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On parareal algorithms for semilinear parabolic
Stochastic PDEs

Charles-Edouard Bréhier and Xu Wang

Abstract. Parareal algorithms are studied for semilinear parabolic stochastic partial dif-
ferential equations. These algorithms proceed as two-level integrators, with fine and coarse
schemes, and have been designed to achieve a “parallel in real time” implementation. In
this work, the fine integrator is given by the exponential Euler scheme. Two choices for
the coarse integrator are considered: the linear implicit Euler scheme, and the exponential
Euler scheme.

The influence on the performance of the parareal algorithm, of the choice of the coarse
integrator, of the regularity of the noise, and of the number of parareal iterations, is inves-
tigated, with theoretical analysis results and with extensive numerical experiments.

1. Introduction

In the last two decades, numerical methods for Stochastic Partial Differential Equations
(SPDEs) have been extensively studied, see for instance the monographs [13], [15], [18] and
references therein. The rate of convergence of the schemes used for temporal and spatial
discretization is related to the regularity of the noise, which may be arbitrarily low, and
in such situation effective numerical methods are difficult to construct. For instance, for
a one-dimensional semilinear parabolic SPDE, driven by Gaussian space-time white noise,
trajectories are only α-Hölder continuous in time and 2α-Hölder continuous in space, for α ă
1
4
, and standard Euler and finite difference schemes thus have a (strong) rate of convergence

equal to α and 2α respectively.
In this article, we will only focus on the temporal discretization and consider a semilinear

parabolic SPDE of the type

Bupt, xq

Bt
“
B2upt, xq

Bx2
` F pupt, xqq ` 9WQ

pt, xq, pt, xq P R` ˆ p0, 1q,

up0, xq “ u0pxq, x P p0, 1q, upt, 0q “ upt, 1q “ 0,

that is, a one-dimensional semilinear heat equation with homogeneous Dirichlet boundary
conditions, and with additive Gaussian noise, which is white in time and colored in space.
A rigorous interpretation as a stochastic evolution equation (in the sense of [5]), driven by
a Wiener process, with values in an infinite dimensional Hilbert space is given by (1), see
also Section 2, where precise assumptions for the nonlinear operator f and the covariance
operator Q are stated. It is well-known that the rate of convergence (studied only in the
strong sense in this article) of the error depends on the properties of the covariance operator
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Q of the Wiener process, and can be arbitrarily small. In particular, in the case of space-time
white noise (Q is the identity), the order of convergence of Euler schemes is essentially 1

4
. If

the noise is of trace-class (Q has finite trace), the order of convergence is essentially 1
2
.

The objective of this article is to study the applicability of so-called parareal algorithms
to improve the performance of temporal discretization schemes. Implementing parallel al-
gorithms to solve time-dependent evolution equations is not natural, and parallel-in-time
integration methods have been extensively studied, based on multigird or multiple shooting
techniques. We refer to the pionneering contributions [3, 4, 12, 14, 19, 22, 23], and the
review [6]. The parareal algorithm has been introduced in [16], see also [21]. It is a parallel
in real time technique, based on the use of two integrators with two different time-step sizes:
a coarse integrator, denoted by G, with coarse time-step size ∆T , and a fine integrator,
denoted by F , using J steps with time-step size δt, such that ∆T “ Jδt. In practice, G may
be less accurate but cheaper than F . The parareal algorithm is an iterative method, using
a predictor-corrector strategy, in which computations of the fine integrator at each iteration
are performed in parallel: the recursion is given by

u
pk`1q
n`1 “ Gpupk`1q

n , tn, tn`1q ` Fpupkqn , tn, tn`1q ´ Gpupkqn , tn, tn`1q,

u
pkq
0 “ u0,

where k represents the index for parareal iterations. For k “ 0, the scheme is initialized
using the coarse integrator. We refer to Equation (5) and to Section 3 below for a detailed
presentation of the algorithm.

Since the pioneering work [16], where the parareal algorithm has been introduced for
a class of ordinary differential equations, several extensions have been considered, see for
instance [1, 7, 8, 9, 10, 20]. In particular, [1] deals with parabolic PDEs, and studies the
stability and convergence properties, which may require regularity properties, depending on
the choice of integrators. The application of the parareal algorithm for stochastic systems
has been considered first in [2], and more recently in [11] for stochastic Schrödinger PDEs
and in [24] for a class of stochastic differential equations. More precisely, in [11], parareal
algorithms for stochastic Schrödinger equation with damping are studied with F being the
exact solver and G being the exponential-θ scheme. The longterm convergence is obtained
for the case θ ą 1

2
or sufficient large α, which ensures sufficient exponential decay of the

coarse integrator.
Let us now describe the contributions of this article. The parareal algorithm is applied to

the SPDE above. The exponential Euler scheme is chosen as the fine integrator. The main
contribution of this article is to reveal that the parareal algorithm behaves differently, de-
pending on the choice of the coarse integrator, when applied to semilinear parabolic SPDEs.
Such results, based on both theoretical analysis and numerical experiments, have not been
reported before, up to our knowledge. The error of the parareal algorithm, considered in
this article, is the distance between the solution computed by the proposed algorithm and a
reference solution generated by the fine integrator (which is not computationally expensive
and is not computed in practice). The parareal algorithm is useful to reduce computational
cost only if the order of convergence of this error (with respect to the coarse time-step size
∆T ) is strictly larger for some k ě 1 than for k “ 0.

To state the main results of this article (see Theorems 4.1, 5.2 and 5.3 below for precise
statements), let us assume that, for some α ą 0, the covariance operator Q satisfies a
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condition of the type
}p´Aqα´

1
2Q

1
2 }L2pHq ă 8,

where } ¨ }L2pHq denotes the Hilbert-Schmidt norm for operators from H to H.
First, assume that the linear implicit Euler scheme is chosen as the coarse integrator, i.e.

e∆TA is approximated by pI ´ ∆TAq´1. In addition, assume that F “ 0. Then the order
of convergence of the parareal algorithm, with k iterations, is essentially minpα, k ` 1q, and
saturates at α when k increases, see Theorem 4.1 and numerical experiments in Section 4.2.
In particular, if α ď 1, which includes the space-time white noise case with essentially α “ 1

4
,

the application of the parareal algorithm is useless, since this order of convergence does not
depend on k. The way the error behaves in terms of k thus depends a lot on the regularity
of the noise.

Second, assume that the exponential Euler scheme is chosen as the coarse integrator.
Then it is proved that the order of convergence of the parareal algorithm, with k iterations,
is at least essentially of size pk ` 1qα, if α P p0, 1

2
s, see Theorem 5.2. Contrary to the

first case, this order is linear in k, thus applying the parareal algorithm always reduces
the computational cost, whatever the regularity of the noise. Numerical experiments, see
Section 5.2, reveal that the order of convergence is sharp for k “ 0 (the parareal algorithm
is not applied) and k “ 1 (one iteration is applied), but is larger when k ě 2. In fact, the
choice k “ 1 is optimal when considering the final computational cost. Theorem 5.3 proves
that for α P p0, 1

4
s and k ě 2, the order of convergence is at least of size 2kα, which is indeed

larger than pk ` 1qα.
In conclusion, the parareal algorithm may offer an effective strategy to reduce computa-

tional cost for the simulation of trajectories of SPDEs. Several questions remain open: for
instance, generalizations in higher dimension, algorithms for equations with multiplicative
noise, or using other integrators, are left for future works.

This article is organized as follows. Precise assumptions on the operators A and F , and on
the covariance operator Q, are provided in Section 2. Section 3 is devoted to introducing the
parareal algorithm, to presenting the possible choices of coarse integrators, and to defining
the error. The study of the behavior of the parareal algorithm when the linear implicit
Euler scheme is chosen as the coarse integrator is provided in Section 4: more precisely, see
Theorem 4.1 for the theoretical error estimates and Section 4.2 for the numerical experiments.
The study of the behavior of the parareal algorithm when the exponential Euler scheme is
chosen as the coarse integrator is provided in Section 5: more precisely, see Theorems 5.2
and 5.3 for the theoretical error estimates and Section 5.2 for the numerical experiments.

2. Setting

Let H “ L2p0, 1q, with norm and inner product denoted by | ¨ | and x¨, ¨y respectively.
In this work, stochastic evolution equations, with additive noise, of the following type are
considered (see [5], [17]: given an initial condition up0q “ u0 P H,

(1) duptq “ Auptqdt` F puptqqdt` dWQ
ptq,

where the solution
`

uptq
˘

tě0
is a stochastic process with values in H. The operator A

is a linear parabolic differential operator with homogeneous Dirichlet boundary conditions
(Section 2.1), the operator F is a globally Lipschitz, non-linear operator (Section 2.2), and
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`

WQptq
˘

tě0
is a Q-Wiener process. Appropriate assumptions to justify the global well-

posedness of (1) are introduced below.
In the sequel, the initial condition u0 is assumed to be deterministic, however the ex-

tension to a random initial condition u0 (independent of the Wiener process, and satisfying
appropriate moment conditions) is straightforward by a conditioning argument.

2.1. Linear operator A. The linear operator A is defined as the unbounded linear
operator on H “ L2p0, 1q, such that

#

DpAq “ H2p0, 1q XH1
0p0, 1q,

Au “ u2, u P DpAq.

In other words, A is the Laplace operator with homogeneous Dirichlet boundary conditions.
Recall that A is an unbounded, self-adjoint, linear operator, and that Aep “ ´λp for all p P N,
where the eigenvalues are given by λp “ pπpq2, and the eigenfunctions ep “

?
2 sin

`

pπ¨
˘

form
a complete orthonormal system of H.

The linear operator A generates an analytic and strongly continuous semigroup on H,
denoted by

`

etA
˘

tě0
. Note that for all u P H, one has

etAu “
ÿ

pPN

e´λptxu, epyep.

For any α P r0, 1s and u P H, let

|u|2α “
ÿ

pPN

λ2α
p xu, epy

2
P r0,8s.

For u P Dpp´Aqαq “ tu P H : |u|α ă 8u, set p´Aqαu “
ř

pPN λ
α
p xu, epyep P H, and

note that |u|α “ |p´Aqαu|. In addition, for any α P r0, 1s and u P H, let p´Aq´αu “
ř

pPN λ
´α
p xu, epyep P H, and |u|2´α “

ř

pPN λ
´2α
p xu, epy

2.
Regularization properties of the semigroup

`

etA
˘

tě0
are stated in Proposition 2.1 below.

The following notation is used. First, LpHq is the space of linear bounded operators from
H to H, with the operator norm denoted by } ¨ }LpHq. Second, L2pHq is the space of Hilbert-
Schmidt operators from H to H, with the Hilbert-Schmidt norm denoted by } ¨ }L2pHq.

Proposition 2.1. For all t ě 0, }etA}LpHq ď e´λ1t. Moreover, for all α P r0, 1s, there
exists Cα P p0,8q such that for all t P p0,8q,

}p´AqαetA}LpHq ď Cα minpt, 1q´α, }p´Aq´αpetA ´ Iq}LpHq ď Cα minpt, 1qα.

2.2. Nonlinear operator F . The analysis of the rate of convergence for parareal algo-
rithm below proceeds in a simplified, abstract, framework, whereas numerical experiments
are performed in the more natural framework of Nemytskii operators. The abstract frame-
work does not encompass this case. Indeed, the treatment of Nemytskii would require the
introduction of further concepts (such as γ-Radonifying operators, in order to work in Ba-
nach spaces Lpp0, 1q). Instead of increasing the technical level of the presentation, the choice
made for this article is to study the main features of the parareal algorithms applied to
SPDEs in a more pedagogical way owing to the simplified framework.

Let us first state the assumptions on the nonlinear operator F which are employed for
the theoretical analysis.
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Assumption 1. The nonlinear operator F : H Ñ H is globally Lipschitz continuous, and
is twice Fréchet differentiable, with bounded first and second order derivatives. Moreover, for
any α P p0, 1

2
q and any arbitrarily small κ P p0, 1

2
´ αq, there exists CF,α,κ P p0,8q such that,

for all u P Dpp´Aqα`κq and h P H,

|DF puq.h|´α ď CF,α,κ
`

1` |u|α`κ
˘

|h|´α,

and for all u, h P Dpp´Aqαq,

|DF puq.h|α´κ ď CF,α,κ
`

1` |u|α
˘

|h|α.

Finally, for all u1, u2, h P Dpp´Aq
α`κq,

ˇ

ˇ

`

DF pu2q ´DF pu1q
˘

.h
ˇ

ˇ

´α
ď CF,α,κ

`

1` |u1|α`κ ` |u2|α`κ
˘

|u2 ´ u1|´α|h|α`κ.

Let us now recall that a Nemytskii operator F : H Ñ H is defined such that F puq “ f ˝u
for all u P H, where f : R Ñ R is a real-valued mapping, assumed to be at least globally
Lipschitz continuous. As explained above, even if f is assumed of class C2 with bounded first
and second order derivatives, the associated nonlinear Nemytskii operator F does not satisfy
the conditions of Assumption 1. Indeed, the appropriate generalization requires estimates
in Lpp0, 1q spaces, for p P p2,8q (using Hölder inequality).

2.3. Wiener process. Let
`

Ω,F ,P
˘

be a probability space, equipped with a filtration
`

Ft

˘

tě0
satisfying the usual conditions. The expectation operator is denoted by Er¨s.

Let
´

`

βpptq
˘

tě0

¯

pPN
denote a sequence of independent standard real-valued Wiener pro-

cesses, and let
`

εp
˘

pPN be a complete orthonormal system of H, and
`

γp
˘

pPN be a sequence
of nonnegative real numbers. The cylindrical Wiener process is defined as

W ptq “
ÿ

pPN

βpptqεp.

The Q-Wiener process is then defined as

WQ
ptq “

ÿ

pPN

?
γpβpptqεp,

and can be written as WQptq “ Q
1
2W ptq, where the linear self-adjoint operators Q

1
2 and Q

satisfy
Q

1
2u “

ÿ

pPN

?
γpxx, εpyεp, Qu “

ÿ

pPN

γpxx, εpyεp, @ u P H.

Note that the Q-Wiener process WQptq takes values in H if and only if Q is a trace-class
linear operator, i.e., TrpQq “ }Q

1
2 }2L2pHq

“
ř

pPN γp ă 8.
Assumption 2 states the conditions on Q required to ensure the well-posedness of (1).

Assumption 2. Assume that there exists α ą 0 such that }p´Aqα´
1
2Q

1
2 }L2pHq ă 8.

Define the parameter α as follows:

α “ sup
!

α P p0,8q, }p´Aqα´
1
2Q

1
2 }L2pHq ă 8

)

,
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then α ą 0 if and only if Assumption 2 is satisfied. For instance, if Q “ I (space-time white
noise), then α “ 1

4
. If Q is a trace-class operator, then α “ 1

2
. In the article, we are mostly

interested in the regime α P p0, 1
2
s.

The numerical experiments are performed with the following example: for all p P N,
εp “ ep (thus the operators A and Q commute), and γp “ λ

1
2
´2α

p (observe that in that case
the notation is consistent with the definition of α in the general case).

To conclude this section, let us introduce the following notation: if U is a H-valued
random variable, for all α P r0, 1s, and q P N,

~U~q “
`

Er|U |qs
˘

1
q , ~U~q,α “

`

Er|U |qα
˘

1
q .

2.4. Well-posedness and regularity properties. Solutions of (1) are understood in
the mild sense: for all t ě 0,

(2) uptq “ etAu0 `

ż t

0

ept´sqAF pupsqqds`

ż t

0

ept´sqAdWQ
psq.

Under the assumptions stated above, this problem is globally well-posed. We quote
without proof the following standard result.

Proposition 2.2. Let Assumption 2 be satisfied. For any initial condition u0 P H, there
exists a unique mild solution (2) of the SPDE (1). Moreover, for any T ą 0 and q P N,
there exists CT,q P p0,8q such that

sup
0ďtďT

~uptq~q ď CT,q
`

1` |u0|
˘

.

Moreover, for any α P
`

0,minpα, 1
2
q
˘

, there exists CT,q,α P p0,8q such that

~uptq~q,α ď CT,q,α
`

1`min
`

|u0|α, t
´α
|u0|

˘˘

, @ t P p0, T s,

~uptq ´ upsq~q ď CT,q,α|t´ s|
α
`

1`min
`

|u0|α,minpt, sq´α|u0|
˘˘

, @ t, s P p0, T s.

3. Parareal algorithms

3.1. Fine and coarse integrators. Let T P p0,8q be given. Introduce the so-called
coarse and fine time-step sizes ∆T and δt. It is assumed that T “ N∆T and ∆T “ Jδt,
where N and J are integers. For all n P t0, . . . , Nu and j P t0, . . . , Ju, let

tn “ n∆T, tn,j “ tn ` jδt “ pnJ ` jqδt.

Note that the coarse and the fine integrators introduced below are random mappings.
Precisely, for all n P N, the mappings Gn “ Gp¨, tn, tn`1q and Fn “ Fp¨, tn, tn`1q depend on
the Wiener increments

`

WQptq ´WQptnq
˘

tnďtďtn`1
.

3.1.1. Coarse integrator. The coarse integrator is a numerical scheme with time-step size
∆T . In this work, it is defined as follows: for all n P t0, . . . , N ´ 1u and all u P H, let

(3) Gpu, tn, tn`1q “ Ŝ∆Tu`∆T Ŝ∆TF puq ` Ŝ∆T

`

WQ
ptn`1q ´W

Q
ptnq

˘

,

with
‚ either Ŝ∆T “ e∆TA (exponential Euler scheme),
‚ or Ŝ∆T “ S∆T “ pI ´∆TAq´1 (linear implicit Euler scheme).
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The notation Gexpo, resp. Gimp, is often used below, to refer to the coarse integrator with
the exponential Euler scheme, resp. with the linear implicit Euler scheme. As will be seen
below, these two coarse integrators have very different behaviors when applied to the SPDEs
considered in this article.

3.1.2. Fine integrator. The fine integrator consists of J steps of a numerical scheme with
time-step size δt. In this work, this numerical scheme is obtained by the exponential Euler
scheme. More precisely, introduce the auxiliary integrator Faux: for all n P t0, . . . , N ´ 1u,
all j P t0, . . . , J ´ 1u and all u P H,

Fauxpu, tn,j, tn,j`1q “ eδtAu` δteδtAF puq ` eδtA
`

WQ
ptn,j`1q ´W

Q
ptn,jq

˘

.

The fine integrator F , at the coarse time scale, is then defined as follows:

(4) Fp¨, tn, tn`1q “ Fauxp¨, tn,J´1, tn,Jq ˝ ¨ ¨ ¨ ˝ Fauxp¨, tn,0, tn,1q.

In other words, the solution vn,J “ Fpu, tn, tn`1q. is computed using the following recursion
formula

vn,j`1 “ eδtAvn,j ` δte
δtAF pvn,jq ` e

δtA
`

WQ
ptn,j`1q ´W

Q
ptn,jq

˘

vn,0 “ u

for j P t0, ¨ ¨ ¨ , J ´ 1u with Jδt “ ∆T .

3.2. The parareal algorithm. The initialization step of the parareal algorithm con-
sists in applying the coarse integrator: for n P t0, . . . , N ´ 1u

u
p0q
n`1 “ Gpup0qn , tn, tn`1q,

u
p0q
0 “ u0.

Let K P N denote the number of parareal iterations. Iterations for k P t0, . . . , K ´ 1u

are defined as follows: given the values
`

u
pkq
m

˘

0ďmďN
at iteration k, then compute, for all

n P t0, . . . , N ´ 1u,

(5)
u
pk`1q
n`1 “ Gpupk`1q

n , tn, tn`1q ` Fpupkqn , tn, tn`1q ´ Gpupkqn , tn, tn`1q,

u
pkq
0 “ u0.

The core of the approach lies in the ability, at each iteration in k, to perform in parallel the
computations in (5) for different values of n, hence the terminology of “parareal algorithms”
for “parallelization in real time”.

3.3. The reference solution. The reference solution is defined using the fine integra-
tor:

(6)
uref
n`1 “ Fpuref

n , tn, tn`1q,

uref
0 “ u0.

Observe that following (4), this reference solution is in fact defined in terms of the integrator
Faux, applied with the fine time-step size δt. Precisely, for all n P t0, . . . , N ´ 1u, one has
uref
n`1 “ vref

n,J defined by

vref
n,j`1 “ Faux

`

vref
n,j, tn,j, tn,j`1

˘

, j P t0, . . . , J ´ 1u

vref
n,0 “ uref

n .

7



This may be rewritten as follows: uref
n “ vref

nJ , where for all ` P t0, . . . , NJ ´ 1u,

vref
``1 “ Faux

`

vref
` , `δt, p`` 1qδt

˘

.

In addition, note that

vref
` “ e`δtAu0 ` δt

`´1
ÿ

l“0

epl´`qδtAF pvref
l q `

`´1
ÿ

l“0

epl´`qδtA
`

WQ
ppl ` 1qδtq ´WQ

plδtq
˘

.

To conclude this section, we state without proof two standard results concerning, first,
the qualitative properties of the reference solution (moment estimates), second, the rate of
convergence of the error uref

n ´ uptnq.

Proposition 3.1. Let T ą 0, α P
`

0,minpα, 1
2
q
˘

and q P N. There exists CT,q,α P p0,8q
such that for all u0 P Dpp´Aq

αq,

sup
0ďnďN´1

~uref
n ~q,α ď CT,q,α

`

1` |u0|α
˘

,

and such that the following error estimate holds true:

sup
0ďnďN´1

~uref
n ´ uptnq~q ď CT,q,αδT

α
`

1` |u0|α
˘

.

Remark 3.2. The assumption that u0 P Dpp´Aqαq may be weakened using Proposi-
tion 2.1.

Remark 3.3. Since noise is additive in the SPDE (1), the order of convergence in Propo-
sition 3.1 may be larger than 1

2
when α is sufficiently large. This type of estimate is not

considered in this article.

3.4. Error and residual operators. In the implementation of parareal algorithms,
the reference solution uref

n defined above is not computed in practice. Instead, the quantity
u
pkq
n defined in (5) is computed. To estimate the error between upkqn and uptnq, due to Propo-

sition 3.1, it is sufficient to study the error between upkqn and uref
n . Observe that the parareal

solution upkqn may be computed with a lower computational cost than the reference solution
uref
n , using parallel computations in (5) (expect for the initialization). Error estimates are

required to determine the choice of time-step sizes ∆T and δt, and of the number of parareal
iterations K, to achieve a given error criterion, with minimal computational cost.

For all n P t0, . . . , Nu and k P t0, . . . , Ku (where K is the number of parareal iterations),
let the error be defined by

(7) εpkqn :“ upkqn ´ uref
n .

Note that εpkq0 “ 0 for all k P N0.
Moreover, by construction, one get εpkqn “ 0 for all n ď k, which indicates that the nu-

merical solution tupkqn un“0,¨¨¨ ,N will definitely converge to the reference solution turef
n un“0,¨¨¨ ,N ,

if the iterated number K is sufficiently large, i.e. K ě N . However, to get a speedup, in
practice, the iterated number K will be chosen significantly smaller than N , which is further
discussed in Section 3.5.

It is convenient to introduce the residual operators defined by

(8) Rnpuq :“ Fnpuq ´ Gnpuq,
8



for all n P t0, . . . , N´1u, where the notation Fnpuq :“ Fpu, tn, tn`1q and Gnpuq :“ Gpu, tn, tn`1q

is used.
Then the error defined by (7) satisfies the recursion formula, where the residual operators

Rn defined by (8) appear:

(9)

ε
pk`1q
n`1 “ Gnpupk`1q

n q ` Fnpu
pkq
n q ´ Gnpupkqn q ´ Fnpu

ref
n q

“ Gnpupk`1q
n q ´ Gnpuref

n q `Rnpu
pkq
n q ´Rnpu

ref
n q

“ Ŝ∆T ε
pk`1q
n `∆T Ŝ∆T

“

F pupk`1q
n q ´ F puref

n q
‰

`Rnpu
pkq
n q ´Rnpu

ref
n q,

where the linear operator Ŝ∆T depends on the choice of the coarse integrator, see (3).
Up to this point, the choice of the coarse integrator plays no role in the presentation.

The major finding of this article is that the behavior of the parareal algorithm applied
for SPDEs (1) differs when choosing the exponential Euler scheme or the linear implicit
Euler scheme as the coarse integrator. Indeed, the theoretical results and the numerical
experiments reveal that, as the number of parareal iterations k increases, the evolution of
the order of convergence of the error εpkqn has a different behavior depending on the choice of
coarse integrator.

3.5. Analysis of the computational cost. The objective of this section is to compare
the costs for computing upkqn using the parareal algorithm 5, and for computing the reference
solution uref

n .
The computational advantage of using the parareal algorithm is due to the possibility

to compute the quantities upk`1q
n in parallel, for fixed k ě 0, see (5). Let Nproc denote the

number of available processors.
Let T P p0,8q denote the final time, and consider n “ N such that N∆T “ T . Denote by

τG the computational time for one evaluation of Gpu, tn, tn`1q. It is assumed that τG does not
depend on ∆T , n P N0 and on u P H. Denote also by τF ,aux denote the computational time
for one realization of Fauxpu, tn,j, tn,j`1q. Then the computational time for one realization of
Fp¨, tn, tn`1q, denoted by τF , is

τF “ JτF ,aux “
∆TτF ,aux

δt
.

It is also assumed that τF ,auxpu, tn,j, tn,j`1q does not depend on δt, n, j and on u.
3.5.1. Parareal algorithm. For the initialization step, the computational cost is equal to

NτG, since at this stage no parallelization procedure is applied.
For each iteration of the algorithm, observe that in (5), the third term Gpupkqn , tn, tn`1q

has already been computed at the previous iteration, and that the values of the second term
Fpupkqn , tn, tn`1q may be computed in parallel. A sequential computation remains to be done,
thus the computational cost of one iteration of the parareal algorithm is

N
`

τG `
τF
Nproc

˘

.

If K iterations of the parareal algorithm are performed, the associated computational cost
is thus equal to

Costparareal
“ pK ` 1q

T

∆T
τG `K

T

δt

τF ,aux

Nproc

.

9



3.5.2. Reference solution. The reference solution uref
n is computed using the fine integra-

tor Faux with time-step size δt, see (6). The associated computational cost is equal to

Costref
“

T

∆T
τF “

T

δt
τF ,aux.

3.5.3. Efficiency. The efficiency of the parareal algorithm, compared with a direct sim-
ulation using the fine integrator only, is thus studied in terms of the ratio

E “ Costref

Costparareal
“

1
K

Nproc
` pK ` 1q δt

∆T
τG

τF,aux

.

Note that since the efficiency never goes to infinity as ∆T goes to 0, the parareal algorithm
does not improve the rate of convergence with respect to the time-step size. Instead, the
parareal algorithm may improve the computational efficiency. To go further in the analysis
of the efficiency of the parareal algorithm, it is essential to study the rate of convergence of
the error εpkqn in terms of ∆T .

On the one hand, assume that the rate of convergence does not depend on k. Then, to
balance the errors upkqn ´ uref

n and uref
n ´ upn∆T q, it is necessary to choose ∆T and δt of the

same size, hence

E “ Costref

Costparareal
“

1
K

Nproc
` CpK ` 1q τG

τF,aux

.

To maximize the efficiency E above, the optimal choice is apparently K “ 0: parareal
iterations increase the computational cost (linearly inK), in spite of the use of parallelization.

On the other hand, assume that the rate of convergence of εpkqn is strictly larger than the
rate for εp0qn . Then the time-step sizes are chosen such that δt “ op∆T q as ∆T Ñ 0, and the
efficiency is then of size Nproc

K
. This means that parallelization (Nproc ě 2) reduces the cost,

and that the optimal choice is K “ 1.
In Sections 4 and 5, the rates of convergence of the error εpkqn with respect to ∆T are

studied, depending on the choice of the coarse integrator, and on the regularity of the noise.

4. Linear-implicit Euler scheme as the coarse integrator

The objective of this section is to prove that, when the coarse integrator is chosen as
the linear implicit Euler scheme, i.e. G “ Gimp with Ŝ∆T “ S∆T , then the behavior of
the parareal algorithm depends a lot on the regularity of the noise. More precisely, it is
proved that the order of convergence of the error εpkqn to 0 cannot exceed α, and in particular
saturates when k increases. Essentially, the order of convergence (in the framework studied
below) is equal to minpα, k ` 1q. The theoretical and numerical results are consistent, and
show that the rates obtained by the theoretical analysis are sharp.

For the theoretical analysis developped in this section, the framework is as follows. First,
the initial condition u0 “ 0 and the nonlinear operator F “ 0 are set equal to 0. Second, the
covariance Q of the noise commutes with A, i.e. Qep “ γpep, for all p P N, and eigenvalues
satisfy γp “ λ

1
2
´2α

p .
10



In this case, the solution is a Gaussian process, and uptq “
şt

0
ept´sqAdWQpsq. Moreover,

the recursion formula (9) for the error yields the equalities

εpk`1q
n “ S∆T ε

pk`1q
n´1 `

`

e∆TA
´ S∆T

˘

ε
pkq
n´1 “

n´1
ÿ

m“0

Sn´1´m
∆T

`

e∆TA
´ S∆T

˘

εpkqm .

4.1. Theoretical error estimates. The main theoretical result of this section is The-
orem 4.1.

Theorem 4.1. Assume that γp “ λ
1
2
´2α

p , with α ą 0. Let T P p0,8q and k P N0.
‚ If k ` 1 ă α, then there exists CT,k,α P p0,8q such that

sup
n∆TďT

~εpkqn ~2 ď CT,k,α∆T k`1.

‚ If k ` 1 ě α, then for all α P p0, αq, there exists CT,k,α P p0,8q such that

sup
n∆TďT

~εpkqn ~2 ď CT,k,α∆Tα.

In particular, for α “ 1
4
(Q “ I, space-time white noise), or α “ 1

2
(Q is trace-class),

the rate of convergence does not depend on k, and performing parareal iterations does not
increase the order of convergence, see Section 3.5.

Proof. For all p P N, let εpkqn ppq “ xεpkqn , epy denote the p-th component of the error εpkqn .
Then the expression above is rewritten as

εpk`1q
n ppq “

n´1
ÿ

m“0

V p´λp∆T q
n´1´mRp´λp∆T qε

pkq
m ppq,

where, for z P p´8, 0s, one has V pzq :“ 1
1´z

and Rpzq :“ ez ´ 1
1´z

. The inequality |Rpzq| ď
1^ |z|2 yields

`

E|εpk`1q
n ppq|2

˘
1
2 ď C

`

1^ pλp∆T q
2
˘

˜

n´1
ÿ

m“0

1

p1` λp∆T qn´1´m

¸

sup
0ďmďn

`

E|εpkqn ppq|2
˘

1
2 .

Observe that
n´1
ÿ

m“0

1

p1` λp∆T qn´1´m
ď

8
ÿ

m“0

1

p1` λp∆T qm
“

1` λp∆T

λp∆T
.

Thus for all n and all k, one obtains (using a recursion argument)
`

E|εpkqn ppq|2
˘

1
2 ďC

`

1^ pλp∆T q
˘

sup
0ďmďn

`

E|εpk´1q
m ppq|2

˘
1
2

ďCk
`

1^ pλp∆T q
˘k

sup
0ďmďn

`

E|εp0qm ppq|2
˘

1
2 .

It remains to study the error εp0qn at the initialization step. One has the identity

εp0qn “

n´1
ÿ

m“0

`

Sn´m∆t ´ Sppn´mq∆T q
˘ `

WQ
ppm` 1q∆T q ´WQ

pm∆T q
˘

.

11



Let us prove the following claim: there exists C P p0,8q such that

(10) sup
nPN

E|εp0qn ppq|2 ď
Cγp
λp

`

1^ pλp∆T q
˘2
.

Using the Itô isometry formula, and the fact bm ´ am ď mbm´1pb´ aq for all 0 ď a ď b and
m P N, (with b “ V p´λpp∆T q and a “ e´λp∆T ), one obtains

E|εp0qn ppq|2 “ γp∆T
n´1
ÿ

m“0

ˆ

1

p1` λp∆T qpn´mq
´ e´λppn´mq∆T

˙2

“ γp∆T
n
ÿ

m“1

ˆ

1

p1` λp∆T qm
´ e´λpm∆T

˙2

ď γp∆T
n
ÿ

m“1

ˆ

1

p1` λp∆T qm
´ e´λpm∆T

˙

1

p1` λp∆T qm

ď Cγp∆T
n
ÿ

m“1

m

p1` λp∆T qp2m´1q

`

1^ pλp∆T q
2
˘

ď Cγp

8
ÿ

m“1

mλp∆T

p1` λp∆T qpm´1q

`

1^ pλp∆T q
2
˘

λpp1` λp∆T q

ď Cγp

`

1^ pλp∆T q
2
˘

λp
.

This concludes the proof of the claim (10). Then, using the expression γp “ λ
1
2
´2α

p of the
eigenvalues of the covariance operator Q, one obtains

~εpkqn ~2 “

˜

8
ÿ

p“1

E|εpkqn ppq|2
¸

1
2

ď Ck

˜

8
ÿ

p“1

1

λ
1
2
`2α

p

`

1^ pλp∆T q
˘2pk`1q

¸
1
2

.

It remains to identify the orders of convergence. On the one hand, assume that k ` 1 ă α.
Using

`

1^ pλp∆T q
˘2pk`1q

ď pλp∆T q
2pk`1q yields

~εpkqn ~2 ď C∆T k`1

˜

8
ÿ

p“1

λ
´ 1

2
´2pα´k´1q

p

¸
1
2

ď Ck,α∆T k`1,

since α ´ k ´ 1 ą 0.
On the other hand, assume that k ` 1 ě α, and let α P p0, αq. Using the inequality

`

1^ pλp∆T q
˘2pk`1q

ď pλp∆T q
2α yields

~εpkqn ~2 ď C∆Tα

˜

8
ÿ

p“1

λ
´ 1

2
´2α`2α

p

¸
1
2

ď Ck,α∆Tα.

This concludes the proof of Theorem 4.1. �
12



4.2. Numerical experiments. The objective of this section is to demonstrate that the
orders of convergence obtained in Theorem 4.1 are sharp. In addition, experiments in the
semilinear case (F ‰ 0) are also provided.

First, the SPDE duptq “ Auptq ` dWQptq, with up0q “ 0, is considered, where the
covariance Q is given as above (Qep “ γpep, with γp “ λ

1
2
´2α

p ). Spatial discretization
is performed using finite differences, with mesh size h “ 0.01. In addition, the noise is
truncated, i.e. the Q-Wiener process WQptq is replaced by

řP
p“1 γ

1
2
p βpptqep, with P “ 100.

Numerical parameters are chosen as follows: the final time is T “ 1, the fine time-step size is
δt “ 2´13, and the coarse time-step size is ∆T “ Jδt with J “ 2j, j “ 4, ¨ ¨ ¨ , 9. An average
over M “ 100 independent Monte-Carlo samples is used to approximate the expectations.

First, Figure 1 reports numerical simulations for α “ 0.25 (space-time white noise) and
α “ 0.5 (trace-class noise). For all values of k, the order of convergence is equal to α, as
predicted by Theorem 4.1.
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-5

10
-4

10
-3

10
-2

  = 0.5

k=1

k=2

k=3
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order 
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Figure 1. Orders of convergence of the error with respect to ∆T , for α “
0.25 (left) and α “ 0.5 (right), for different values of k P t1, 2, 3, 4u, in the
linear implicit Euler scheme case.

Second, Figures 2 (two fixed values of k and α varies) and 3 (two fixed values of α and k
varies) allow us to check that the orders of convergence in Theorem 4.1 are sharp: the order
is indeed equal to minpα, k ` 1q.

To conclude this section, we report numerical simulations in the semilinear case.
Figures 4 and 5 show the order for semilinear equation (1) with F puq “ cospuq and

F puq “ 5 cospuq, respectively. The order for the additive noise case with α “ 4 (on the left)
is limited to 3

2
when k ě 2, which is the same as the deterministic case (on the right).

5. Exponential Euler scheme as the coarse integrator

The objective of this section is to prove that, when the exponential Euler scheme is
chosen as the coarse integrator, i.e. G “ Gexpo with Ŝ∆T “ e∆TA, then parareal iterations
improve the rate of convergence of the error εpkqn to 0, in terms of ∆T . Contrary to the
situation of Section 4, this effect holds true without restrictions on the regularity parameter
α, in particular for α “ 1

4
(space-time white noise).
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Figure 2. Orders of convergence of the error with respect to ∆T , for k “ 2
(left) and k “ 4 (right), for different values of α, in the linear implicit Euler
scheme case.
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Figure 3. Orders of convergence of the error with respect to ∆T , for α “ 4
(left) and α “ 6 (right), for different values of k P t1, 2, 3, 4u, in the linear
implicit Euler scheme case.

The analysis in this section is performed for the SPDE (1), with the nonlinear coefficient
F satisfying Assumption 1. Let also Assumption 2 be satisfied.

The content of this section is organized as follows. The main results of this sections are the
error estimates stated in Theorems 5.2 – which gives an order of convergence pk`1qminpα, 1

2
q

for all k P N0 – and 5.3 – which gives an improved order of convergence when k ě 2, see
Section 5.1. Numerical experiments in Section 5.2 illustrate that the result in Theorem 5.2
is sharp when k “ 0 and k “ 1, and that indeed better convergence rates are obtained for
k ě 2. Proofs of the results are provided in Section 5.3, based on auxiliary results which are
proved in Section 5.4.
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Figure 4. Orders of convergence of the error with respect to ∆T , for additive
noise case with α “ 4 (left) and deterministic case (right), for nonlinear term
F puq “ cospuq and different values of k P t0, 1, 2, 3u, in the linear implicit
Euler scheme case.
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Figure 5. Orders of convergence of the error with respect to ∆T , for additive
noise case with α “ 4 (left) and deterministic case (right), for nonlinear term
F puq “ 5 cospuq and different values of k P t0, 1, 2, 3u, in the linear implicit
Euler scheme case.

Observe that, when the coarse integrator is the exponential Euler scheme, then the
recursion formula (9) for the error yields the equality
(11)

εpk`1q
n “ ∆T

n´1
ÿ

m“0

epn´mq∆TA
“

F pupk`1q
m q ´ F puref

m q
‰

`

n´1
ÿ

m“0

epn´1´mq∆TA
“

Rmpu
pkq
m q ´Rmpu

ref
m q

‰

,

where we recall that the residual operator Rn are defined by (8). As will be clear below, if
F “ 0 then εpkqn “ 0 for all n, as soon as k ě 1. This property reveals why the choice of the
exponential Euler scheme as the coarse and the fine integrator provides better results.

Note also that the fact that the noise is additive in (1) is fundamental in the analysis.
In addition, since noise is additive, it is expected that the order of convergence for k “ 0
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may be equal to 1 (instead of 1
2
) if α is sufficiently large (at least larger than 1

2
). This effect

is not considered below, since the objective is mainly to study the increase in the order of
convergence produced by parareal iterations, and in particular in situations where the noise
is not very regular, i.e. for space-time white noise, with α “ 1

4
.

5.1. Statement of error estimates. For the analysis, it is important to first state
moment bounds for the solution upkqn , which are similar to Propositions 2.2 and 3.1 for the
exact solution uptnq and the reference solution uref

n respectively.

Proposition 5.1. For T P p0,8q, k P N0, q P N. There exists CT,k,q P p0,8q such that,
for all u0 P H and ∆T P p0, 1q,

sup
n∆TďT

~upkqn ~q ď CT,k,qp1` |u0|q.

Moreover, let α P r0,minpα, 1
2
qq. There exists CT,k,q,α P p0,8q such that, for all u0 P

Dpp´Aqαq and ∆T P p0, 1q,

sup
n∆TďT

~upkqn ~q,α ď CT,k,q,αp1` |u0|αq.

The first error estimates are stated in Theorem 5.2, which may be interpreted as follows:
each parareal iteration improves the rate of convergence, proportionally to minpα, 1

2
q. Let

us stress that Theorem 5.2 is optimal for k “ 0 and k “ 1, as illustrated by the numerical
experiments reported in Section 5.2.

Theorem 5.2. Let T P p0,8q, k P N0, q P N, α P r0,minpα, 1
2
qq, and arbitrarily small

κ ą 0. For all u0 P Dpp´Aq
αq, there exists CT,k,q,α,κpu0q P p0,8q such that, for all ∆T P

p0, 1q,
sup

n∆TďT
~εpkqn ~q ď CT,k,q,α,κpu0q∆T

pk`1qpα´κq.

Following the discussion in Section 3.5 concerning the computational cost, Theorem 5.2
shows that applying the parareal algorithm may be used to reduce the computational cost,
if the coarse integrator is the exponential Euler scheme, whatever the regularity of the noise.

The second result, Theorem 5.3, states that the estimate from Theorem 5.3 can be
improved when k ě 2. The practical relevance of this result is questionable: it requires k ě 2,
whereas it is expected (see Section 3.5) that choosing k “ 1 is optimal. Nevertheless, the
study of the phenomenon stated in Theorem 5.3 is motivated by the numerical experiments
reported in Section 5.2, which exhibit that indeed the order of convergence is larger than
pk` 1qminpα, 1

2
q, namely it is equal at least equal to pk´ 1qminp2α, 1

2
q` 2α ď kminp2α, 1

2
q.

Theorem 5.3. Let T P p0,8q, k P Nzt1u, q P N, α P p0,minpα, 1
2
qq, and arbitrarily

small κ ą 0. For all u0 P Dpp´Aq
αq, there exists CT,k,q,α,κpu0q P p0,8q such that, for all

∆T P p0, 1q,
sup

n∆TďT
~εpkqn ~q ď CT,k,q,α,κpu0q∆T

pk´1qpminp2α, 1
2
q´κq`2α.

The proofs of Proposition 5.1 and Theorems 5.2 and 5.3 are postponed to Section 5.3.
To simplify the exposition, the way the constants CT,k,q,α,κpu0q above depend on |u0|α is

not made precise.
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Remark 5.4. Theorem 5.2 (and Lemma 5.5–piq) can be proved under less restrictive
conditions on the linear operator F , instead of Assumption 1: there exists η P p0, 1

2
q such

that one has estimates of the type

|DF puq.h|´η´α ď CF,η,α,κ
`

1` |u|α`κ
˘

|h|´α,

and

|D2F puq.ph1, h2q|´η ď CF,η|h1||h2|.

This setting encompasses the case of Nemytskii operators, with η P p1
4
, 1

2
q.

5.2. Numerical experiments. The objective of this section is to illustrate Theorem 5.2
and 5.3.

The SPDE (1), with nonlinear operator F puq “ 5 cospuq and initial condition up0q “ 0,
is considered, with covariance operator given by Qep “ γpep, with γp “ λ

1
2
´2α

p . Spatial
discretization is performed using finite differences, with mesh size h “ 0.01. In addition,
the noise is truncated, i.e. the Q-Wiener process WQptq is replaced by

řP
p“1 γ

1
2
p βpptqep, with

P “ 100. Numerical parameters are chosen as follows: the final time is T “ 1, the fine time-
step size is δt “ 2´15, and the coarse time-step size is ∆T “ Jδt with J “ 2j, j “ 5, ¨ ¨ ¨ , 10.
An average over M “ 100 independent Monte-Carlo samples is used to approximate the
expectations.
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Figure 6. Orders of convergence of the error with respect to ∆T , for K “ 0
(left) and K “ 1 (right), for different values of α P t0.25, 0.35, 0.5u, in the
exponential Euler scheme case.

Figure 6 demonstrates that the orders of convergence in Theorem 5.2 are sharp when
k “ 0 and k “ 1, for different values of α.

Figure 7 then illustrates that for k ě 2, the orders of convergence in Theorem 5.2 are not
sharp for α “ 0.25 and α “ 0.4. In fact, even the improved error estimates from Theorem 5.3
seem to be sub-optimal in the numerical experiment, especially when α “ 0.4 (figure on the
right) – in this case minp2α, 1

2
q “ 1

2
. When α “ 0.25 (figure on the left), the improved

theoretical rate in Theorem 5.3 is closer to the observed numerical rate.
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Figure 7. Orders of convergence of the error with respect to ∆T , for α “
0.25 (left) and α “ 0.4 (right), for different values of k P t2, 3, 4u, in the
exponential Euler scheme case.

5.3. Proof of error estimates. The objective of this section is to provide proofs for the
results stated in Section 5.1. In fact, they are all based on the following Lemma concerning
Lipschitz continuity properties, in appropriate norms, of the residual operators.

Lemma 5.5. Let Assumptions 1 and 2 hold, and α P r0, 1q.
piq There exists CF,α P p0,8q such that for all ∆T P p0, 1s and all u1, u2 P H, one has

sup
n∆TďT

|Rnpu2q ´Rnpu1q|α ď CF,q,α∆T 1´α
|u2 ´ u1|.

piiq For all q P N, α P p0,minpα, 1
2
qq, β P r0, αq and arbitrarily small κ P

`

0,minpα´β, 1´

α´βq
˘

, there exists CT,q,α,β,κ P p0,8q such that for all ∆T P p0, 1q and all u1, u2 P Dpp´Aq
αq,

one has

~p´Aq´α
`

Rnpu2q ´Rnpu1q
˘

~q ď CT,q,α,β,κ∆T
1`min

`

α`β, 1
2

˘

´κ
`

1` |u1|
2
α ` |u2|

2
α

˘

|u2 ´ u1|β.

The proof of Lemma 5.5 is postponed to Section 5.4.
Observe that Statement piq (in the case α “ 0) is not sufficient to exhibit a positive rate

of convergence γ for the error εpkqn , in terms of ∆T . Indeed, that would required the Lipschitz
constant of the residual operator to be of size ∆T 1`γ. Statement piq, with α “ 0, is used only
to establish stability properties of the algorithm, i.e. moment bounds for upkqn or to apply a
Gronwall lemma. With α ą 0, this statement is employed to establish moment bounds in
| ¨ |α norms, and to deal with some terms for which regularization properties of the semigroup
cannot be used.

Statement piiq is the key result in order to get the rates of convergence given in Theo-
rem 5.2 and 5.3. It requires to choose appropriate norms to analyze the Lipschitz constant
of the residual operators: estimation in a weaker norm for α ą 0, or with higher regularity
for β ą 0. More precisely, Theorem 5.2 follows from Statement piiq with β “ 0, and then
Theorem 5.3 follows from Statement piiq with β ą 0.

Finally, observe that the need to choose appropriate norms is specific to the infinite
dimensional situation. Moreover, Lemma 5.5 is not satisfied if the linear implicit Euler
scheme is chosen as the coarse integrator, even if F “ 0: indeed, in that case, Rnpu2q ´
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Rnpu1q “
`

S∆T ´ e∆T
˘

pu2 ´ u1q, and }S∆T ´ e∆T }LpHq does not converge to 0 as ∆T Ñ 0.
This observation explains why the behaviors and the analysis of the parareal algorithm
depends a lot on the choice of the coarse integrator for parabolic semilinear SPDEs.

Remark 5.6. Note that the estimates stated in Lemma 5.5 require u1 and u2 to be de-
terministic, however below they are applied to random elements, which are measurable with
respect to σ

`

W ptq; t ď tn
˘

, whereas the noise component in the residual operator Rn is mea-
surable with respect to σ

`

W ptq; tn ď t ď tn`1

˘

. Applying a straightforward conditioning
argument, and interpreting the expectation in Lemma 5.5 as a conditional expectation, yield
the required estimates below.

Proof of Proposition 5.1. First, moment bounds for the reference solution uref
n are

provided by Proposition 3.1. In addition, in this section, the initialization step of the parareal
algorithm consists in applying the fine integrator (which is the exponential Euler scheme)
with time-step size ∆T , thus the result of Proposition 3.1 also applies to obtain moment
bounds for up0qn .

Since upkqn “ ε
pkq
n `uref

n , it thus only remains to prove moment bounds for εpkqn , when k ě 1.
Using the expression of the error (11), and the global Lipschitz continuity of F , moments

are treated as follows: for all q P N and α P r0, 1q,

~εpk`1q
n ~q,α ď∆T

n´1
ÿ

m“0

}p´Aqαepn´mq∆TA}LpHq~ε
pk`1q
m ~q,0

`

n´2
ÿ

m“0

}p´Aqαepn´1´mq∆TA
}LpHq~Rmpu

pkq
m q ´Rmpu

ref
m q~q,0

` ~p´Aqα
“

Rn´1pu
pkq
n´1q ´Rn´1pu

ref
n´1q

‰

~q,0.

Assume first that α “ 0. Then the claim follows from the application of Lemma 5.5–piq, the
use of the discrete Gronwall Lemma, and from the use of a recursion argument with respect
to k. When α ą 0, it remains to apply Lemma 5.5–piq, and to apply the regularization
estimate from Proposition 2.1 to conclude the proof. �

Proof of Theorem 5.2. First, assume that k “ 0. The claim then follows from Propo-
sition 3.1, since both the coarse and the fine integrators are given by the exponential Euler
scheme, thus εpkqn “

`

u
pkq
n ´ uptnq

˘

´
`

uref
n ´ uptnq

˘

, and the initialization of the parareal
algorithm consists in applying the coarse integrator.

Let now k ě 1. Owing to the expression of the error (11), applying Lemma 5.5–piiq with
β “ 0 and Hölder inequality (see Remark 5.6 for the conditioning argument), one obtains

~εpkqn ~q ďC∆T
n´1
ÿ

m“0

~εpkqm ~q

`

n´2
ÿ

m“0

}p´Aqαepn´1´mq∆TA
}LpHq~p´Aq

´α
rRpupk´1q

m q ´Rpuref
m qs~q

` ~Rn´1pu
pk´1q
n´1 q ´Rn´1pu

ref
n´1q~q
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ď C∆T
n´1
ÿ

m“0

~εpkqm ~q ` C∆T~ε
pk´1q
n´1 ~q

` C∆T 1`α´κ
n´2
ÿ

m“0

1

ppn´m´ 1q∆T qα
~εpk´1q

m ~2qp1` ~u
pk´1q
m ~

2
4q,α ` ~u

ref
m ~

2
4q,αq.

Due to the moment estimates of Proposition 5.1, applying the discrete Gronwall lemma
yields

sup
n∆TďT

~εpkqn ~q ď CT,q,α,κpu0q∆T
α´κ sup

n∆TďT
~εpk´1q

n ~2q.

Then a straightforward recursion argument yields

sup
n∆TďT

~εpkqn ~q ď CT,k,q,α,κpu0q∆T
kpα´κq sup

n∆TďT
~εp0qn ~2kq

ď CT,k,q,α,κpu0q∆T
pk`1qpα´κq,

owiing to the result when k “ 0. This concludes the proof of Theorem 5.2. �

Proof of Theorem 5.3. The proof consists of two steps.
Step 1. If k ě 1, the error evaluated in the | ¨ |α norm is also of the order pk` 1qpα´κq:

sup
n∆TďT

~εpkqn ~q,α ď CT,k,q,α,κpu0q∆T
pk`1qpα´κq.

Indeed, using the expression of the error (11), Proposition 2.1, and the two statements
of Lemma 5.5, one obtains

~εpkqn ~q,α ď∆T
n´1
ÿ

m“0

}p´Aqαepn´mq∆TA}LpHq~ε
pkq
m ~q

`

n´2
ÿ

m“0

}p´Aq2αepn´1´mq∆TA
}LpHq~p´Aq

´α
rRmpu

pk´1q
m q ´Rmpu

ref
m qs~q

` ~p´Aqα
“

Rn´1pu
pk´1q
n´1 q ´Rn´1pu

ref
n´1q

‰

~q

ď C

˜

∆T
n´1
ÿ

m“0

1

ppn´mq∆T qα

¸

sup
mďn

~εpkqm ~q

` C

˜

∆T
n´1
ÿ

m“0

1

ppn´ 1´mq∆T q2α

¸

∆Tα´κ sup
mďn

~εpk´1q
m ~q

`∆T 1´α
~εpk´1q

n ~q

ď C∆T pk`1qpα´κq
` C∆T 1´α`kpα´κq,

owing to Theorem 5.2. With the assumptions α ď 1
2
, it is straightforward to check that

1´ α ` kpα ´ κq ě pk ` 1qpα ´ κq. This concludes Step 1.
Step 2. It remains to establish the error estimate of Theorem 5.3.
Using the expression of the error (11), Proposition 2.1, the two statements in Lemma 5.5,

with β “ α ´ κ, and the moment bounds from Proposition 5.1, one obtains

~εpkqn ~q,α ď∆T
n´1
ÿ

m“0

}p´Aqαepn´mq∆TA}LpHq~ε
pkq
m ~q
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`

n´2
ÿ

m“0

}p´Aq2αepn´1´mq∆TA
}LpHq~p´Aq

´α
“

Rmpu
pk´1q
m q ´Rmpu

ref
m q

‰

~q

` ~Rn´1pu
pk´1q
n´1 q ´Rn´1pu

ref
n´1q~q,α

ďC∆T
n´1
ÿ

m“0

1

ppn´mq∆T qα
~εpkqm ~q,α

` C∆Tminp2α, 1
2
q´2κ

˜

∆T
n´2
ÿ

m“0

1

ppn´ 1´mq∆T q2α

¸

sup
mďn´2

~εpk´1q
m ~2q,α

` C∆T 1´α
~ε
pk´1q
n´1 ~q

ďC∆T
n´1
ÿ

m“0

1

ppn´mq∆T qα
~εpkqm ~q,α ` C∆Tminp2α, 1

2
q´2κ sup

m∆TďT
~εpk´1q

m ~2q,α,

using the fact that 1´ α ě 1
2
ě minp2α, 1

2
q ´ 2κ.

Applying the discrete Gronwall lemma and a recursion argument,

~εpkqn ~q,α ď C∆T pk´1qpminp2α, 1
2
q´κq

~εp1qn ~2kq,α

ď C∆T pk´1qpminp2α, 1
2
q´κq`2α,

owing to Step 1 with k “ 1.
This concludes the proof of Theorem 5.3. �

Remark 5.7. The claim in Step 1 in the proof of Theorem 5.3 requires k ě 1, and is
not correct when k “ 0. In fact, when k ě 1, in the expression of the error, contributions of
stochastic terms, which would have low regularity properties, do not appear explicitly since
noise is additive.

The application of the claim of Step 2 explains why Theorem 5.3 holds true only if k ě 2.

5.4. Proof of Lemma 5.5. The proof of Lemma5.5 consists in proving bounds on the
derivative DRnpuq.h “ DFnpuq.h ´ DGnpuq.h (recall the residual operator Rn is defined
by (8)). Let us introduce notation which is used below. On the one hand, due to (3), it is
straightforward to compute

DGnpuq.h “ e∆TAh`∆Te∆TADF puq.h.

On the other hand, the derivative of Fn is computed as follows: one has DFnpuq.h “ ηhn,J ,
where Jδt “ ∆T , and one has the following recursion formulae

vn,j`1 “ eδtAvn,j ` δte
δtAF pvn,jq ` e

δtAδn,jW
Q , vn,0 “ u,

ηhn,j`1 “ eδtAηhn,j ` δte
δtADF pvn,jq.η

h
n,j , ηhn,0 “ h.

Then a straightforward computation yields

ηhn,J “ e∆TAh` δt
J´1
ÿ

j“0

epJ´jqδtADF pvn,jq.η
h
n,j.

Observe that the same term e∆TAh appears in expressions of the derivatives DFnpuq.h
and DGnpuq.h. This term thus does not appear in DRnpuq. This is a crucial property (which
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is not satisfied when the coarse integrator is the linear implicit Euler scheme). Observe also
that Rn “ 0 if F “ 0, since the linear part is solved exactly.

Proof of Lemma 5.5–piq. Since F is globally Lipschitz continuous, applying the dis-
crete Gronwall Lemma yields the following (almost sure) inequality:

sup
0ďjďJ

|ηhn,j| ď C|h|.

Owing to Proposition 2.1 and using the global Lipschitz continuity property of F , it is
straightforward to check that

|DRnpuq.h|α “
ˇ

ˇDFnpuq.h´DGnpuq.h
ˇ

ˇ

α

ď|∆Te∆TADF puq.h|α ` δt
J´1
ÿ

j“0

ˇ

ˇepJ´jqδtADF pvn,jq.η
h
n,j

ˇ

ˇ

α

ď∆T }p´Aqαe∆TA
}LpHq|h| ` δt

J´1
ÿ

j“0

}p´AqαepJ´jqδtA}LpHq|η
h
n,j|

ďCα∆T 1´α
|h|,

using the inequality δt
řJ´1
j“0

1
pJ´jqδtqα

ď Cα∆T 1´α. This concludes the proof. �

Observe that in the proof above, only the Lipschitz continuity property for F was em-
ployed. In the proof below, the estimates stated in Assumption 1 are crucial.

Proof of Lemma 5.5–piiq. Using the notation above, and expressions ofDFnpuq.h and
of DGnpuq.h, the derivative DRnpuq.h “ DFnpuq.h´DGnpuq.h is decomposed as follows:

DRnpuq.h “
´

J´1
ÿ

j“0

δtepJ´jqδtA ´∆Te∆TA
¯

DF puq.h` δt
J´1
ÿ

j“0

epJ´jqδtADF puq.
`

ηhn,j ´ h
˘

` δt
J´1
ÿ

j“0

epJ´jqδtA
`

DF pvn,jq ´DF puq
˘

.ηhn,j.

The first term is treated as follows: using Assumption 1,

ˇ

ˇ

ˇ
p´Aq´α

´

J´1
ÿ

j“0

δtepJ´jqδtA ´∆Te∆TA
¯

DF puq.h
ˇ

ˇ

ˇ

ď Cδt
J´1
ÿ

j“0

}p´Aq´α´β`κ
`

eJδtA ´ epJ´jqδtA
˘

}LpHq|p´Aq
β´κDF puq.h|

ď Cα,β,κδt
J´1
ÿ

j“0

pjδtqα`β´κp1` |u|βq|h|β

ď Cα,β,κ∆T
1`α`β´κ

p1` |u|αq|h|β,

since jδt ď Jδt “ ∆T , and α ` β ď 2α ď 1.
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The second term is treated as follows: observe that ηhn,0 “ h, thus, using Assumption 1,

ˇ

ˇ

ˇ
p´Aq´α`κδt

J´1
ÿ

j“0

epJ´jqδtADF puq.
`

ηhn,j ´ h
˘

ˇ

ˇ

ˇ
ď Cα,κδt

J´1
ÿ

j“0

p1` |u|αq
ˇ

ˇp´Aq´α`κ
`

ηhn,j ´ η
h
n,0

˘
ˇ

ˇ.

Note that the increment ηhn,j ´ ηhn,0 satisfies

ηhn,j ´ η
h
n,0 “

`

ejδtA ´ I
˘

h` δt
j´1
ÿ

`“0

epj´`qδtADpvn,`q.η
h
n,`,

with the inequality
ˇ

ˇp´Aq´α`κ
`

ejδtA ´ I
˘

h
ˇ

ˇ ď Cα,β,κpjδtq
α`β´κ

|h|β.

Using the inequality |ηhn,j| ď C|h|, and using that κ is chosen such that α ` β ` κ ă 1, one
obtains

ˇ

ˇ

ˇ
p´Aq´αδt

J´1
ÿ

j“0

epJ´jqδtADF puq.
`

ηhn,j ´ h
˘

ˇ

ˇ

ˇ
ď Cα,β,κ∆T

1`α`β´κ
p1` |u|αq|h|β.

It remains to treat the third term: using β ` κ ď α, the last inequality from Assumption 1
yields

ˇ

ˇ

ˇ
p´Aq´αδt

J´1
ÿ

j“0

epJ´jqδtA
`

DF pvn,jq ´DF puq
˘

.ηhn,j

ˇ

ˇ

ˇ

ď Cα,β,κδt
J´1
ÿ

j“0

ˇ

ˇ

ˇ
p´Aq´β´κ

`

DF pvn,jq ´DF pvn,0q
˘

.ηhn,j

ˇ

ˇ

ˇ

ď Cα,β,κδt
J´1
ÿ

j“0

`

1` |vn,0|β ` |vn,j|β
˘

|ηhn,j|β|vn,j ´ vn,0|´β´κ,

with |ηhn,j|β ď C|h|β. Note that the following moment bound holds true: there exists Cq,β P
p0,8q such that ~vn,j~q,β ď Cq,β. Moreover, the proof of the following regularity result is
straightforward:

~p´Aq´β´κpvn,j ´ vn,0q~q ď Cq,α,β,κpjδtq
min

`

α`β`κ, 1
2

˘

p1` |u|αq,

see Proposition 2.2 for a similar estimate when β “ 0, for the process
`

uptq
˘

tě0
. Then

applying Hölder inequality yields

~p´Aq´αδt
J´1
ÿ

j“0

epJ´jqδtA
`

DF pvn,jq ´DF puq
˘

.ηhn,j~q ď Cq,α,β∆T 1`min
`

α`β`κ, 1
2

˘

|h|βp1` |u|
2
αq.

Gathering the estimates then concludes the proof. �
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