are interested in from a Boolean function is the Propagation Criteria, in [START_REF] Guillot | Cryptographical boolean functions construction from linear codes[END_REF] it is shown that for a Boolean function to have Propagation Criteria of order k it is enough that the coset x0 + F , with x0 ∈ E, has w(x0 + F ) > k. Therefore, to find a Boolean function with P C(k -1) it is enough to select an appropriate x0 in the complement of F , such that the lateral class x0 + F has weight ≥ k.

Reed-Solomon Codes

The class of Reed-Solomon Codes is considered of great importance in coding theory. They are members of the family of algebraic codes. Recall one of the standard descriptions of an extended Reed-Solomon code over Fq( [START_REF] Hendricus | Introduction to coding theory[END_REF]). Let Fq = {0, 1, α, α 2 , • • • , α q-2 }. Consider the set

L = {f (x) ∈ Fq [q] | degree(f (x)) < r}.
The code Reed-Solomon code RS(r, q) of length n = q is defined by

RS(r, q) := {c = (f (0), f (1), f (α), f (α 2 ), • • • , f (α q-2 )) | f (x) ∈ L}
Because a polynomial of degree l has at most l zeros in Fq, we see that RS(r, q) has minimum distance d = q -r + 1, which is the best possible, i.e., RS(r, q) is a maximum distance separable(MDS) code [START_REF] Hendricus | Introduction to coding theory[END_REF]. The code RS(r, q) has parameters [q, r, q -r + 1] q .

In this paper we will assume that q = 2 m , then RS(r, q) has parameters

[2 m , r, 2 m -r + 1] 2 m 4 Boolean functions from RS(r, 2 m )
For our construction of boolean functions we will use a concatenated Reed-Solomon code. Let C = RS(r, 2 m ), this is our outer code. Let I be the all even weight codewords, then with parameters [m + 1, m, 2] 2 . After concatenation we obtain a code F with parameters

[(m + 1)2 m , m • r, 2(2 m -r + 1)] 2 .
We will use our code F as the main ingredient to the Maiorana-McFarland construction. Obtaining a new family of Boolean functions, in n = (m + 1)2 m variables. The dimension of the complementary vector space

E is therefore b = (m + 1)2 m -m • r. And F (m+1)2 m 2 = E ⊕ F .
We focus now in the lateral class x0 + F . As F is constructed by evaluating all polynomials of degree less than r over F2m [x], we can assume that x0 is also constructed by evaluating a polynomial L(x) over F2m [x]. A polynomial L(x) can be obtained using Lagrange interpolation whose evaluation produces a suitable concatenated x0.

Let a1, ..., ar be a set of information coordinates for the code RS(r, 2 m ), by Lagrange interpolation, we can obtain a polynomial L(x) of degree r such that L(ai) = 0 for i = 1, ..., r and L(b) = 0 for all b ∈ F-{a1, . . . , ar}. The vector ev(L) is a vector in the complement of RS(r, 2 m ) as a vector space over F2m , and the lateral class ev(L) + RS(r, 2 m ) has minimum weight ≥ 2 m -r. Let x0 be the image of ev(L) under concatenation, it follows that x0 is a vector in the complement of F as a binary vector space and, by construction, the minimum weight of the lateral class x0 +F is ≥ 2(2 m -r). Thus, by using our proposed F and x0 in Guillot's construction, we obtain a boolean function satisfying P C(2 m+1 -2r -1).

Example

Suppose we want to build a 12 variable boolean function. As the main ingredient we use the Reed-Solomon code C = RS(3, 4) over F4 with parameters [4, 3, 2] A generator matrix for C is

G =   1 1 1 1 0 α α + 1 1 0 α + 1 α 1   .
Where α 2 + α + 1 = 0. We now obtain a binary code from C by concatenation with the even weight code I = {000, 101, 011, 110} with parameters [START_REF] Rodríguez | De la búsqueda de funciones booleanas con buenas propiedades criptográficas[END_REF][START_REF] Guillot | Cryptographical boolean functions construction from linear codes[END_REF][START_REF] Guillot | Cryptographical boolean functions construction from linear codes[END_REF]. Any other 2-dimensional binary code will serve as an inner code. The next step is to choose any homomorphism ν between F4 and I as vector spaces over F2. For our example we choose 0 → 000, 1 → 101, α → 011, α + 1 → 110. After concatenation we obtain a binary code F with parameters [12,6,[START_REF] Hendricus | Introduction to coding theory[END_REF]. A systematic generator matrix for F is given by

GF =        
1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1

       
The row span of GF is the binary vector space F in the MM construction.

As GF is systematic, that is, the first 6 columns are the information coordinates of code F , we may easily describe the complementary space E with generator matrix

GE =        
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

       
In this example we have n = 12, p = 6, q = 6, so we will build a two to one function π. The next step is to build x0 ∈ E by concatenation of the evaluation vector of L(x) = x 2 + x. We obtain x0 = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0} ∈ E. For each lateral class u + F ⊥ with u ∈ E ⊥ we construct the sets 

E0 = {v ∈ u + F ⊥ : v • x0 = 0}

  andE1 = {v ∈ u + F ⊥ : v • x0 = 1}.Let d0 = d(E0), d1(E1) be the minimum distances of E0 and E1 respectively, and let dj = max{d0, d1}. Next we store in an array the pairs