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On parareal algorithms for semilinear parabolic
Stochastic PDEs

Charles-Edouard Bréhier and Xu Wang

ABSTRACT. Parareal algorithms are studied for semilinear parabolic stochastic partial dif-
ferential equations. These algorithms proceed as two-level integrators, with fine and coarse
schemes, and have been designed to achieve a “parallel in real time” implementation. In
this work, the fine integrator is given by the exponential Euler scheme. Two choices for
the coarse integrator are considered: the linear implicit Euler scheme, and the exponential
Euler scheme.

The influence on the performance of the parareal algorithm, of the choice of the coarse
integrator, of the regularity of the noise, and of the number of parareal iterations, is inves-
tigated, with theoretical analysis results and with extensive numerical experiments.

1. Introduction

In the last two decades, numerical methods for Stochastic Partial Differential Equations
(SPDEs) have been extensively studied, see for instance the monographs [13], [I5], [18] and
references therein. The rate of convergence of the schemes used for temporal and spatial
discretization is related to the regularity of the noise, which may be arbitrarily low, and
in such situation effective numerical methods are difficult to construct. For instance, for
a one-dimensional semilinear parabolic SPDE, driven by Gaussian space-time white noise,
trajectories are only a-Holder continuous in time and 2a-Holder continuous in space, for o <
%, and standard Euler and finite difference schemes thus have a (strong) rate of convergence
equal to o and 2« respectively.

In this article, we will only focus on the temporal discretization and consider a semilinear
parabolic SPDE of the type

2
a“gt’ %) ¢ Zg;‘”) + F(u(t,z)) + WO(t,z), (t.2) € Ry x (0,1),
uw(0,z) = up(z), x€(0,1), wu(t,0)=u(t,1)=0,

that is, a one-dimensional semilinear heat equation with homogeneous Dirichlet boundary
conditions, and with additive Gaussian noise, which is white in time and colored in space.
A rigorous interpretation as a stochastic evolution equation (in the sense of [5]), driven by
a Wiener process, with values in an infinite dimensional Hilbert space is given by , see
also Section [2| where precise assumptions for the nonlinear operator f and the covariance
operator () are stated. It is well-known that the rate of convergence (studied only in the

strong sense in this article) of the error depends on the properties of the covariance operator
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@ of the Wiener process, and can be arbitrarily small. In particular, in the case of space-time
white noise (@ is the identity), the order of convergence of Euler schemes is essentially %. If
the noise is of trace-class (@) has finite trace), the order of convergence is essentially %

The objective of this article is to study the applicability of so-called parareal algorithms
to improve the performance of temporal discretization schemes. Implementing parallel al-
gorithms to solve time-dependent evolution equations is not natural, and parallel-in-time
integration methods have been extensively studied, based on multigird or multiple shooting
techniques. We refer to the pionneering contributions |3, 4, 12|, 4], 19} 22}, 23], and the
review [6]. The parareal algorithm has been introduced in [16], see also [21]. It is a parallel
in real time technique, based on the use of two integrators with two different time-step sizes:
a coarse integrator, denoted by G, with coarse time-step size AT, and a fine integrator,
denoted by F, using J steps with time-step size dt, such that AT = Jét. In practice, G may
be less accurate but cheaper than F. The parareal algorithm is an iterative method, using
a predictor-corrector strategy, in which computations of the fine integrator at each iteration
are performed in parallel: the recursion is given by

uiy,kj_ll) = g(uglkﬂ)’ tna tn-i—l) + F(Uﬁzk)a tna tn+1) - g(ugzk)v tna tn+1)a
U(k) = U
o — Yo,

where k represents the index for parareal iterations. For k = 0, the scheme is initialized
using the coarse integrator. We refer to Equation (b)) and to Section [3| below for a detailed
presentation of the algorithm.

Since the pioneering work [16], where the parareal algorithm has been introduced for
a class of ordinary differential equations, several extensions have been considered, see for
instance [T, (7, 8, (9], 10} 20]. In particular, [1] deals with parabolic PDEs, and studies the
stability and convergence properties, which may require regularity properties, depending on
the choice of integrators. The application of the parareal algorithm for stochastic systems
has been considered first in 2], and more recently in [11I] for stochastic Schrodinger PDEs
and in [24] for a class of stochastic differential equations. More precisely, in [11], parareal
algorithms for stochastic Schrodinger equation with damping are studied with F being the
exact solver and G being the exponential- scheme. The longterm convergence is obtained
for the case 6 > % or sufficient large «, which ensures sufficient exponential decay of the
coarse integrator.

Let us now describe the contributions of this article. The parareal algorithm is applied to
the SPDE above. The exponential Euler scheme is chosen as the fine integrator. The main
contribution of this article is to reveal that the parareal algorithm behaves differently, de-
pending on the choice of the coarse integrator, when applied to semilinear parabolic SPDEs.
Such results, based on both theoretical analysis and numerical experiments, have not been
reported before, up to our knowledge. The error of the parareal algorithm, considered in
this article, is the distance between the solution computed by the proposed algorithm and a
reference solution generated by the fine integrator (which is not computationally expensive
and is not computed in practice). The parareal algorithm is useful to reduce computational
cost only if the order of convergence of this error (with respect to the coarse time-step size
AT) is strictly larger for some k > 1 than for k = 0.

To state the main results of this article (see Theorems , and below for precise

statements), let us assume that, for some o > 0, the covariance operator () satisfies a
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condition of the type
(=42 Q2 o) < o,
where | - | 2,y denotes the Hilbert-Schmidt norm for operators from H to H.

First, assume that the linear implicit Euler scheme is chosen as the coarse integrator, i.e.
eAT4 is approximated by (I — ATA)~!. In addition, assume that F' = 0. Then the order
of convergence of the parareal algorithm, with & iterations, is essentially min(a, k + 1), and
saturates at o when k increases, see Theorem and numerical experiments in Section [4.2]
In particular, if o < 1, which includes the space-time white noise case with essentially o = %,
the application of the parareal algorithm is useless, since this order of convergence does not
depend on k. The way the error behaves in terms of £ thus depends a lot on the regularity
of the noise.

Second, assume that the exponential Euler scheme is chosen as the coarse integrator.
Then it is proved that the order of convergence of the parareal algorithm, with £ iterations,
is at least essentially of size (k + 1), if @ € (0,1], see Theorem Contrary to the
first case, this order is linear in k, thus applying the parareal algorithm always reduces
the computational cost, whatever the regularity of the noise. Numerical experiments, see
Section , reveal that the order of convergence is sharp for k = 0 (the parareal algorithm
is not applied) and k = 1 (one iteration is applied), but is larger when k£ > 2. In fact, the
choice k = 1 is optimal when considering the final computational cost. Theorem proves
that for o € (0, i] and k > 2, the order of convergence is at least of size 2k«, which is indeed
larger than (k + 1)a.

In conclusion, the parareal algorithm may offer an effective strategy to reduce computa-
tional cost for the simulation of trajectories of SPDEs. Several questions remain open: for
instance, generalizations in higher dimension, algorithms for equations with multiplicative
noise, or using other integrators, are left for future works.

This article is organized as follows. Precise assumptions on the operators A and F', and on
the covariance operator @, are provided in Section [2] Section [3|is devoted to introducing the
parareal algorithm, to presenting the possible choices of coarse integrators, and to defining
the error. The study of the behavior of the parareal algorithm when the linear implicit
Euler scheme is chosen as the coarse integrator is provided in Section [4} more precisely, see
Theorem [4.1|for the theoretical error estimates and Section 4.2 for the numerical experiments.
The study of the behavior of the parareal algorithm when the exponential Euler scheme is
chosen as the coarse integrator is provided in Section [Bf more precisely, see Theorems [5.2
and [5.3| for the theoretical error estimates and Section [5.2] for the numerical experiments.

2. Setting

Let H = L*(0,1), with norm and inner product denoted by | - | and (-,-) respectively.
In this work, stochastic evolution equations, with additive noise, of the following type are
considered (see [5], [17]: given an initial condition u(0) = ug € H,

(1) du(t) = Au(t)dt + F(u(t))dt + dW(t),

where the solution (u(t)) >0 1s a stochastic process with values in H. The operator A

is a linear parabolic differential operator with homogeneous Dirichlet boundary conditions

(Section , the operator F' is a globally Lipschitz, non-linear operator (Section , and
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(WQ(t)) 10 is a (Q-Wiener process. Appropriate assumptions to justify the global well-
posedness of are introduced below.

In the sequel, the initial condition wug is assumed to be deterministic, however the ex-
tension to a random initial condition wuy (independent of the Wiener process, and satisfying
appropriate moment conditions) is straightforward by a conditioning argument.

2.1. Linear operator A. The linear operator A is defined as the unbounded linear
operator on H = L*(0, 1), such that

D(A) = H?*(0,1) n H}(0, 1),
Au =", ue D(A).

In other words, A is the Laplace operator with homogeneous Dirichlet boundary conditions.
Recall that A is an unbounded, self-adjoint, linear operator, and that Ae, = —\, forallp e N,
where the eigenvalues are given by )\, = (7p)?, and the eigenfunctions e, = V2 sin (pﬂ") form
a complete orthonormal system of H.

The linear operator A generates an analytic and strongly continuous semigroup on H,
denoted by (etA)tZO. Note that for all w € H, one has

ety = Z e u, e,ve,.

peN

For any a € [0,1] and u e H, let
lul? = Z A2 (u, ep)* € [0, 00].

peN
For u € D((=A)*) = {u € H : |ulo < o}, set (=A)*u = > yAy{u,eppe, € H, and
note that |ul, = |[(—A)%u|. In addition, for any « € [0,1] and u € H, let (—A) %u =
ZpEN )\;a<u’ ep>ep € H? and ’u‘z—a = ZpEN )‘;;2a<u> 6P>2'

Regularization properties of the semigroup (etA) 1=0 are stated in Proposition below.
The following notation is used. First, £L(H) is the space of linear bounded operators from
H to H, with the operator norm denoted by || - | 2. Second, L£o(H) is the space of Hilbert-
Schmidt operators from H to H, with the Hilbert-Schmidt norm denoted by || - || z,(m)-

PROPOSITION 2.1. For all t = 0, €|z < e Moreover, for all a € [0,1], there
exists Cy, € (0,0) such that for all t € (0, 0),

[(=A)* ey < Comin(t, 1)7%, [[(=A)7 (" = I)] gy < Comint, 1),

2.2. Nonlinear operator F. The analysis of the rate of convergence for parareal algo-
rithm below proceeds in a simplified, abstract, framework, whereas numerical experiments
are performed in the more natural framework of Nemytskii operators. The abstract frame-
work does not encompass this case. Indeed, the treatment of Nemytskii would require the
introduction of further concepts (such as y-Radonifying operators, in order to work in Ba-
nach spaces LP(0,1)). Instead of increasing the technical level of the presentation, the choice
made for this article is to study the main features of the parareal algorithms applied to
SPDESs in a more pedagogical way owing to the simplified framework.

Let us first state the assumptions on the nonlinear operator F' which are employed for

the theoretical analysis.
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ASSUMPTION 1. The nonlinear operator F' : H — H s globally Lipschitz continuous, and
is twice Fréchet differentiable, with bounded first and second order derivatives. Moreover, for

any a € (0,3) and any arbitrarily small k € (0, 3 — «), there exists Cpq,, € (0,0) such that,

for alluwe D((—A)**") and he H,
DF()h] 0 < Crae(1+ [ulas) Bl o
and for all u,h € D((—A)%),
|DF (u).h]a—r < Cran(l+ |tfa)|h]a
Finally, for all uy,us, h € D((—A)**"),
|(DF(u2) — DF(u1)).h|_, < Craw(1+ [tt]ats + [Uz]arx) [tz — u1]—alhlatx:

Let us now recall that a Nemytskii operator F': H — H is defined such that F(u) = fou
for all w € H, where f : R — R is a real-valued mapping, assumed to be at least globally
Lipschitz continuous. As explained above, even if f is assumed of class C? with bounded first
and second order derivatives, the associated nonlinear Nemytskii operator F' does not satisfy
the conditions of Assumption [I Indeed, the appropriate generalization requires estimates
in LP(0,1) spaces, for p € (2,0) (using Holder inequality).

2.3. Wiener process. Let (Q, F, JP’) be a probability space, equipped with a filtration
(F) 1> Satisfying the usual conditions. The expectation operator is denoted by E[-].

Let ((Bp(t)) t>0>p€N denote a sequence of independent standard real-valued Wiener pro-

cesses, and let (ep)peN be a complete orthonormal system of H, and (fyp)peN be a sequence

of nonnegative real numbers. The cylindrical Wiener process is defined as
wit) = 3 Blb)e.
peN
The Q-Wiener process is then defined as

WQ(t) = Z Ve Bp (),

peN

and can be written as W?(t) = Q%W(t), where the linear self-adjoint operators Q% and @)
satisfy

Q%u = Z VT, €p)ep, Qu = Z Ylx, €€, Y ue H.

peN peN
Note that the Q-Wiener process W®(t) takes values in H if and only if Q is a trace-class

linear operator, i.e., Tr(Q) = HQ%\\%z(H) = D pen Vo < 0.
Assumption [2] states the conditions on () required to ensure the well-posedness of .

ASSUMPTION 2. Assume that there exists o > 0 such that H(—A)a_%Q%HLZ(H) < .

Define the parameter @ as follows:

a = sup{ae (0,%), [(~A) Q| eym < o}
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then @ > 0 if and only if Assumption [2|is satisfied. For instance, if @@ = I (space-time white
noise), then @ = %. If ) is a trace-class operator, then @ = % In the article, we are mostly
interested in the regime @ € (0, 3].

The numerical experiments are performed with the follcl)wing example: for all p € N,
€p = €, (thus the operators A and () commute), and v, = A2 e (observe that in that case
the notation is consistent with the definition of @ in the general case).

To conclude this section, let us introduce the following notation: if U is a H-valued
random variable, for all a € [0, 1], and ¢ € N,

e = (E[IUIZ) "

2.4. Well-posedness and regularity properties. Solutions of are understood in
the mild sense: for all t > 0,

2) ult) = eug + j

0

1Ull, = [T, (U]

t t

e (u(s))ds + J =AW (s).

0

Under the assumptions stated above, this problem is globally well-posed. We quote
without proof the following standard result.

PROPOSITION 2.2. Let Assumption|d be satisfied. For any initial condition ug € H, there
exists a unique mild solution of the SPDE (l)). Moreover, for any T > 0 and q € N,
there exists Cr 4 € (0,00) such that

sup |u(t)llg < Crg(1 + [uol).

SIES

Moreover, for any o € (O,min(a, %)), there ezists Cr g € (0,0) such that
u®)|lga < Crga (1 + min(|u0\a,t_°‘]u0|)) , Vte (0,77,
u®) —uw(s)|ly < Crgalt — s|* (1 + min(Juo|a, min(t, s)*|uol)) , ¥ ¢,s € (0,T].

3. Parareal algorithms

3.1. Fine and coarse integrators. Let T' € (0,00) be given. Introduce the so-called
coarse and fine time-step sizes AT and dt. It is assumed that T = NAT and AT = Jét,
where N and J are integers. For all n € {0,..., N} and j €{0,...,J}, let

by = nAT, =ty + jot = (nJ + j)t.

Note that the coarse and the fine integrators introduced below are random mappings.
Precisely, for all n € N, the mappings G, = G(-,tn,tns1) and F,, = F(-, tpn, tny1) depend on
the Wiener increments (W9(t) — WQ(t"))tngtsth'

3.1.1. Coarse integrator. The coarse integrator is a numerical scheme with time-step size
AT'. In this work, it is defined as follows: for all n € {0,..., N — 1} and all u € H, let

(3) Gty tntur1) = Sart + ATSATF (u) + Sar (W (tns) — WO(t,)),
with

e cither Sap = e (exponential Euler scheme),

e or Sar = Sar = (I — ATA)™* (linear implicit Euler scheme).
6
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The notation Gexpo, resp. Gimp, is often used below, to refer to the coarse integrator with
the exponential Euler scheme, resp. with the linear implicit Euler scheme. As will be seen
below, these two coarse integrators have very different behaviors when applied to the SPDEs
considered in this article.

3.1.2. Fine integrator. The fine integrator consists of J steps of a numerical scheme with
time-step size dt. In this work, this numerical scheme is obtained by the exponential Euler
scheme. More precisely, introduce the auxiliary integrator Fau: for all n € {0,..., N — 1},
all j€{0,...,J—1}and all ue H,

faux(u, tn7j7 tn,j+1) = €6tA'U, + 5t€6tAF(U,) + €6tA (WQ(tn’jJrl) — WQ(th))
The fine integrator F, at the coarse time scale, is then defined as follows:
(4) .F(, tnu thrl) = faux(';tn,Jfla tn,J) 0--+0 faux('ytn,oa tn,l)-

In other words, the solution v, ;j = F(u,t,,t,+1). is computed using the following recursion
formula
/Un’j+1 = 6&141)”’]‘ + 5t€6tAF(’Un7j> + €6tA (WQ<tn7j+1) - WQ(th))
Uno = U
for je{0,---,J — 1} with Jét = AT.

3.2. The parareal algorithm. The initialization step of the parareal algorithm con-
sists in applying the coarse integrator: for n € {0,..., N — 1}

ugLO—i)-l = g(ug])u tn; thrl)a

ul® =
0 0-
Let K € N denote the number of parareal iterations. Iterations for k € {0,..., K — 1}

are defined as follows: given the values (u,(q{f)

ne{0,...,N — 1},

5 U,(lkﬂl) = g(uffﬂ), tna tn-i—l) + F(“gk)a tna tn-i—l) - Q(Ugc)? tna tn-i—l)a
(5) "o
0

)0 <me<N at iteration k, then compute, for all

= Ug.

The core of the approach lies in the ability, at each iteration in k, to perform in parallel the
computations in for different values of n, hence the terminology of “parareal algorithms”
for “parallelization in real time”.

3.3. The reference solution. The reference solution is defined using the fine integra-

tor:
ref ref
Upyy = ‘F(un 7tnatn+1)a
(6) ref
Observe that following , this reference solution is in fact defined in terms of the integrator
Faux, applied with the fine time-step size dt. Precisely, for all n € {0,..., N — 1}, one has
wet, = vy defined by
U;Leé-&-l = faux (U;fi‘, tn,j, tn7j+1), ] € {0, Ceey J — 1}

ref _ _ ref
Un,(] = U, -



This may be rewritten as follows: u'*f = vl where for all £ € {0,..., NJ — 1},

U?ifl = Faux (vff, 0ot, (¢ + 1)5t).
In addition, note that

-1 -1
ot = g + 8t )L eTOMAR () + ) AW+ 1)5) - W),
=0 =0

To conclude this section, we state without proof two standard results concerning, first,
the qualitative properties of the reference solution (moment estimates), second, the rate of

convergence of the error u'*f — u(t,).

PROPOSITION 3.1. Let T >0, a € (O, min(a@, %)) and g € N. There exists Cr,q0 € (0,0)
such that for all ug € D((—A)%),

sup |y [lg.0 < Crga (1 + tola),

0<n<N-1

and such that the following error estimate holds true:

sup Juy” — u(tn)[lg < Crg 0T (1 + [uola).
0<n<N-1
REMARK 3.2. The assumption that ug € D((—A)*) may be weakened using Proposi-
tion [2.1.

REMARK 3.3. Since noise is additive in the SPDE , the order of convergence in Propo-
sition may be larger than L when @ is sufficiently large. This type of estimate is not

2
considered in this article.

3.4. Error and residual operators. In the implementation of parareal algorithms,
the reference solution u™*' defined above is not computed in practice. Instead, the quantity

u defined in is computed. To estimate the error between u and u(t,), due to Propo-

sition , it is sufficient to study the error between uP and u

solution u%k) may be computed with a lower computational cost than the reference solution
ur®f using parallel computations in (5)) (expect for the initialization). Error estimates are
required to determine the choice of time-step sizes AT and ¢t, and of the number of parareal
iterations K, to achieve a given error criterion, with minimal computational cost.
Forallne{0,...,N} and k € {0,..., K} (where K is the number of parareal iterations),

let the error be defined by
(7) €)= k) _ gyref,

Note that e(()k) = 0 for all k € Ny.
Moreover, by construction, one get eR =0 for all n < k, which indicates that the nu-

ref
n

. Observe that the parareal

merical solution {u%k)}n:07... ~ will definitely converge to the reference solution {ur'}, o .. v,
if the iterated number K is sufficiently large, i.e. K > N. However, to get a speedup, in
practice, the iterated number K will be chosen significantly smaller than /N, which is further
discussed in Section

It is convenient to introduce the residual operators defined by

(8) Ron(u) = F%(U) = Gn(u),



foralln € {0,..., N—1}, where the notation F,,(u) := F(u,t,,tn1) and G, (u) := G(u, ty, tni1)
is used.

Then the error defined by @ satisfies the recursion formula, where the residual operators
R, defined by (§ . ) appear:

Gt = Ga(ul™Y) + Fulull) = Gu(ull) = Fulu?)
(9) = Gn(uf™Y) = Guly") + Ron () = R ()

n n

. SATE (k+1) + ATSAT[ (u(kJrl ) —F( ref)] +R ( )_Rn(uref)’

n

where the linear operator Sar depends on the choice of the coarse integrator, see .

Up to this point, the choice of the coarse integrator plays no role in the presentation.
The major finding of this article is that the behavior of the parareal algorithm applied
for SPDEs differs when choosing the exponential Euler scheme or the linear implicit
Euler scheme as the coarse integrator. Indeed, the theoretical results and the numerical
experiments reveal that, as the number of parareal iterations k increases, the evolution of
the order of convergence of the error ') has a different behavior depending on the choice of
coarse integrator.

3.5. Analysis of the computational cost. The objective of this section is to compare
the costs for computing ulP using the parareal algorithm , and for computing the reference
solution uret.

The computational advantage of using the parareal algorithm is due to the possibility
to compute the quantities u%kﬂ) in parallel, for fixed k > 0, see . Let Npoe denote the
number of available processors.

Let T € (0, 00) denote the final time, and consider n = N such that NAT = T. Denote by
7¢ the computational time for one evaluation of G(u, t,,, t,41). It is assumed that 75 does not
depend on AT, n € Ny and on uw € H. Denote also by 7r .. denote the computational time
for one realization of Fyux(u,t, ;,tn j+1). Then the computational time for one realization of

F(- tn,tns1), denoted by 7z, is
ATuf]—‘,aux
ot
It is also assumed that 7z aux (U, tn j, tnj+1) does not depend on 0t, n, j and on wu.

3.5.1. Parareal algorithm. For the initialization step, the computational cost is equal to
Nrg, since at this stage no parallelization procedure is applied.

For each iteration of the algorithm, observe that in , the third term G (ug{),tn,tnﬂ)
has already been computed at the previous iteration, and that the values of the second term

TF = JT]—',aux =

F (u%k), tn,tnr1) may be computed in parallel. A sequential computation remains to be done,
thus the computational cost of one iteration of the parareal algorithm is

.
N(Tg + proc).

If K iterations of the parareal algorithm are performed, the associated computational cost
is thus equal to

T T TF,
C tparareal - (K + K= aux
o8 K+ DRz KN o

9




3.5.2. Reference solution. The reference solution u' is computed using the fine integra-

tor Faux with time-step size 0t, see @ The associated computational cost is equal to

T
COStmaf = ———TF = —TF.aux-
AT 5t

3.5.3. Effictency. The efficiency of the parareal algorithm, compared with a direct sim-
ulation using the fine integrator only, is thus studied in terms of the ratio

Cost™f 1

- Costparareal - NK + (K + 1)i G

proc AT TF,aux

Note that since the efficiency never goes to infinity as AT goes to 0, the parareal algorithm
does not improve the rate of convergence with respect to the time-step size. Instead, the
parareal algorithm may improve the computational efficiency. To go further in the analysis
of the efficiency of the parareal algorithm, it is essential to study the rate of convergence of
the error €4 in terms of AT.

On the one hand, assume that the rate of convergence does not depend on k. Then, to
balance the errors u{f) — urt and W — u(nAT), it is necessary to choose AT and 4t of the
same size, hence

Cost™ 1

- rareal K T .
Costpaaea m'FC(K‘Fl)—g

TF,aux

To maximize the efficiency £ above, the optimal choice is apparently K = 0: parareal
iterations increase the computational cost (linearly in K), in spite of the use of parallelization.

On the other hand, assume that the rate of convergence of ) is strictly larger than the
rate for €. Then the time-step sizes are chosen such that §¢ = o(AT) as AT — 0, and the
efficiency is then of size NPTO This means that parallelization (Nppoe = 2) reduces the cost,
and that the optimal choice is K = 1.

In Sections |4f and , the rates of convergence of the error e with respect to AT are
studied, depending on the choice of the coarse integrator, and on the regularity of the noise.

4. Linear-implicit Euler scheme as the coarse integrator

The objective of this section is to prove that, when the coarse integrator is chosen as
the linear implicit Euler scheme, i.e. G = Giyp with Sap = Sar, then the behavior of
the parareal algorithm depends a lot on the regularity of the noise. More precisely, it is
proved that the order of convergence of the error e;k) to 0 cannot exceed @, and in particular
saturates when k increases. Essentially, the order of convergence (in the framework studied
below) is equal to min(@, k + 1). The theoretical and numerical results are consistent, and
show that the rates obtained by the theoretical analysis are sharp.

For the theoretical analysis developped in this section, the framework is as follows. First,
the initial condition uy = 0 and the nonlinear operator F' = 0 are set equal to 0. Second, the

covariance () of the noise commutes with A, i.e. Qe, = v,e,, for all p € N, and eigenvalues

li g

satisfy v, = Ap .
10



In this case, the solution is a Gaussian process, and u(t) = Sé e=9AdW?(s). Moreover,
the recursion formula @D for the error yields the equalities

Egﬁ—l) = Sare (k+1) + (eATA k ) Z Sn 1— m CATA _ SAT)G(k)'

€n—1 m

4.1. Theoretical error estimates. The main theoretical result of this section is The-

orem (.11

1_om
THEOREM 4.1. Assume that v, = \} * witha>0. Let T e (0,00) and k € Ny.
o Ifk+1 <@, then there exists Cr s € (0,00) such that

sup ‘HG H‘2 CT7k7aATk+1.

nAT<T

o Ifk+1>=a, then for all a € (0, @), there exists Cryq € (0,00) such that
sup_ [l < CroAT®.

nAT<T

In particular, for @ = % (Q = I, space-time white noise), or @ = % (@ is trace-class),
the rate of convergence does not depend on k, and performing parareal iterations does not

increase the order of convergence, see Section [3.5]

PROOF. For all p € N, let !/ (p) = <67(1k), e,) denote the p-th component of the error "),

Then the expression above is rewritten as

n—1

) = 3 VERAT) M R(-A,AT) D (),

(2) :=

— 1. The inequality |R(2)| <

where, for z € (—o0,0], one has V(z) :=
1 A |2]? yields

(B D)) < O(1n (VAT (2 i+ )\pAlT)”lm> sup (B[l (p)]?)*.

m=0 os<m<n

Observe that

”Zl 1 1 L+ NAT
(1+/\AT)"1W\ (L + MAT)™ — NAT

Thus for all n and all k, one obtains (using a recursion argument)

(E|61(f)(p)|2)% <C(1 A (WAT)) sup (Ele=D(p))| )%

<C*(1 A (WA sup (B[O (p)P)2.
osm<n

It remains to study the error 6%0) at the initialization step. One has the identity

2 (S — —m)AT)) (We((m + 1)AT) — W (mAT)).

11



Let us prove the following claim: there exists C' € (0, o0) such that

(10) supE|e? (p)|* < %(1 A ()\pAT))Q.

neN D

Using the It6 isometry formula, and the fact 8™ — a™ < mb™ (b — a) for all 0 < a < b and
m e N, (with b = V(=),(AT) and a = e *47), one obtains

n—1 2
1
E (0) 2 _ AT E o =Xp(n—m)AT
‘en (p)‘ Tp —. ((1 + )\pAT)(n—m) €

n 1 2
=~ AT = ApmAT
WAT ), ((1 AT © )

m=1
u 1 1
<~ AT ( _ e—ApmAT>
’ T;l (1 + \AT)™ (1 + AAT)™
< CpAT Y. = (1 A (AAT)?)

< S mAAT (1A (AAT)?)
< U7,

P (1 + NAT)m=D A, (14 A,AT)
(1 A (\AT)?)
Ap '

< Cp

2

1 9
This concludes the proof of the claim ((10). Then, using the expression v, = A of the

eigenvalues of the covariance operator (), one obtains
1

0 2
e > = (Z E!ﬁff)(p)\Q)
p=1

_c (i 12 (1A(ApAT))2('““)>

1120
p=1 )\Z%Jr
It remains to identify the orders of convergence. On the one hand, assume that k£ + 1 < @.
Using (1 A ()\pAT))Z(kH) < (VAT)2EHD vields

1
2

o 2
‘He;k:)mQ < COATF+H (Z )\ng(akl)) < Ck,aATk-i_l,
p=1
sincea—k—1>0.
On the other hand, assume that £ + 1 > @, and let a € (0,@). Using the inequality
(1A AT < (A, AT)2* yields

0 B 3

Wy < CAT™ [ ST A2 ) <o AT

n ‘4 s
p=1

This concludes the proof of Theorem O
12



4.2. Numerical experiments. The objective of this section is to demonstrate that the
orders of convergence obtained in Theorem are sharp. In addition, experiments in the
semilinear case (F # 0) are also provided.

First, the SPDE du(t) = Au(t) + dW®%(t), with u(0) = 0, is considered, where the

l_ g—
covariance () is given as above (Qe, = 7pep, with 7, = A} 20Z). Spatial discretization
is performed using finite differences, with mesh size h = 0.01. In addition, the noise is

1
truncated, i.e. the Q-Wiener process W%(t) is replaced by 25:1 Y3 By(t)e,, with P = 100.
Numerical parameters are chosen as follows: the final time is 7" = 1, the fine time-step size is
0t = 2713 and the coarse time-step size is AT = J§t with J = 27, j = 4,---,9. An average
over M = 100 independent Monte-Carlo samples is used to approximate the expectations.
First, Figure [1| reports numerical simulations for @ = 0.25 (space-time white noise) and
@ = 0.5 (trace-class noise). For all values of k, the order of convergence is equal to @, as

predicted by Theorem

a=0.25 a=05

——k=1 \ ——k=1
——k=2 0 ——k=2
k=3 - k=3
e —e— k=4 —s—k=4
104 - =" - — order a — — order a
—— order 2« sl . ——order 2a
10
10° 102 10! 107 102 107!
AT AT

FIGURE 1. Orders of convergence of the error with respect to AT, for a =
0.25 (left) and @ = 0.5 (right), for different values of k € {1,2,3,4}, in the
linear implicit Euler scheme case.

Second, Figures 2| (two fixed values of k and @ varies) and [3| (two fixed values of @ and k
varies) allow us to check that the orders of convergence in Theorem are sharp: the order
is indeed equal to min(@, k + 1).

To conclude this section, we report numerical simulations in the semilinear case.

Figures {| and 5| show the order for semilinear equation with F(u) = cos(u) and
F(u) = 5cos(u), respectively. The order for the additive noise case with @ = 4 (on the left)
is limited to 2 when k > 2, which is the same as the deterministic case (on the right).

5. Exponential Euler scheme as the coarse integrator

The objective of this section is to prove that, when the exponential Euler scheme is
chosen as the coarse integrator, i.e. G = Gexpo With Sar = e~T4 then parareal iterations

improve the rate of convergence of the error e to 0, in terms of AT. Contrary to the
situation of Section [4] this effect holds true without restrictions on the regularity parameter
@, in particular for @ = }L (space-time white noise).

13



—4—a=0.5 . —4—a=0.5
-<- ref. order 0.5 o -< ref. order 0.5
10° a=1 1010 a=1
-+ ref. order 1 -+ ref. order 1
S —— =2 101 ——a=3
o ref. order 2 ref. order 3
—=— =3 107 —=— =5
|~ = ref. order 3 |~ = ref. order 5

10° 102 10° 102

AT AT

FIGURE 2. Orders of convergence of the error with respect to AT, for k = 2
(left) and k = 4 (right), for different values of @, in the linear implicit Euler
scheme case.

—a4—k=1
10 —a—k=1 —< ref. order 2
—< ref. order 2 o k=2
10° k=2 10 -+ ref. order 3
- o ref. order 3 ——k=3
10710 —+—k=3 » ref. order 4
ref. order a o —=—k=4
10 —=—k=4 -o- ref. order 5
L __|== ref.order5 wl .|~ — ref. order a
10 10
10° 102 10° 102
AT AT

FIGURE 3. Orders of convergence of the error with respect to AT, for a = 4
(left) and @ = 6 (right), for different values of k € {1,2,3,4}, in the linear
implicit Euler scheme case.

The analysis in this section is performed for the SPDE (|1)), with the nonlinear coefficient
F satisfying Assumption [I} Let also Assumption 2] be satisfied.

The content of this section is organized as follows. The main results of this sections are the
error estimates stated in Theorems f which gives an order of convergence (k+1) min(a, )
for all £ € Ny — and — which gives an improved order of convergence when k£ > 2, see
Section Numerical experiments in Section [5.2] illustrate that the result in Theorem
is sharp when k£ = 0 and £ = 1, and that indeed better convergence rates are obtained for
k = 2. Proofs of the results are provided in Section [5.3] based on auxiliary results which are

proved in Section (5.4}
14



F(u)=cos(u), a = 4 . F(u)=cos(u), deterministic case
| " [——k=0 |

1 ——k=1
L. 107 k=2

—a—k=3

-+|= = -order 1.5

—4—k=0
—— k=1

k=2
—8—k=3
order 1
-~ © -order 2
= = =order 1.5

108 102 107 10 102

AT AT

FIGURE 4. Orders of convergence of the error with respect to AT, for additive
noise case with @ = 4 (left) and deterministic case (right), for nonlinear term
F(u) = cos(u) and different values of k € {0,1,2,3}, in the linear implicit
Euler scheme case.

F(u) = 5cos(u), o =4 F(u)=5cos(u), deterministic case

5 —<¢—k=0
10"
——k=1 —o—k=1
. k=2 106 k=2
10" —a—k=3
—— k=
order 1 k=3
- = —order 1.5 - =-order 1.5
1071 ' 107 " '
10 102 10 102
AT AT

FIGURE 5. Orders of convergence of the error with respect to AT, for additive
noise case with @ = 4 (left) and deterministic case (right), for nonlinear term
F(u) = 5cos(u) and different values of k € {0, 1,2,3}, in the linear implicit
Euler scheme case.

Observe that, when the coarse integrator is the exponential Euler scheme, then the
recursion formula @D for the error yields the equality

(11)
n—1 n—1
E,(Ik_‘_l) — AT Z 6(n—m)ATA [F(u(k’-i-l)) o F(uref)] + Z e(n—l—m)ATA [Rm(u(k)) . Rm(uref>] :
m=0

m m
m=0

where we recall that the residual operator R,, are defined by . As will be clear below, if
F =0 then ¢¥) = 0 for all n, as soon as k > 1. This property reveals why the choice of the
exponential Euler scheme as the coarse and the fine integrator provides better results.

Note also that the fact that the noise is additive in is fundamental in the analysis.

In addition, since noise is additive, it is expected that the order of convergence for k£ = 0
15



may be equal to 1 (instead of ) if @ is sufficiently large (at least larger than ). This effect
is not considered below, since the objective is mainly to study the increase in the order of
convergence produced by parareal iterations, and in particular in situations where the noise
is not very regular, 7.e. for space-time white noise, with @ = %.

5.1. Statement of error estimates. For the analysis, it is important to first state

moment bounds for the solution u”’, which are similar to Propositions and for the

exact solution u(t,) and the reference solution u'*f respectively.

PROPOSITION 5.1. For T € (0,), k € Ny, ¢ € N. There exists Cr. 4 € (0,0) such that,
for all ug e H and AT € (0,1),

sup [[ul|ly < Crpq(1 + |uol).
nAT<T

Moreover, let o € [0,min(a@,1)). There exists Crpga € (0,00) such that, for all uy €
D((—A)*) and AT € (0,1),

sup _|uf? [y < Orpgall + [uola).
nAT<T
The first error estimates are stated in Theorem [5.2] which may be interpreted as follows:
each parareal iteration improves the rate of convergence, proportionally to min(a, %) Let
us stress that Theorem is optimal for £ = 0 and k = 1, as illustrated by the numerical
experiments reported in Section [5.2]

THEOREM 5.2. Let T € (0,0), k € Ny, ¢ € N, a € [0, min(a, %)), and arbitrarily small
k > 0. For all ug € D((—A)®), there exists Cry g.a.x(to) € (0,0) such that, for all AT e
(0,1),

sup ey < Cripg.an(ug) ATEHDE),
nAT<T

Following the discussion in Section |3.5| concerning the computational cost, Theorem
shows that applying the parareal algorithm may be used to reduce the computational cost,
if the coarse integrator is the exponential Euler scheme, whatever the regularity of the noise.

The second result, Theorem [5.3] states that the estimate from Theorem can be
improved when k > 2. The practical relevance of this result is questionable: it requires k > 2,
whereas it is expected (see Section that choosing k£ = 1 is optimal. Nevertheless, the
study of the phenomenon stated in Theorem [5.3] is motivated by the numerical experiments
reported in Section [5.2] which exhibit that indeed the order of convergence is larger than
(k+1) min(a@, 1), namely it is equal at least equal to (k— 1) min(2@, 1) + 2 < kmin(2a, 1).

THEOREM 5.3. Let T € (0,0), k € N\{1}, ¢ € N, a € (0,min(a, 3)), and arbitrarily
small k > 0. For all ug € D((—A)%), there exists Crq.a.rx(to) € (0,90) such that, for all
AT € (0,1),

Sup ‘Hﬁgc)mq < CTJWLOL’K(uo)AT(kfl)(min(Za,%)fn)+2a'
nAT<T
The proofs of Proposition [5.1] and Theorems [5.2] and [5.3] are postponed to Section [5.3]
To simplify the exposition, the way the constants Cr 4.q.. (1) above depend on |ugl, is

not made precise.
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REMARK 5.4. Theorem (and Lemma [5.5-(1)) can be proved under less restrictive
conditions on the linear operator F', instead of Assumption .' there exists n € (0, %) such
that one has estimates of the type

‘DF(U/)h‘f'r]*a < CF?”]’arﬁ(l + |u‘a+“i)‘h’7a7

and
|D?F(u).(h1, ha)| -y < Crylhal|hol.
This setting encompasses the case of Nemuytskii operators, with n € (i, %)

5.2. Numerical experiments. The objective of this section is to illustrate Theorem|[5.2]

and [5.3
The SPDE ({I)), with nonlinear operator F'(u) = 5cos(u) and initial condition u(0) = 0,

is considered, with covariance operator given by Qe, = ~ye,, with v, = )\é - Spatial
discretization is performed using finite differences, with mesh size h = 0.01.1 In addition,
the noise is truncated, i.e. the Q-Wiener process W?(t) is replaced by 25:1 Y3 Bp(t)e,, with
P =100. Numerical parameters are chosen as follows: the final time is 7' = 1, the fine time-
step size is 6t = 271, and the coarse time-step size is AT = Jot with J =2/, j =5,---,10.
An average over M = 100 independent Monte-Carlo samples is used to approximate the
expectations.

-4 a=0.25 —+a=0.25
-< ref. order 0.25 L -< ref. order 0.5
a=0.35 a=0.35
P -+ ref. order 0.35 10 -+ ref. order 0.7
——a=0.5 ——a=0.5
ref. order 0.5 ref. order 1

10° 102 10° 102

AT AT

FIGURE 6. Orders of convergence of the error with respect to AT, for K =0
(left) and K = 1 (right), for different values of a € {0.25,0.35,0.5}, in the
exponential Euler scheme case.

Figure [6] demonstrates that the orders of convergence in Theorem [5.2] are sharp when
k =0 and k = 1, for different values of a.

Figure [7] then illustrates that for & > 2, the orders of convergence in Theorem [5.2) are not
sharp for @ = 0.25 and @ = 0.4. In fact, even the improved error estimates from Theorem

seem to be sub-optimal in the numerical experiment, especially when @ = 0.4 (figure on the
right) — in this case min(2a, %) = % When @ = 0.25 (figure on the left), the improved

theoretical rate in Theorem [5.3is closer to the observed numerical rate.
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a =0.25 . a =0.4

—k=2
—-< order4a
order 3a

107 | =—o=k=3
— ¢ order 6a
order 4a

AT AT

FIGURE 7. Orders of convergence of the error with respect to AT, for a =
0.25 (left) and o = 0.4 (right), for different values of k € {2,3,4}, in the
exponential Euler scheme case.

5.3. Proof of error estimates. The objective of this section is to provide proofs for the
results stated in Section In fact, they are all based on the following Lemma concerning
Lipschitz continuity properties, in appropriate norms, of the residual operators.

LEMMA 5.5. Let Assumptions[1] and[q hold, and a € [0,1).
(i) There exists Cpq € (0,00) such that for all AT € (0,1] and all uy,uy € H, one has
sup |Ru(uz) — Rn(u1)|a < Crgo AT |ug — uy).
nAT<T
(ii) For allqe N, a € (0, min(a, %)), B € |0,a) and arbitrarily small k € (O, min(a—3,1—
a—03)), there exists Cr.ga,8, € (0,0) such that for all AT € (0,1) and all uy,us € D((—A)"),
one has

(= A) 2 (Ra(t2) — R (1)) g < Crigen s AT 23) =51 (a2 4 Junf2) iy — 5.

The proof of Lemma [5.5] is postponed to Section
Observe that Statement (i) (in the case o = 0) is not sufficient to exhibit a positive rate

of convergence v for the error egf), in terms of AT. Indeed, that would required the Lipschitz
constant of the residual operator to be of size AT'™7. Statement (i), with a = 0, is used only
to establish stability properties of the algorithm, 7.e. moment bounds for u¥ or to apply a
Gronwall lemma. With o > 0, this statement is employed to establish moment bounds in
|- |o norms, and to deal with some terms for which regularization properties of the semigroup
cannot be used.

Statement (ii) is the key result in order to get the rates of convergence given in Theo-
rem [5.2) and [5.3] It requires to choose appropriate norms to analyze the Lipschitz constant
of the residual operators: estimation in a weaker norm for o > 0, or with higher regularity
for 5 > 0. More precisely, Theorem follows from Statement (ii) with § = 0, and then
Theorem follows from Statement (ii) with 5 > 0.

Finally, observe that the need to choose appropriate norms is specific to the infinite
dimensional situation. Moreover, Lemma [5.5| is not satisfied if the linear implicit Euler

scheme is chosen as the coarse integrator, even if F' = 0: indeed, in that case, R, (ug) —
18



Ru(ur) = (Sar — €27) (up — wy), and |Sar — €272y does not converge to 0 as AT — 0.
This observation explains why the behaviors and the analysis of the parareal algorithm
depends a lot on the choice of the coarse integrator for parabolic semilinear SPDEs.

REMARK 5.6. Note that the estimates stated in Lemma require uy and us to be de-
terministic, however below they are applied to random elements, which are measurable with
respect to U(W(t);t < tn), whereas the noise component in the residual operator R,, is mea-
surable with respect to J(W(t);tn <t < tn+1). Applying a straightforward conditioning
argument, and interpreting the expectation in Lemma as a conditional expectation, yield
the required estimates below.

PROOF OF PROPOSITION [5.1] First, moment bounds for the reference solution u:*f are
provided by Proposition[3.1] In addition, in this section, the initialization step of the parareal
algorithm consists in applying the fine integrator (which is the exponential Euler scheme)
with time-step size AT, thus the result of Proposition [3.1] also applies to obtain moment

bounds for uﬁf)).

Since %(11@) = e,(lk) +ur®t it thus only remains to prove moment bounds for e,(lk), when k > 1.
Using the expression of the error , and the global Lipschitz continuity of F', moments

are treated as follows: for all ¢ € N and « € [0, 1),

n |470

n—1
eV lga SAT S [(—A)emATA Ly et D)
m=0

q,0

n—2
+ D (= A) e mATA Y [ R () = R (i) |
m=0

+ (A [Rocr (@) = Rer (u )]

n—

q,0-

Assume first that o = 0. Then the claim follows from the application of Lemma [5.5-(i), the
use of the discrete Gronwall Lemma, and from the use of a recursion argument with respect
to k. When a > 0, it remains to apply Lemma (i), and to apply the regularization
estimate from Proposition to conclude the proof. 0J

PROOF OF THEOREM [5.2] First, assume that k = 0. The claim then follows from Propo-
sition 3.1} since both the coarse and the fine integrators are given by the exponential Euler
scheme, thus €} = (u%k) —u(ty)) — (wf — u(t,)), and the initialization of the parareal
algorithm consists in applying the coarse integrator.

Let now k > 1. Owing to the expression of the error (1)), applying Lemma (ii) with

[ = 0 and Holder inequality (see Remark for the conditioning argument), one obtains

n—1
€1l <CAT Y llelq

m=0

m m

n—2
+ D (= A) e mmATAY g [ (= A) (R (ulh ™) = R(ui)]
m=0

k—1 re
+ R () = R (i)
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n—1

k—1
< CAT Y (||, + CAT ||V,
m=0

n—2 1

+ CAT e
mz_zo ((n—m—1)AT)

Due to the moment estimates of Proposition [5.1], applying the discrete Gronwall lemma
yields

et l2q (1 + Muafy ™21z 0 + Il 3.0)-

sup el g < Crgan(uo) AT sup el ]2,

nAT<T nAT<T

Then a straightforward recursion argument yields

sup ey < Cring.an(uo) AT sup |ef?]|ax,

et nAT<T
< Crpgan () ATFHDER),
owiing to the result when k = 0. This concludes the proof of Theorem .

PROOF OF THEOREM [5.3l The proof consists of two steps.
Step 1. If £ > 1, the error evaluated in the |- |, norm is also of the order (k+ 1)(a — k):

q,x < CT}k%q’a’,{(UO)AT(]C+1)(OC_K) .

sup e,

nAT<T

Indeed, using the expression of the error , Proposition , and the two statements
of Lemma [5.5] one obtains

e

m

n—1
g SAT D7 [[(—A)*em= AT Lo [ D],
m=0

n—2
+ 2 (= AP ATA L  [[(= A) R (™) = R ()]
m=0

+ (= A [Roa (wl5Y) = Ry ()]l

n

n—1
1
(k)

m=0 msn

n—1 1
C|AT AT (k—1)
i ( ;0((n—1_m)AT)2a) o e

+ AT el
< CAT(kJ'_l)(O‘_“) + CATl—oH-k(oz—n)’

owing to Theorem With the assumptions a < %, it is straightforward to check that
l—a+ k(e —k) = (k+1)(a — k). This concludes Step 1.

Step 2. It remains to establish the error estimate of Theorem

Using the expression of the error , Proposition , the two statements in Lemma ,
with § = a — k, and the moment bounds from Proposition 5.1 one obtains

n—1

€l <AT Y [(=A)*e™ ™24 2o B,
m=0
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-2
+ D 1= AP e AT [ (= A) " [Ron (™) = R ()] g
m=0

+ IR (@) = Ry ()

n—1 1

— ((n —m)AT)~

n—2
min(2a 1
+ CATmRen) (ATZ (n— 1= m)AT) ) sup.[Jes ™ laga

m<n—2

e N

+ OAT e g

1
r e
mz_]O ((n —m)AT)*
using the fact that 1 — o > § > min(2a, 1) — 2.

Applying the discrete Gronwall lemma and a recursion argument,

[l g0 < CATEDEmnERD= e,
< CAT k—l)(min(2a,§)—ﬁ)+2a’

g0 + CAT™" (20,3)=2 sup H‘Ek D‘H?q,aa
mAT

owing to Step 1 with k = 1.
This concludes the proof of Theorem [5.3 O

REMARK 5.7. The claim in Step 1 in the proof of Theorem requires k = 1, and is
not correct when k = 0. In fact, when k = 1, in the expression of the error, contributions of
stochastic terms, which would have low regularity properties, do not appear explicitly since
noise is additive.

The application of the claim of Step 2 explains why Theorem[5.3 holds true only if k = 2

5.4. Proof of Lemma [5.5] The proof of Lemmap.5| consists in proving bounds on the
derivative DR,,(u).h = DF,(u).h — DG, (u).h (recall the residual operator R, is defined
by ) Let us introduce notation which is used below. On the one hand, due to , it is
straightforward to compute

DG, (u).h = eAT4h + ATeATADF (u).h.
On the other hand, the derivative of F,, is computed as follows: one has DF, (u).h = 7727 7
where Jot = AT, and one has the following recursion formulae
Upj1 = e‘stAvnj + 5te5tAF(vnj) + 45, <WQ Uno = U,
g1 = € + St ADF (v )y 5, g = h

Then a straightforward computation yields

J—1
nZJ = ATAp 4 6t Z e(J’j)‘stADF(vn,j).nZ’j.
j=0

Observe that the same term e2T4h appears in expressions of the derivatives DF,,(u).h

and DG, (u).h. This term thus does not appear in DR,,(u). This is a crucial property (which
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is not satisfied when the coarse integrator is the linear implicit Euler scheme). Observe also
that R, = 0 if F' = 0, since the linear part is solved exactly.

PROOF OF LEMMA [5.51-(i). Since F is globally Lipschitz continuous, applying the dis-
crete Gronwall Lemma yields the following (almost sure) inequality:

sup |y, ;| < C|hl.

0<j<J

Owing to Proposition and using the global Lipschitz continuity property of F', it is
straightforward to check that

|DRy(u).hlo =|DF,(u).h — DG, (u).h]|
J-1
<|ATeATADF(u).h|, + Ot Z ‘e(J’j)‘stADF(vn,j).772’]-‘&

§=0
J-1 4

<AT|(=A)* X i h| + 68 D [(=A)* %4 iy nh |
j=0

<CL AT |h,

using the inequality 0t Z;-];Ol W < C, AT, This concludes the proof. O

Observe that in the proof above, only the Lipschitz continuity property for F' was em-

ployed. In the proof below, the estimates stated in Assumption [I] are crucial.

PROOF OF LEMMA [5.5}-(ii). Using the notation above, and expressions of DF,,(u).h and
of DG, (u).h, the derivative DR, (u).h = DF,(u).h — DG, (u).h is decomposed as follows:

J—1 J-1
DRy (u).h = (3 0te 954 = ATAT) DF(u).h 4t Y, e/ ADF(u). (1), - h)
j=0 =0
J—1 A
+6t Y eV (DF(v,;) — DF(u)) ).

§=0

The first term is treated as follows: using Assumption 1]

‘(—A)_O‘ (Jil Stel/=90tA _ AT@ATA) DF(u).h‘
=0

J—1
< O Y (AR (A el IA) || (~ AP DEF ().
j=0
J—1
< Clapdt (G000 4 fuls)| ]
7=0

< Ca”@ﬁATl_‘_a—k’B—H(l + ]u|a)\h]6,

since jot < Jot = AT, and a + f < 2a < 1.
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The second term is treated as follows: observe that " o = h, thus, using Assumptlon

J-1 J—1
(—A)" T 6t Z e(‘]_j)‘StADF(u).(nZ’j - h)‘ < Cy 10t Z (1+ |u|a)‘(—A)_a+“ (nﬁﬁj - 772’0) !
7=0 7=0

Note that the increment 7!, — 1, satisfies

J—1

mhy =g = (2 = I)h + 6t Y 9= D(v, )0},
=0

with the inequality
[(=A)=*F (7" = I)h| < Cop(jot)* P77 |hs.
Using the inequality |} ;| < C|h|, and using that « is chosen such that oo + 8 + & < 1, one

obtains

J—1
(—A) 0t Y eV IMADE (). (il = )| < Capn AT (14 fula) ]

j=0

It remains to treat the third term: using S + x < «, the last inequality from Assumption
yields

J—1
’(—A)_O‘ét 2 e(J—9)3tA (DF(UW-) — DF(u)) .772,].
=0
Cap, n&Z ‘ “O(DF (vn;) — DF(vn0))10
J—1
< Capndt D (14 [vnols + [vnls) 110 518105 — vnol-sr,
=0

with |/ ;|3 < C|h|s. Note that the following moment bound holds true: there exists Cy 3 €
(0,00) such that ||vy,[lqs < Cqp. Moreover, the proof of the following regularity result is
straightforward:

—B—k . min | o n,l
(=AY (05 — V)l < Cmnpn (8™ (5453) (1 1 Ju],),

see Proposition for a similar estimate when 3 = 0, for the process (u(t)) >0~ Then
applying Holder inequality yields

J—1
—a s min | « /@,l
=4yt 3 eI A(DF(w, )~ DF(w) i lly < Co s AT (5552 1] (14 Jul?).
5=0
Gathering the estimates then concludes the proof. 0]
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