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QUANTUM D4 DRINFELD-SOKOLOV HIERARCHY AND QUANTUM
SINGULARITY THEORY

ANN DU CREST DE VILLENEUVE AND PAOLO ROSSI

Abstract. In this paper we compute explicitly the double ramification hierarchy and its quan-
tization for the D4 Dubrovin-Saito cohomological field theory obtained applying the Givental-
Teleman reconstruction theorem to the D4 Coxeter group Frobenius manifold, or equivalently
the D4 Fan-Jarvis-Ruan-Witten cohomological field theory (with respect to the non-maximal
diagonal symmetry group 〈J〉 = Z/3Z). We then prove its equivalence to the corresponding
Dubrovin-Zhang hierarchy, which was known to coincide with the D4 Drinfeld-Sokolov hierar-
chy. Our techniques provide hence an explicit quantization of theD4 Drinfeld-Sokolov hierarchy.
Moreover, since the DR hierarchy is well defined for partial CohFTs too, our approach imme-
diately computes the DR hierarchies associated to the invariant sectors of the D4 CohFT with
respect to folding of the Dynkin diagram, the B3 and G2 Drinfeld-Sokolov hierarchies.
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Introduction

In [Dub99], based on the results of K. Saito [Sai81, Sai83a, Sai83b] and in particular on his
theory of primitive forms, Dubrovin constructed a generically semisimple Frobenius manifold
structure on the space of orbits of any finite, irreducible Coxeter group or, via the relation of
these with simple hypersurface singularities, on the space of miniversal deformations of any
polynomial W : Cn → C with an isolated critical point at the origin.

Although in general these Frobenius manifolds are not semisimple at the origin, it was proved
in [Mil14] that, for singularities of type ADE, using Givental-Teleman theory [Giv01, Tel12] at
a nearby semisimple point and then shifting the result back to the origin, yields a well defined
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conformal cohomological field theory [KM94] which we refer to as the Dubrovin-Saito CohFT
of the singularity.

In [FJR07, FJR13] Fan, Jarvis and Ruan, inspired by ideas of Witten, introduced another
construction associating a certain moduli space of decorated curves and, through a virtual fun-
damental class on it, a conformal CohFT to a certain class of quasi-homogeneous polynomials
with an isolated critical point at the origin, together with the choice of admissible symmetry
group.

In case the symmetry group is the full automorphism group of the polynomial Gmax, in a
typical instance of mirror symmetry, there is an isomorphism between the FJRW CohFT and
the Dubrovin-Saito CohFT of the transposed singularity [FJR13]. When the symmetry group
is smaller the mirror partner to the FJRW theory is in general not known, but for the case
of ADE singularities the only admissible groups are always maximal, with the exception of
singularities of type D2n for which however the isomorphism with the Dubrovin-Saito theory
still holds.

The case of D4 is in may ways the most subtle among the ADE singularities. For instance
the general method of proof for the mirror symmetry result of [FJR13] did not work in the
D4 case because of the specific form of the CohFT and its phase space. Indeed the proof for
the mirror theorem was completed in [FFJMR10]. In essence the complication (specifically the
appearance of the so called broad sectors of the phase space, which complicate the description
of the CohFT) originates from the peculiar symmetry of the D4 singularity. This is apparent
from the corresponding Dynkin diagram, indeed the most symmetric of the ADE diagrams.

In this paper we focus on the example of the D4 Dubrovin-Saito CohFT, or the FJRW CohFT
of the singularity D4 : W = x3+xy2 with symmetry group 〈J1〉 where J1(x, y) = (e2πi

1
3x, e2πi

1
3y)

and approach it from the point of view of the associated integrable hierarchies.

It is well known that, given a semisimple CohFT one can associate to it the Dubrovin-Zhang
hierarchy [DZ05], an integrable hierarchy of Hamiltonian PDEs which controls the intersection
theory of the CohFT with psi classes on the moduli space of stable curves. It was proved in
[GM05, FGM10] that the Dubrovin-Zhang hierarchy of the ADE CohFTs are the Drinfeld-
Sokolov hierarchies associated to the corresponding ADE semisimple algebras.

The double ramification hierarchy is newer construction, introduced in [Bur15, BR16b], as-
sociating a quantum integrable system to a CohFT (there is no need for semisimplicity in this
case, and in fact the construction even works in the classical limit for partial CohFTs).

This construction, inspired by ideas from symplectic field theory [EGH00, FR11, Ros10],
uses intersection theory of the CohFT with the double ramification cycle, Hodge classes and
psi classes, and its relation with the Dubrovin-Zhang hierarchy is the object of a conjecture
(the strong DR/DZ equivalence conjecture of [BDGR18, BGR17]) which predicts that, given a
semisimple CohFT (so that the DZ side is well defined), the classical limit of the DR hierarchy
and the DZ hierarchy coincide after a specific change of coordinates in the phase space of the
system.

This conjecture has been proved for several specific CohFTs [BDGR18, BDGR16b, BR18]
and, in particular, in [BG16, BDGR18], for the AN Dubrovin-Saito CohFTs (which are nothing
but the (N + 1)-spin CohFTs) for N ≤ 5.
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In this paper we show that the classical double ramification hierarchy of the D4 CohFT
coincides with the D4 Drinfeld-Sokolov hierarchy (with no need of coordinate change in this
case) and hence, via the results of [GM05], with the Duborinv-Zhang hierarchy. Moreover we
compute the quantum double ramification hierarchy which hence provides an explicit (closed
formulas) quantization of the D4 Drinfeld-Sokolov hierarchy.

Finally we exploit the particularly symmetric nature of the D4 CohFT, which possesses both
a Z2 and a Z3 symmetry, to consider its invariant parts as two partial CohFTs, for which the
classical DR hierarchy gives rise to the B3 and G2 Drinfeld-Sokolov hierarchies, and thanks to
the results of [LRZ15] we deduce that the partial CohFT potentials are tau functions of the
corresponding DR hierarchy.

Acknowledgments. We would like to express our gratitude to A. Buryak as well as to M.
Cafasso and V. Roubtsov for useful discussions. A. du Crest de Villeneuve also thanks the
University of Angers, France, the University of Bourgogne, France and the European Marie
Skodowska-Curie action ‘IPaDEGAN’ for offering them the best working conditions while work-
ing on the present paper.

1. Drinfeld-Sokolov D4 hierarchy

In [DS84], Drinfeld and Sokolov described how to associate a hierarchy of integrable PDEs to
any semi-simple Lie algebra through its associated affine Kac–Moody algebra. In the most
general case, the hierarchy is constructed as an infinite sequence of matrix Lax equations (zero-
curvature equations). In the same article, for simple Lie algebras of types An, Bn and Cn,
the authors also provided a scalar Lax pair along with a bi-Hamiltonian representation using
pseudo-differential operators. For the Dn case however, Drinfeld and Sokolov represented one
part of the hierarchy with a scalar Lax pair and bi-Hamiltonian representation ([DS84], pp.
2019–2021), this part we call the positive flows of the hierarchy, while the remaining part we
call the negative flows.

In [LWZ10], the authors produced a complete picture of the hierarchy of Dn type (positive
and negative flows) in terms of scalar Lax pairs and bi-Hamiltonian representation. To do so,
they introduced a new kind of pseudo-differential operators called of the second type (while the
traditional ones are called of the first type). Roughly speaking, the operators of the second
type are allowed to contain not only infinitely many nonzero terms in negative degree, but
also infinitely many nonzero terms in positive degrees, along with considerations of gradation
to ensure the well-definedness of the product of operators. In that same article [LWZ10], the
authors also described the tau-symmetric bi-Hamiltonian structure (in the sense of [DZ05]) of
the Drinfeld–Sokolov hierarchy of Dn type.

In what follows, we briefly review the original Drinfeld–Sokolov reduction for the D4 case,
for it entirely defines the hierarchy [DS84]. Then we follow the approach of [LWZ10] to define
the scalar Lax pairs of the positive and negative flows of the hierarchy. Finally, we describe
and compute the tau-symmetric bi-Hamiltonian structure of D4.

1.1. Matrix Lax equations of type D4. Let us briefly explain what these positive and
negative flows are in terms of Lie algebras. Type D4 is the Dynkin diagram of the simple Lie
algebra o(8). We denote by

g = o(8)⊗ C[λ, λ−1]

the loop algebra of o(8). We choose generators {ei, fi, hi | 0 ≤ i ≤ 4} of g as in [DS84] (also
as in [LWZ10]). We define the principal gradation g =

⊕
k∈Z g

k with deg ei = − deg fi = 1
and deg hi = 0. We use the notation g>0 =

∏
k>0 g

k and similarly for g<0. We denote Λ =
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i=0 ei ∈ g1 the principal cyclic element of g. Then it is well known [Kos59, Kac78, DS84] that

the principal Heisenberg subaglebra Ker(Λ) admits the following decomposition:

Ker(Λ) =
⊕
k∈Zodd

C · Λk ⊕
⊕
k∈Zodd

C · Γk, Λk ∈ gk,Γk ∈ g3k.

(See [DS84] for the expression of Λk,Γk.) Let us denote by b (resp. n) the negative Borel (resp.
negative nilpotent) subalgebra of o(8). The starting point of the Drinfeld–Sokolov hierarchy is
a matrix-valued differential operator of the form

L = ∂x + Λ + q(x), q ∈ C∞(R, b).(1.1)

For any function S ∈ C∞(R, n), the operator L̃ = eadSL also has the form of Equation (1.1);

we say that L and L̃ are gauge equivalent. In [DS84], the authors proved the fundamental
property that there exists a (non unique) function U ∈ C∞(R, g<0) such that the operator
L0 = eadUL has the form

L0 = ∂x + Λ +H(x), H ∈ C∞(R,Ker(Λ) ∩ g<0).

(Note that L and L0 are not gauge equivalent). The Drinfeld–Sokolov hierarchy of type D4 is
then defined as the two sequences of matrix Lax equations:

∂L

∂tk
=
[
−
(
eadUΛk

)≥0
,L
]
,(1.2)

∂L

∂t̂k
=
[(

eadUΓk
)≥0

,L
]
,(1.3)

for k ∈ Zodd
+ , where ( · )≥0 denotes the projection onto the subspace g≥0. These equations

eventually take the form of evolutionary PDEs on the coordinates of the matrix q. Changing
the representative of L in its gauge equivalence class amounts to changing coordinates. They
do not depend on the choice of the function U . The flows with respect to the variable tk (1.2)
are those we call the positive flows, while those with respect to the variables t̂k (1.3) are the
negative flows.

1.2. Salar Lax pairs. We will start by describing the scalar Lax pairs of the positive flows
(1.2). We follow the formal algebraic approach to pseudo-differential operators as in [LWZ10].
We start by setting indeterminates s1k, . . . , s

4
k, with k ≥ 0 and denote sα0 = sα. Define a formal

derivation

∂x =
4∑

α=1

∑
k≥0

sαk+1

∂

∂sαk
,

so that sαk+1 = ∂x(s
α
k ) acting on the ring of generalized differential polynomials

Âs = C[[s∗]][s∗>0][[ε]],

where s∗ denotes s1, . . . , s4. In what follows we will mostly drop the index in Âs, simply writing

Â when no confusion can arise. We define a gradation Â =
⊕

k≥0 Â[k] by setting deg sαk = k
and deg ε = −1. Changes of coordinates sα → s̃α will be described by transformations of the
form

s̃α(s∗≥0; ε) ∈ Â[0], 0 6= det

(
∂ s̃α|ε=0

∂sβ

)
α,β=1,...,4

,
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called Miura transforms and should be seen as maps from Âs to Âs̃. We refer to [Ros17] for
more details on generalized differential polynomials. As usual, we define the ring of pseudo-
differential operators that, here, we call of the first type (following the vocabulary of [LWZ10]),

D− =

{
m∑

k=−∞

ak∂kx

∣∣∣∣∣ m ∈ Z, ak ∈ Â[0]

}
.(1.4)

The product of two pseudo-differential operators of the first type is defined by, for any a, b ∈ D−
and any n,m ∈ Z,

a∂nx ◦ b∂mx =
∑
k≥0

(
n

k

)
abkε

k∂n+m−kx ,

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
,(1.5)

where bk = ∂kx(b), and extended by linearity. Notice that we added a factor εk to be coherent
with the introduction of generalized differential polynomials. For any operator X =

∑
k≤m a

k∂kx ,

we call the positive part (respectively the negative part) of X the operator X+ =
∑

k≥0 a
k∂kx

(respectively X− =
∑

k<0 a
k∂kx).

As already defined by Drinfeld and Sokolov [DS84], the scalar Lax operator of the hierarchy
of type D4 has the form1

L = ∂6x + ∂−1x

3∑
µ=1

(
sµ∂2µ−1x + ∂2µ−1x sµ

)
+ ∂−1x %∂−1x %,(1.6)

where (%)2 = s4. As expected, L ∈ D−. The operator L satisfies the additional condition
that L∗∂x = ∂xL, where the formal adjoint of an operator is defined by (a∂kx)∗ = (−∂x)ka. In
[LWZ10], the authors give the following proposition.

Proposition 1.1. There exists a unique pseudo-differential operator P ∈ D−, called the 6-th
root of L, of the form

P = ∂x +
∑
k<0

pk∂kx

such that P 6 = L. The operator P satisfies [P,L] = 0 and

P ∗∂x + ∂xP = 0.(1.7)

Moreover, Equation (1.7) is equivalent to the condition that for every k ∈ Zodd
+ , the free term

of the operator (P k)+ vanishes, i.e. (P k)+(1) = 0.

The above proposition implies that the following equations are well defined:

∂L

∂tk
=
[(
P k
)
+
, L
]
, k ∈ Zodd

+(1.8)

These equation first appeared in [DS84], they coincide with Equations (1.2). Eventually, they
give evolutionary PDEs on the functions s1, . . . , s4.

Scalar Lax pairs of the negative flows. We now describe the scalar Lax pairs for the
negative flows (1.3). As mentioned above, we need to introduce the pseudo-differential operators
of the second type, following [LWZ10]. First of all, we extend the additive group D− of pseudo-
differential operators of the first type into the additive group

D =

{∑
k∈Z

ak∂kx

∣∣∣∣∣ ak ∈ Â[0]

}
.

1Since the coordinate s4 is treated differently then the others, we use letters µ, ν for coordinates s1, s2, s3

and letters α, β for coordinates s1, s2, s3 and s4.
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We use on Â[0] the gradation induced by deg sαk = k and denote Â[0] =
⊕

k≥0 Â
[0]
k . We say that

an operator X ∈ D− ⊂ D is homogeneous of degree k ∈ Z if

X =
∑
`≤k

a`∂`x, a` ∈ Â[0]
k−`.

We denote by Dk the additive subgroup of D− of homogeneous operators of the first type
of degree k. Then D =

∏
k∈ZDk. Similarly, for any d ∈ Z we define the additive subgroup

D+
(d) =

∏
k≥dDk. Now we define the additive subgroup

D+ =
⋃
d∈Z

D+
(d).

The elements of D+ are the so-called pseudo-differential operators of the second type. For these
operators, we allow infinitely many nonzero terms of negative powers, as well as infinitely many
nonzero terms of positive powers of ∂x. In the end, the spaces D− and D+ can be described as

D− =

{∑
k≤m

∑
i≥0

ak,i∂kx

∣∣∣∣∣ ak,i ∈ Â[0]
i

}
D+ =

{∑
k≥m

∑
i≥m−k

ak,i∂kx

∣∣∣∣∣ ak,i ∈ Â[0]
i

}

Both are complete topological rings. Also, we define the subgroup

Db = D− ∩ D+,

whose elements are called bounded operators. Since for any X ∈ Dk, Y ∈ D`, their product
satisfies X ◦ Y ∈ Dk+`, it follows that the product (1.5) in D− can be extended to D+ to form
a ring. The following proposition will be important for our computations [LWZ10].

Proposition 1.2. There exists a unique operator Q ∈ D+, caleld the square root of L, of the
form

Q = ∂−1x %+
∑
k≥0

Qm ◦ ∂x(1.9)

such that Q2 = L. Here, Qm ∈ Db , is homogeneous of degree 2m and satisfies Q∗m = Qm.
Moreover, the operator Q satisfies

Q∗∂x + ∂xQ = 0, Q∗+(%) = −
∑
m≥0

∂xQm(%) = −1

2
∂xL+(1).(1.10)

Notice that in the above proposition, Q∗+(%) denotes the evaluation of the differential operator
Q∗+ at the function %. Thanks to this proposition, the following equations are well defined (we
rewrite Equation (1.8) for reasons of clarity):

(1.11)
∂L

∂tk
=
[(
P k
)
+
, L
]
,

∂L

∂t̂k
=
[(
Qk
)
+
, L
]
, k ∈ Zodd

+ .

Finally, we can state the following theorem ([LWZ10], Theorem 4.11), which gives the complete
picture of the scalar Lax pairs representation of the Drinfeld–Sokolov hierarchy of type D4.

Theorem 1.3. The flows (1.2), (1.3) of the Drinfeld–Sokolov hierarchy of type D4 coincide
with the flows of Equation (1.11)

1.3. Bi-Hamiltonian structure. Here we give the two compatible Poisson brackets and
Hamiltonian densities for the first Hamiltonian structure of the Drinfeld–Sokolov hierarchy
of type D4. They were given in [DS84], Proposition 8.3. To do so, we need to introduce the
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operator L̃ = ∂x◦L (denoted L in [LWZ10]), which we write down using coordinates vα, namely,

L̃ = ∂7x +
3∑

µ=1

(
sµ∂2µ−1x + ∂2µ−1x sµ

)
+ %∂−1x %

= ∂7x +
3∑

µ=1

(
vµ∂2µ−1x + ṽµ∂2µ−2x

)
+ %∂−1x %,(1.12)

and we set v4 = s4 = (%)2. The coordinates ṽα are related to the coordinates vα via the
condition L̃∗ + L̃ = 0 (see Equation (1.21)). In turns, the coordinates vα are related to the
coordinates sα via a Miura transform by identifying the two expressions of L̃.

We call local functionals, the elements of the quotient space

Λ̂ = Â/ (Im(∂x)⊕ C[[ε]]) .

Given a differential polynomial f ∈ Â, we denote by f =
∫
fdx its class in Λ̂. For a local

functional f ∈ Λ̂ in formal variables v∗∗, we can define its variational derivatives by

δf

δvα
=
∑
k≥0

(−1)k∂kx

(
∂f

∂vαk

)
∈ Â.

It is well known that if f ∈ Â is such that f(0) = 0 (no constant term), then f ∈ Im(∂x)
if and only if δf

δvα
= 0 for any α ∈ {1, 2, 3, 4} (see e.g. [GKMZ70], Lemma 2). In particular,

the variational derivatives are well defined on Λ̂. Next we define the variational differential (or
variational derivative w.r.t. L̃) by

δf

δL̃
=

δf

δv4
+

1

2

3∑
µ=1

(
δf

δvµ
∂−2µx + ∂−2µx

δf

δvµ

)
∈ D−.

In [DS84], Drinfeld and Sokolov gave the following Poisson brackets: Let two local functionals

f, g ∈ Λ̂ and their variational differentials X = δf

δL̃
, Y = δg

δL̃
, then

{f, g}1 = ε−1
∫

resX
[
(∂xY+L̃)− − (L̃Y+∂x)− − (∂xY−L̃)+ + (L̃Y−∂x)+

]
dx,

{f, g}2 = ε−1
∫

resX
[
(L̃Y )+L̃− L̃(Y L̃)+

]
dx.

These brackets are compatible in the sense that for any λ, µ ∈ C, the map λ{·, ·}1 + µ{·, ·}2
still satisfies Jacobi’s identity. In [LWZ10], the authors proved the following theorem.

Theorem 1.4. The hierarchy (1.11) admits the following bi-Hamiltonian representation: for

any local functional f ∈ Λ̂,

∂f

∂tk
= {f,Hk+6}1 = {f,Hk}2,

∂f

∂t̂k
= {f, Ĥk+2}1 = {f, Ĥk}2,(1.13)

where the Hamiltonian functionals are given by

Hk =
6

k

∫
resP kdx, Ĥk =

2

k

∫
resQkdx

1.4. Tau structure. Finally, we present the tau structure (in the sense of [DZ05]) of the
Drinfeld–Sokolov hierarchy of type D4. The first step is to define the so-called topological
variables: for µ ∈ {1, 2, 3} and p ≥ 0,

tµp =
6Γ
(
p+ 1 + 2µ−1

6

)
Γ
(
2µ−1
6

) t6p+2µ−1, t4p =
2Γ
(
p+ 3

2

)
Γ(1

2
)

t̂2p+1.
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In particular, t10 = t1 = x. In the same fashion, we define the following Hamiltonian densities:

hµ,p−1 =
Γ
(
2µ−1
6

)
6Γ
(
p+ 1 + 2µ−1

6

)resP 6p+2µ−1, h4,p−1 =
Γ(1

2
)

2Γ
(
p+ 3

2

)resQ2p+1,(1.14)

= 6p
p∏
j=0

(2µ− 1 + 6j)−1 resP 6p+2µ−1, = 2p
p∏
j=0

(1 + 2j)−1 resQ2p+1.

We denote by hα,p =
∫
hα,pdx the associated functionals. Then the Hamiltonian equations

(1.13) read

∂f

∂tαp
= {f, hα,p}1 =

(
p+ 1

2
+ µα

)−1 {f, hα,p−1}2,
where µα’s are the spectrum of the underlying Frobenius manifold [Dub96, DLZ08]; they read
µν = 2ν−4

6
, for ν ∈ {1, 2, 3}, and µ4 = 0. These Hamiltonian densities satisfy the so-called tau

symmetry [DZ05], [LWZ10]: for any α, β ∈ {1, 2, 3, 4} and p, q ≥ 1,

∂hα,p−1

∂tβq
=
∂hβ,q−1
∂tαp

.(1.15)

If we define differential polynomials Ωα,p;β,q via ∂x Ωα,p;β,q = ∂tβq hα,p−1, then we can find integra-

tion constants such that they satisfy Ωα,p;β,q = Ωβ,q;α,p. This is a sufficient condition to define
the tau function τ of the hierarchy by setting [DZ05]

∂2 log τ

∂tαp∂t
β
q

= Ωα,p;β,q.

1.5. Explicit tau-symmetric Hamiltonian densities. In this section, we give the explicit
fomulae for the Hamiltonian densities hα,−1, hα,0, for 1 ≤ α ≤ 4, and h1,1. As proven in

[BG16], even h1,1 (and the Poisson structure) suffices to confirm the equivalence with the
double ramification hierarchy (see Section 2). Our computations will be expressed in a special
set of coordinates called normal and defined by

ũα = ηαβhβ,−1

(summation over 1 ≤ β ≤ 4 is implicit) where the matrix (ηαβ) is given by (see e.g. [LRZ15])

(ηαβ) =


0 0 6 0
0 6 0 0
6 0 0 0
0 0 0 2


By Equation (1.14), the normal coordinates read, for µ ∈ {1, 2, 3},

ũµ =
6

7− 2µ
resP 7−2µ, ũ4 = 2 resQ.

Because of the form of the operator Q (1.9), its residue is straightforwardly resQ = %, which

means that ũ4 = 2% = 2
√
s4. For the remaining normal coordinates, we compute the residues

in the coordinates sα and then invert the system. We find

s1 = 1
2
ũ1 + 1

12
ũ2ũ3 + 1

216
(ũ3)

3
+
(
−1

8
(ũ31)

2 − 1
6
ũ22 − 1

9
ũ3ũ32

)
ε2 + 23

90
ũ34ε

4,

s2 = 1
2
ũ2 + 1

8
(ũ3)

2 − 1
2
ũ32ε

2,

s3 = 1
2
ũ3,

s4 = 1
4

(ũ4)
2
.

(1.16)
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(We have performed the substitution ∂kx(f)→
(
ε/
√

2
)k
∂kx(f).) This agrees with the expressions

found in [LRZ15], p. 751. Then the Hamiltonian densities hα,0 are given by, for µ ∈ {1, 2, 3},

hµ,0 =
6

(2µ− 1)(2µ+ 5)
resP 2µ+5, h4,0 =

2

3
resQ3

For the computation resQ3 we write

resQ3 = resQL = res
(
∂−1x %L

)
+ res

(∑
m≥0

Qm∂xL

)
,

= res
(
∂−1x %L

)
+ res

(∑
m≥0

Qm%∂
−1
x %

)
,

where in the last equation we used the fact that ∂xL = L̃ = L̃+ + %∂−1x %. To compute the
rightmost term, we write Qm =

∑
k≤2m q

m,k∂kx , then

res

(∑
m≥0

Qm%∂
−1
x %

)
= res

(∑
m≥0

∑
k≤2m

qm,k∂kx%∂
−1
x %

)

= res

(∑
m≥0

∑
k≤2m

qm,k
k∑
`=0

(
k

`

)(
ε√
2

)`
%`∂

k−1−`
x %

)

=
∑
m≥0

∑
k≤2m

qm,k
(
ε√
2

)k
%k% = %

∑
m≥0

Qm(%).

In the above equations, all matters of convergence are resolved by the grading of Â and the
fact that Q ∈ D+. Now thanks to Equation (1.10), it follows that

∑
m≥0

Qm(%) =
1

2
L+(1) =

3∑
µ=1

sµ2µ−2
ε2µ−2

2µ−1
.

Using ũ4 = 2%, we finally find that

h4,0 =
1

3
res
(
∂−1x ũ4L

)
+

1

3
ũ4

3∑
µ=1

sµ2µ−2
ε2µ−2

2µ−1
.

We find:

h1,0 =
(

1
12

(ũ2)
2

+ 1
6
ũ1ũ3 + 1

4
(ũ4)

2
)

+
(

1
72
ũ3 (ũ31)

2
+ 1

3
ũ12 + 1

216
(ũ3)

2
ũ32

)
ε2 +

(
1

216
(ũ32)

2
+ 1

72
ũ31ũ

3
3

+ 1
180
ũ3ũ34

)
ε4 + 1

840
ũ36ε

6

h2,0 =
(

1
6
ũ1ũ2 − 1

72
(ũ2)

2
ũ3 + 1

648
ũ2 (ũ3)

3
+ 1

24
ũ3 (ũ4)

2
)

+
(
− 1

24
(ũ21)

2
+ 1

24
ũ3ũ21ũ

3
1 + 1

72
ũ2 (ũ31)

2

+1
8

(ũ41)
2 − 1

18
ũ2ũ22 + 1

72
(ũ3)

2
ũ22 + 1

54
ũ2ũ3ũ32 + 1

6
ũ4ũ42

)
ε2 +

(
1
12
ũ22ũ

3
2 + 5

72
ũ31ũ

2
3 + 1

18
ũ21ũ

3
3

+ 1
36
ũ3ũ24 + 2

135
ũ2ũ34

)
ε4 + 1

72
ũ26ε

6
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h3,0 =
(

1
12

(ũ1)
2 − 1

216
(ũ2)

3
+ 1

432
(ũ2)

2
(ũ3)

2
+ 1

233280
(ũ3)

6
+ 1

24
ũ2 (ũ4)

2
+ 1

144
(ũ3)

2
(ũ4)

2
)

+(
5

432
ũ3 (ũ21)

2
+ 1

108
ũ3ũ11ũ

3
1 + 1

36
ũ2ũ21ũ

3
1 + 1

1296
(ũ3)

3
(ũ31)

2
+ 1

12
ũ4ũ31ũ

4
1 + 5

144
ũ3 (ũ41)

2

+ 1
216

(ũ3)
2
ũ12 + 1

54
ũ2ũ3ũ22 + 1

108
(ũ2)

2
ũ32 + 1

3888
(ũ3)

4
ũ32 + 1

36
(ũ4)

2
ũ32 + 1

18
ũ3ũ4ũ42

)
ε2

+
(

5
2592

(ũ31)
4

+ 13
720

(ũ22)
2

+ 55
3888

ũ3 (ũ31)
2
ũ32 + 29

1080
ũ12ũ

3
2 + 67

15552
(ũ3)

2
(ũ32)

2
+ 13

240
(ũ42)

2

+ 1
30
ũ31ũ

1
3 + 31

1080
ũ21ũ

2
3 + 11

1080
ũ11ũ

3
3 + 49

7776
(ũ3)

2
ũ31ũ

3
3 + 31

360
ũ41ũ

4
3 + 1

60
ũ3 ũ14 + 2

135
ũ2ũ24

+ 1
1296

(ũ3)
3
ũ34 + 2

45
ũ4ũ44

)
ε4 +

(
1129

116640
(ũ32)

3
+ 1601

38880
ũ31ũ

3
2ũ

3
3 + 1

120
ũ3 (ũ33)

2
+ 19

1620
(ũ31)

2
ũ34

+ 29
2160

ũ3ũ32ũ
3
4 + 13

1944
ũ3ũ31ũ

3
5 + 11

1080
ũ16 + 17

19440
(ũ3)

2
ũ36

)
ε6 +

(
191

43200
(ũ34)

2
+ 1501

194400
ũ33ũ

3
5

+ 949
194400

ũ32ũ
3
6 + 127

64800
ũ31ũ

3
7 + 13

32400
ũ3ũ38

)
ε8 + 7

118800
ũ310ε

10

h4,0 =
(

1
2
ũ1ũ4 + 1

12
ũ2ũ3ũ4 + 1

216
(ũ3)

3
ũ4
)

+
(

1
24
ũ4 (ũ31)

2
+ 1

4
ũ21ũ

4
1 + 1

8
ũ3ũ31ũ

4
1 + 1

6
ũ4ũ22

+ 1
18
ũ3ũ4ũ32 + 1

6
ũ2ũ42 + 1

24
(ũ3)

2
ũ42

)
ε2 +

(
1
4
ũ32ũ

4
2 + 1

6
ũ41ũ

3
3 + 5

24
ũ31ũ

4
3 + 2

45
ũ4ũ34 + 1

12
ũ3ũ44

)
ε4

+ 1
24
ũ46ε

6

Finally, the density h1,1 is given by

h1,1 =
36

91
resP 13.

We find:

h1,1 =
(

1
12
ũ1 (ũ2)

2
+ 1

12
(ũ1)

2
u3 − 1

108
(ũ2)

3
ũ3 + 1

432
(ũ2)

2
(ũ3)

3
+ 1

326592
(ũ3)

7
+ 1

4
ũ1 (ũ4)

2

+ 1
12
ũ2ũ3 (ũ4)

2
+ 1

144
(ũ3)

3
(ũ4)

2
)

+
(

1
6

(ũ11)
2

+ 1
3
ũ12u

1 − 5
72

(ũ21)
2
ũ2 + 5

24
(ũ41)

2
ũ2 − 1

18
ũ22 (ũ2)

2

+ 1
54

(ũ31)
2

(ũ2)
2

+ 1
72

(ũ31)
2
ũ1u3 + 19

216
ũ21u

3
1ũ

2ũ3 + 1
36
ũ32 (ũ2)

2
u3 + 1

54
(ũ21)

2
(ũ3)

2
+ 1

72
ũ11ũ

3
1 (ũ3)

2

+ 1
18

(ũ41)
2

(ũ3)
2

+ 1
216
ũ32ũ

1 (ũ3)
2

+ 7
216
ũ22ũ

2 (ũ3)
2

+ 1
216
ũ12 (ũ3)

3
+ 7

7776
(ũ31)

2
(ũ3)

4

+ 1
3888

ũ32 (ũ3)
5

+ 5
12
ũ21ũ

4
1ũ

4 + 1
3
ũ42ũ

2ũ4 + 19
72
ũ31ũ

4
1ũ

3ũ4 + 7
72
ũ42 (ũ3)

2
ũ4 + 1

6
ũ22 (ũ4)

2

+ 1
18

(ũ31)
2

(ũ4)
2

+ 1
12
ũ32ũ

3 (ũ4)
2
)
ε2 +

(
7
24
ũ21ũ

2
2ũ

3
1 + 5

72
ũ12 (ũ31)

2
+ 31

216
(ũ21)

2
ũ32 + 13

216
ũ11u

3
1ũ

3
2

+31
72
ũ32 (ũ41)

2
+ 7

8
ũ31ũ

4
1ũ

4
2 + 1

216
(ũ32)

2
ũ1 + 1

72
ũ31ũ

3
3ũ

1 + 35
216
ũ23ũ

3
1u

2 + 23
108
ũ22ũ

3
2ũ

2 + 4
27
ũ21ũ

3
3ũ

2

+ 7
270
ũ34 (ũ2)

2
+ 13

144
(ũ22)

2
u3 + 29

216
ũ21ũ

2
3ũ

3 + 1
9
ũ13ũ

3
1ũ

3 + 7
648

(ũ31)
4
u3 + 19

216
ũ12ũ

3
2ũ

3 + 7
216
ũ11u

3
3ũ

3

+13
48

(ũ42)
2
ũ3 + 29

72
ũ41ũ

4
3ũ

3 + 1
180
ũ34ũ

1ũ3 + 7
108
ũ24ũ

2ũ3 + 1
36
ũ14 (ũ3)

2
+ 53

1296
(ũ31)

2
ũ32 (ũ3)

2

+ 133
15552

(ũ32)
2

(ũ3)
3

+ 97
7776

ũ31u
3
3 (ũ3)

3
+ 1

864
ũ34 (ũ3)

4
+ 4

9
ũ33ũ

4
1ũ

4 + 23
36
ũ32ũ

4
2u

4 + 35
72
ũ31ũ

4
3ũ

4

+ 7
36
ũ44ũ

3u4 + 7
90
ũ34 (ũ4)

2
)
ε4 +

(
349
3024

(ũ23)
2

+ 4
21
ũ22ũ

2
4 + 17

168
ũ21ũ

2
5 + 65

504
ũ15ũ

3
1 + 151

756
ũ14ũ

3
2

+ 473
2592

(ũ31)
2

(ũ32)
2

+ 31
168
ũ13ũ

3
3 + 19

216
(ũ31)

3
ũ33 + 19

210
ũ12ũ

3
4 + 149

7560
ũ11ũ

3
5 + 349

1008
(ũ43)

2
+ 4

7
ũ42ũ

4
4

+17
56
ũ41ũ

4
5 + 1

840
ũ36ũ

1 + 53
1512

ũ26ũ
2 + 65

1512
ũ16u

3 + 1741
23328

(ũ32)
3
ũ3 + 2507

7776
ũ31ũ

3
2ũ

3
3u

3 + 593
6480

(ũ31)
2
ũ34u

3

+ 271
7776

(ũ33)
2

(ũ3)
2

+ 2141
38880

ũ32ũ
3
4 (ũ3)

2
+ 341

12960
ũ31ũ

3
5 (ũ3)

2
+ 43

19440
ũ36 (ũ3)

3
+ 53

504
ũ46u

4
)
ε6 +

(
1
54
ũ18

+ 653
1944

ũ32 (ũ33)
2

+ 17803
68040

(ũ32)
2
ũ34 + 11129

30240
ũ31ũ

3
3ũ

3
4 + 65141

272160
ũ31ũ

3
2ũ

3
5 + 145

3024
(ũ31)

2
u36 + 17503

302400
(ũ34)

2
u3

+ 977
10080

ũ33ũ
3
5u

3 + 15103
272160

ũ32ũ
3
6ũ

3 + 1831
90720

ũ31ũ
3
7ũ

3 + 19
9720

ũ38 (ũ3)
2
)
ε8 +

(
9973

340200
(ũ35)

2
+ 1301

25200
ũ34ũ

3
6

+ 347
10080

ũ33ũ
3
7 + 4427

272160
ũ32u

3
8 + 89

18144
ũ31ũ

3
9 + 1

1296
ũ310ũ

3
)
ε10 + 41

393120
ũ312ε

12

(1.17)
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1.6. Explicit first Poisson structure. Finally, we compute the components of the first Pois-

son structure given by, for two local functionals f, g ∈ Λ̂ and their variational differentials

X = δf

δL̃
, Y = δg

δL̃
,

{f, g}1 =
1

ε

∫
resX

[
(∂xY+L̃)− − (L̃Y+∂x)− − (∂xY−L̃)+ + (L̃Y−∂x)+

]
dx.(1.18)

Working with normal coordinate ũ∗∗, we aim to express this bracket through an Hamiltonian

operator Kαβ
ũ =

∑
k≥0K

αβ
k ∂kx , where Kαβ

k ∈ Â
[−k+1]
ũ , via

{f, g}1 =

∫
δf

δũα
Kαβ
ũ

δg

δũβ
.

Under a Miura transformation ũ∗∗ = ũ∗∗(u
∗
∗, ε), the Hamiltonian operator transforms accoring to

Kαβ
ũ = (L∗)αµ ◦Kµν

u ◦ Lβν , where (L∗)αµ =
∑
s≥0

∂ũα

∂uµs
∂sx, L

β
ν =

∑
s≥0

(−∂x)s ◦ ∂ũ
β

∂uνs
. When clear from the

context which formal variables are being used, as usual, we will drop the corresponding index
in Kαβ

u or Kαβ
ũ and simply write Kαβ. We use Dirac’s notation of the components Kαβ of the

bracket and rewrite the above expression in the equivalent form

{f, g}1 =

∫∫
δf(x)

δũα(x)
{ũα(x), ũβ(y)}1

δg(y)

δũβ(y)
dxdy,(1.19)

where

{ũα(x), ũβ(y)}1 :=
∑
k≥0

Kαβ
k (x)δ(k)(x− y).(1.20)

In Equation (1.20), the expression “{ũα(x), ũβ(y)}1” really is only a notation and does not
mean that we evaluate the bracket on the pair of functions (ũα(x), ũβ(y)). However, one can
evaluate the bracket on the pair of functions (ũα(z)δ(x − z), ũβ(z)δ(y − z)) (sometimes called
the coordinate functionals in physics literature) and find that, almost tautologically,

{ũα(z)δ(x− z), ũβδ(y − z)}1 =

∫∫
δũα(z)δ(x− z)

δũµ(z)

∑
k≥0

Kµν
k δ(k)(z − z′)δũ

α(z′)δ(x− z′)
δũµ(z′)

dzdz′

=
∑
k≥0

Kαβ
k (x)δ(k)(x− y).

Hence,

{ũα(x), ũβ(y)}1 = {ũα(z)δ(x− z), ũβδ(y − z)}1,

where in the above equation, the left-hand side is purely notational, while the right-hand side
can actually be computed.

Now the Poisson bracket (1.18) is given in terms of the variational differentials, so that we
first need to compute those of the coordinate functionals. To do so, we need to transform
the normal coordinates ũα into the coordinates vα of Equation (1.12). The coordinates ṽα are
related to the vα’s by the condition L̃∗ + L = 0; they read

ṽ1 = 1
2
√
2
v11ε− 1

8
√
2
v23ε

3 + 1
8
√
2
v35ε

5,

ṽ2 = 3
2
√
2
v21ε− 5

4
√
2
v33ε

3,

ṽ3 = 5
2
√
2
v31ε.

(1.21)
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Then by identifying the two operators in Equation (1.18) and inverting Equation (1.16), we
find the following Miura transformation from the normal coordinates ũα to the coordinates vα:

ũ1 = v1 − 1
6
v2v3 + 7

216
(v3)3 +

(
1
12

(v31)2 − 5
12
v22 + 11

36
v3v32

)
ε2 + 89

90
v34ε

4,

ũ2 = v2 − 1
4
(v3)2 − 3

2
v32ε

2,

ũ3 = v3,

ũ4 = 2
√
v4.

Now recall that the variational differentials are given by

δF (z)

δL̃(z)
=
δF (z)

δv4(z)
+

1

2

3∑
µ=1

(
δF (z)

δvµ(z)
∂−2µz + ∂−2µz

δF (z)

δvµ(z)

)
∈ D−.

It follows that the variational differentials of the coordinates functionals are given by, for µ ∈
{1, 2, 3},

δ ũµ(z)δ(x− z)

δL̃(z)
=

1

2

3∑
ν=1

(
δũµ(z)δ(x− z)

δvν(z)
∂−2νz + ∂−2νz

δũµ(z)δ(x− z)

δvν(z)

)
,(1.22)

δ ũ4(z)δ(x− z)

δL̃(z)
=
δ
(

2
√
v4(z)δ(x− z)

)
δv4(z)

=
2

u4(z)
δ(x− z).(1.23)

Let us denote, for α ∈ {1, 2, 3, 4},

Xα(z) :=
δ ũα(z)δ(x− z)

δL̃(z)
, Y α(z) :=

δ ũα(z)δ(y − z)

δL̃(z)

As we can see in Equations (1.22) and (1.23), for any µ ∈ {1, 2, 3}, we have Y µ(z)+ = 0, and
Y 4(z)− = 0. It follows that

{ũ4(x), ũ4(y)}1 = 2δ′(x− y)

(Note that this computation does not depend on the integer n of Dn, meaning that similarly,
in the Dn case, {ũn(x), ũn(y)}1 = 2δ′(x − y).) It is easy to see that for any µ ∈ {1, 2, 3},
{ũµ(x), ũ4(y)}1 = 0. The remaining components are computed in a similar fashion, this time
using

{ũµ(x), ũν(y)}1 =
1

ε

∫
resXµ(z)

[(
L̃(z)Y ν(z)∂z

)
+
−
(
∂zY

ν(z)L̃(z)
)
+

]
dz,

for µ, ν ∈ {1, 2, 3}. Now we equivalently write ∂kx instead of δ(k)(x − y), for their action is
identical. We write down the components {ũα(x), ũβ(y)}1 in the following matrix:

(1.24) KDS
ũ =


(
1
6
ũ32∂x + 1

2
ũ31∂

2
x + 1

3
ũ3∂3x

)
ε2 + 4

15
∂5xε

4 0 6∂x 0
0 6∂x 0 0

6∂x 0 0 0
0 0 0 2∂x

 = η∂x +O(ε)

2. Classical double ramification hierarchy for the D4 Dubrovin-Saito CohFT

In this section we compute the double ramification hierarchy for the D4 Dubrovin-Saito or
Fan-Jarvis-Ruan-Witten cohomological field theory (the latter with respect to the non-maximal
diagonal symmetry group 〈J〉 = Z/3Z) in the framework of homogeneous integrable systems
of double ramification type. This means that we will find the unique dispersive deformation of
double ramification type, according to [BDGR16b], of the principal hierarchy associated to the
Frobenius manifold for the D4 Coxeter group [Dub99], compatible with the natural grading of
this homogeneous CohFT.
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Next we will show that this D4 DR hierarchy coincides with the D4 Drinfeld-Sokolov hier-
archy described in the previous section. Indeed, in [GM05, FGM10] (see also [LRZ15]) the
authors proved that the D4 Drinfeld-Sokolov hierarchy is the Dubrovin-Zhang hierarchy of the
aforementioned D4 CohFT and, as proven in [BG16], for a hierarchy of DR type to coincide
with a DZ hierarchy with the same dispersionless (i.e. genus 0) limit, it is enough that their
Hamiltonian operators and Hamiltonians h1,1 coincide, which is what we will prove.

2.1. Double ramification hierarchy. We will not spell here the full definition of the clas-
sical double ramification hierarchy and its quantization, referring the reader to the papers
[Bur15, BR16a, BR16b, BDGR18], or the review [Ros17], instead.

The construction has, as input, a cohomological field theory cg,n : V ⊗n → H∗(Mg,n,C) on
the moduli space of stable curves Mg,n, with metric η on the vector space V and unit e1 ∈ V
(see [KM94] for the definition) and, from its intersection theory, produces an integrable system

of tau-symmetric Hamiltonian PDEs with Hamiltonian densities gα,d ∈ Âu, 1 ≤ α ≤ N , d ≥ −1
where only even powers of ε appear, and Hamiltonian operator Kαβ

u = ηαβ∂x.

The densities gα,d satisfy the property
∂gα,d+1

∂u1
= gα,d with, in particular, gα,−1 = ηαµu

µ. As
remarked in [BDGR16b], an integrable system with this property and the above Poisson struc-

ture automatically possesses a tau-structure given by hα,d =
δgα,d+1

δu1
, with normal coordinates

given by ũα = ηαµ
δgµ,0
δu1

, 1 ≤ α ≤ N .

In case the vector space V is graded, with deg e1 = 0, the cohomological field theory is
homogeneous if there exists δ ∈ C such that the maps cg,n : V ⊗n → H∗(Mg,n,C) and η :
V ⊗2 → C have degree

deg cg,n = δ(g − 1), deg η = −δ, δ ∈ C, 1 ≤ α ≤ dimV.

In this case the formal variables uαk and ε acquire a grading too and the Hamiltonian densities
of the resulting DR hierarchy are homogeneous:

|uαk | = 1− deg eα, |ε| = 1− δ
2

, |gα,d| = d+ 3− δ − |uα|.

This grading | · | is not related to the differential grading deg(·) on Â and Λ̂ introduced in
section 1.2.

The DR hierarchy coincides with the Dubrovin-Zhang hierarchy [DZ05, BPS12a, BPS12b]
in genus 0 (i.e. its dispersionless limit ε → 0 is the principal hierarchy of the corresponding
Frobenius manifold, see [DZ05]) and the two hierarchies are conjectured to be equivalent up to
a Miura transformation preserving the tau-structure. This is the strong DR/DZ equivalence
conjecture of [BDGR18], which has been proven for several CohFTs but is open in general. In
this paper we will prove the conjecture for the D4 Dubrovin-Saito CohFT.

2.2. Integrable systems of DR type. Let {·, ·} denote the Poisson structure associated

to the Hamiltonian operator ηµν∂x. For a local functional h ∈ Λ̂
[0]
N consider the operator

Dh : Â[[z]]→ Â[[z]] defined by

Dh = ∂x ◦ (D − 1)− z{·, h}, D :=
∑
k≥0

uαk
∂

∂uαk
+ ε

∂

∂ε
.

Suppose there exist N = dimV solutions gα(z) ∈ Â[0][[z]], α = 1, . . . , N , to Dhgα(z) = 0 with
initial conditions gα(z = 0) = ηαµu

µ. Then a new vector of solutions in the same class can be
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found by the following transformation

(2.1) gα(z) 7→ aµα(z)gµ(z) + bα(z),

where aµα(z) = δµα +
∑

i>0 a
µ
α,iz

i ∈ C[[z]] and bα(z) =
∑

i>0 bα,iz
i ∈ C[[z]].

The following result from [BDGR16b] will constitute the main technical tool in our compu-
tation the DR hierarchy of the D4 CohFT.

Theorem 2.1 ([BDGR16b]). Assume that h ∈ Λ̂[0] has the following properties:

(a) there exist N independent solutions gα(z) =
∑

p≥0 gα,p−1z
p ∈ Â[0][[z]], α = 1, . . . , N , to

the equation

(2.2) Dhgα(z) = 0

with the initial conditions gα(z = 0) = ηαµu
µ,

(b)
δh

δu1
=

1

2
ηµνu

µuν + ∂2xr, r ∈ Â[−2].

Then, up to a transformation of type (2.1), we have

(i) g1,0 =
1

2
ηµνu

µuν + ∂2x(D − 1)−1r,

(ii) g1,1 = h,
(iii) {gα,p, gβ,q} = 0, α, β = 1, . . . , N, p, q ≥ −1,

(iv) {gα,p, gβ,0} = ∂x
∂gα,p+1

∂uβ
, β = 1, . . . , N, p ≥ −1,

(v)
∂gα,p
∂u1

= gα,p−1, α = 1, . . . , N, p ≥ −1,

hence in particular h is part of an integrable tau-symmetric hierarchy.

We call a system of densities originating from an Hamiltonian h = g1,1 as in the theorem
above an integrable system of double ramification type. As proved in [BDGR16b], the DR
hierarchy of any given cohomological field theory, is always and integrable system of DR type.
This fact implies in particular that the entire hierarchy of DR Hamiltonian densities can be

reconstructed from g1,1 ∈ Λ̂[0] alone by means of the DR recursion equation [BR16a]

(2.3) ∂x(D − 1)gα,d+1 = {gα,d, g1,1}, gα,−1 = ηαµu
µ, 1 ≤ α ≤ N, d ≥ −1.

The above result can sometimes be used to effectively compute the Hamiltonian g1,1 itself,
starting from a limited amount of information on the CohFT, as we will show in the next
section.

2.3. D4 Dubrovin-Saito CohFT. In [Dub99], based on the work of K. Saito [Sai81, Sai83a,
Sai83b], Dubrovin constructs a structure of Frobenius manifold [Dub96] on the space of orbits
of any finite irreducible Coxeter group. This space is biholomorphic to the space of miniversal
unfoldings of the corresponding simple hypersurface singularity and the Frobenius structure is
given by the Milnor ring multiplicative structure and the residue pairing at the correspond-
ing deformation. The resulting Frobenius manifold is generically semisimple and conformal, so
Givental-Teleman [Giv01, Tel12] (see also [PPZ15]) theory can be applied to produce a uniquely
defined homogeneous cohomological field theory.

We are interested in this construction for the case of the D4 simple singularity, W = x3+xy2.
The resulting CohFT cD4

g,n has phase space V = 〈e1, . . . , e4〉 with deg e1 = 0, deg e2 = deg e4 = 1
3
,

deg e3 = 2
3
, deg cD4

g,n = δ = 2
3
. In genus 0 the corresponding Frobenius structure can described
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by the Frobenius potential (see for instance [LRZ15])

F =
t1
(
t2
)2

12
+

(
t1
)2
t3

12
−
(
t2
)3
t3

216
+

(
t2
)2 (

t3
)3

1296
+

(
t3
)7

1632960
+
t1
(
t4
)2

4
+
t2t3

(
t4
)2

24
+

(
t3
)3 (

t4
)2

432
,

(2.4)

which, in particular, gives the metric

(2.5) η =


0 0 1

6
0

0 1
6

0 0
1
6

0 0 0
0 0 0 1

2


Notice that this CohFT was proved to be isomorphic to the quantum singularity theory of

Fan-Jarvis-Ruan-Witten [FJR07, FJR13] for the simple singularity W = x3 +xy2, with respect
to the non-maximal diagonal symmetry group 〈J〉 = Z/3Z [FFJMR10].

2.4. D4 double ramification hierarchy. In [GM05, FGM10] it was proved that the Dubrovin-
Zhang hierarchy for the Dubrovin-Saito CohFT associated to a Coxeter group coincides with the
Drinfeld-Sokolov hierarchy of the corresponding semisimple Lie algebra. As explained above,
the ε→ 0 limit of both the DZ and DR hierarchies of any (semisimple) CohFT coincides with
the principal hierarchy of the Frobenius manifold which is, consequently, completely deter-

mined, thanks to the recursion equation (2.3), by the Hamiltonian g
[0]
1,1 = g1,1|ε=0.

To compute the latter in the D4 case we can use (see [DZ05]) the dilaton equation g
[0]
1,1 =∫

(D − 2)(F (t∗)|t∗=u∗)dx, to obtain

g
[0]
1,1 =

∫ [
u1 (u2)

2

12
+

(u1)
2
u3

12
− (u2)

3
u3

108
+

(u2)
2

(u3)
3

432
+

(u3)
7

326592
+
u1 (u4)

2

4

+
u2u3 (u4)

2

12
+

(u3)
3

(u4)
2

144

]
dx.

(2.6)

Moreover, thanks to homogeneity of the CohFT, we know that, for any k ≥ 0,

(2.7) |u1k| = 1, |u2k| = |u4k| =
2

3
, |u3k| =

1

3
, |ε| = 1

6
, |g1,1| =

7

3
.

Notice here how all the variables have positive degree, guaranteeing the polynomiality of g1,1
and, in fact, of all the Hamiltonian densities gα,d, 1 ≤ α ≤ N , d ≥ −1.

Theorem 2.2. The double ramification hierarchy for the D4 Dubrovin-Saito cohomological field
theory is the integrable hierarchy with Hamiltonian operator

KDR
u =


0 0 6∂x 0
0 6∂x 0 0

6∂x 0 0 0
0 0 0 2∂x
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and Hamiltonian densities defined by equation (2.3), where

g1,1 =

∫ [(
1
12
u1 (u2)

2
+ 1

12
(u1)

2
u3 − 1

108
(u2)

3
u3 + 1

432
(u2)

2
(u3)

3
+ 1

326592
(u3)

7
+ 1

4
u1 (u4)

2

+ 1
12
u2u3 (u4)

2
+ 1

144
(u3)

3
(u4)

2
)

+
(
−1

6
(u11)

2
+ 1

24
u2 (u21)

2 − 1
72

(u3)
2

(u21)
2

− 1
108

(u3)
2
u11u

3
1 − 1

27
u2u3u21u

3
1 − 1

108
(u2)

2
(u31)

2 − 1
2592

(u3)
4

(u31)
2 − 1

36
(u4)

2
(u31)

2

−1
4
u4u21u

4
1 − 1

9
u3u4u31u

4
1 − 1

8
u2 (u41)

2 − 1
24

(u3)
2

(u41)
2
)
ε2 +

(
− 35

46656
u3 (u31)

4

+ 1
144

(u31)
2
u12 + 5

216
u21u

3
1u

2
2 + 1

48
u3 (u22)

2
+ 1

54
u3u12u

3
2 + 5

216
u2u22u

3
2 + 7

7776
(u3)

3
(u32)

2

+ 5
72
u31u

4
1u

4
2 + 5

72
u4u32u

4
2 + 1

16
u3 (u42)

2
)
ε4 +

(
1

486
(u31)

2
(u32)

2
+ 13

5832
u3 (u32)

3 − 1
112

(u23)
2

− 13
1512

u13u
3
3 − 1

972
(u3)

2
(u33)

2 − 3
112

(u43)
2
)
ε6 +

(
− 5

1728
u32 (u33)

2
+ 1

1728
u3 (u34)

2
)
ε8

− 1
7776

(u35)
2
ε10
]
dx

(2.8)

Proof. As explained above we know that g1,1|ε = 0 is given by equation (2.6) and that, by def-
inition, only even powers of ε appear in the Hamiltonian densities of any DR hierarchy.

Now remark from (2.7) that all the variables have positive degree, guaranteeing the poly-
nomiality of g1,1 and, in fact, of all the Hamiltonian densities gα,d, 1 ≤ α ≤ N , d ≥ −1. In

particular, since |ε| = 1
6

and in each monomials there are as many x-derivatives as powers of ε,
we see that any term where the power of ε is bigger than 10 is either trivial or a total x derivative.

One can then verify, by direct computation, that up to rescaling of the variable ε, there exist

a unique local functional g1,1 ∈ Λ̂[0] such that: g1,1|ε=0 is given by (2.6), contains only even

powers of ε, |g1,1| = 7
3

and g1,1 is of double ramification type. In practice one writes down
the most general polynomial deformation of (2.6) with the given degree and notices that im-
posing conditions (a) and (b) of theorem 2.1 determines, up to rescalings of ε, all the coefficients.

Finally, to determine the correct normalization of ε, it is sufficient to compute the coeffi-
cient of a single monomial of g1,1 containing ε. We can do this by recalling (see for instance

[BDGR18]) that, for any CohFT, Coef(u11)2ε2g1,1 = −dimV
24

. �

Recall that the DR hierarchy possesses a natural tau-structure given by the Hamiltonian

densities hα,d =
δgα,d+1

δu1
. The normal coordinates for this tau structures are ũα = ηαµ

δgµ,0
δu1

.
Explicitly one obtains 

ũ1 = u1 +
(

1
36

(u31)
2

+ 1
36
u3u32

)
ε2 + 1

45
u34ε

4

ũ2 = u2

ũ3 = u3

ũ4 = u4

Applying this change of coordinates one obtains the Hamiltonian operator

KDR
ũ =


ε2
(
1
3 ũ

3∂3x + 1
2 ũ

3
1∂

2
x + 1

6 ũ
3
2∂x
)

+ ε4 4
15∂

5
x 0 6∂x 0

0 6∂x 0 0
6∂x 0 0 0
0 0 0 2∂x

 ,
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which coincides with (1.24), and the Hamiltonian

g1,1 =

∫ [(
1
12
ũ1 (ũ2)

2
+ 1

12
(ũ1)

2
ũ3 − 1

108
(ũ2)

3
ũ3 + 1

432
(ũ2)

2
(ũ3)

3
+ 1

326592
(ũ3)

7
+ 1

4
ũ1 (ũ4)

2

+ 1
12
ũ2ũ3 (ũ4)

2
+ 1

144
(ũ3)

3
(ũ4)

2
)

+
(
−1

6
(ũ11)

2 + 1
24
ũ2 (ũ21)

2 − 1
72

(ũ3)
2

(ũ21)
2

− 1
108

(ũ3)
2
ũ11ũ

3
1 − 1

27
ũ2ũ3ũ21ũ

3
1 − 5

432
(ũ2)

2
(ũ31)

2 − 1
216
ũ1ũ3 (ũ31)

2 − 1
2592

(ũ3)
4

(ũ31)
2

− 5
144

(ũ4)
2

(ũ31)
2 − 1

4
ũ4ũ21ũ

4
1 − 1

9
ũ3ũ4ũ31ũ

4
1 − 1

8
ũ2 (ũ41)

2 − 1
24

(ũ3)
2

(ũ41)
2

− 1
432

(ũ2)
2
ũ3ũ32 − 1

216
ũ1 (ũ3)

2
ũ32 − 1

144
ũ3 (ũ4)

2
ũ32

)
ε2 +

(
− 1

1458
ũ3 (ũ31)

4 + 1
144

(ũ31)
2ũ12

+ 5
216
ũ21ũ

3
1ũ

2
2 + 1

48
ũ3 (ũ22)

2 + 1
36
ũ11ũ

3
1ũ

3
2 + 7

7776
(ũ3)

2
(ũ31)

2ũ32 + 1
54
ũ3ũ12ũ

3
2 + 5

216
ũ2ũ22ũ

3
2+

5
5184

(ũ3)
3

(ũ32)
2 + 5

72
ũ31ũ

4
1ũ

4
2 + 5

72
ũ4ũ32ũ

4
2 + 1

16
ũ3 (ũ42)

2 + 1
108
ũ3ũ11ũ

3
3 + 1

3888
(ũ3)

3
ũ31ũ

3
3

− 1
540

(ũ2)
2
ũ34 − 1

270
ũ1ũ3ũ34 − 1

180
(ũ4)

2
ũ34

)
ε4 +

(
5

15552
(ũ31)

2 (ũ32)
2 + 1

1458
ũ3 (ũ32)

3

− 1
112

(ũ23)
2 − 1

1296
(ũ31)

3ũ33 − 11
3888

ũ3ũ31ũ
3
2ũ

3
3 − 13

1512
ũ13ũ

3
3 − 1

864
(ũ3)

2
(ũ33)

2 − 3
112

(ũ43)
2

− 7
77760

ũ3 (ũ31)
2ũ34 − 1

2430
(ũ3)

2
ũ32ũ

3
4 + 1

135
ũ11ũ

3
5 + 1

4860
(ũ3)

2
ũ31ũ

3
5

)
ε6 +

(
− 55

108864
ũ32 (ũ33)

2

+ 65
54432

ũ31ũ
3
3ũ

3
4 + 241

388800
ũ3 (ũ34)

2 − 1
1620

ũ31ũ
3
2ũ

3
5 + 1

30240
ũ3ũ33ũ

3
5 − 1

6480
(ũ31)

2ũ36

− 1
2430

ũ3ũ32ũ
3
6

)
ε8 +

(
− 41

194400
(ũ35)

2 + 13
68040

ũ33ũ
3
7

)
ε10
]
dx

which, up to a ∂x-exact term, agrees with (1.17).

Corollary 2.3. For the D4 Dubrovin-Saito cohomological field theory, the double ramification
hierarchy written in normal coordinates coincides with the Dubrovin-Zhang hierarchy which is
the D4 Drinfeld-Sokolov hierarchy.

Proof. We have established by direct computation that KDZ
ũ = KDR

ũ and h1,1 = g1,1. It was
proved in [BG16] that this is sufficient for DZ or DR hierarchies of a CohFT with the same genus
0 part to coincide at all genera. The identification of the DZ hierarchy of the D4 Dubrovin-Saito
CohFT with the D4 Drinfeld-Sokolov hierarchy was proved in [GM05, FGM10]. �

2.5. B3 and G2 double ramification hierarchies. In [FFJMR10] it is proved that the D4

Dubrovin-Saito CohFT and the FJRW theory of the singularity D4 : W = x3 + xy2 with sym-
metry group 〈J1〉 where J1(x, y) = (e2πi

1
3x, e2πi

1
3y) and of the singularity DT

4 : W = x3y + y2

with symmetry group Gmax = 〈J2〉 where J2(x, y) = (e2πi
1
6x, e2πi

1
2 ) are all isomorphic.

In [LRZ15] it was shown that the FJRW theory for (D4, 〈J1〉) and (DT
4 , Gmax) carry are in-

variant with respect to the action of further symmetry groups Z3 and Z2 respectively.

Via the isomorphism and using our presentation from section 2.3 for the Dubrovin-Saito
CohFT, we can express the action of the generators of these symmetries on the phase space V
in the following way:

(2.9) Z2 :


e1 7→ e1
e2 7→ e2
e3 7→ e3
e4 7→ −e4

, Z3 :


e1 7→ e1
e2 7→ −1

2
e2 − 3

2
e4

e3 7→ e3
e4 7→ 1

2
e2 − 1

2
e4

.

In fact one can directly verify that the corresponding actions on the coordinates (t1, . . . , t4)
leave the Frobenius potential (2.4) unchanged and, by unicity of the Givental-Teleman recon-
struction, this symmetry is inherited by the Dubrovin-Saito CohFT at all genera.

It was proved in [LRZ15] that the restriction of a CohFT with a finite symmetry to the in-
variant subspace of V is a partial CohFT (i.e. a system of linear maps satisfying all the axioms
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of a CohFT with the exception of the gluing axiom at non-separating nodes). The authors
then remark that, although the Dubrovin-Zhang hierarchy cannot be directly constructed for
partial CohFTs, the two restrictions of the D4 Dubrovin-Zhang hierarchy to the invariant sec-
tors with respect to the two above symmetries give well defined integrable systems, isomorphic
respectively to the B3 and G2 Drinfeld-Sokolov hierarchies.

In contrast, in [BDGR18] it was shown how that the double ramification hierarchy construc-
tion works for partial CohFTs too. All this then proves the following theorem.

Theorem 2.4. The double ramification hierarchy associated to the restriction of the D4 Dubrovin-
Saito CohFT to the invariant subspace with respect to the Z2 action described in (2.9) is the
integrable hierarchy with Hamiltonian operator

KDR
u =

 0 0 6∂x
0 6∂x 0

6∂x 0 0


and Hamiltonian densities defined by equation (2.3), where g1,1 is obtained from the D4 Hamil-
tonian (2.8) by imposing u4k = 0. It is equivalent to the B3 Drinfeld-Sokolov hierarchy.

The double ramification hierarchy associated to the restriction of the D4 Dubrovin-Saito
CohFT to the invariant subspace with respect to the Z3 action described in (2.9) is the in-
tegrable hierarchy with Hamiltonian operator

KDR
u =

(
0 6∂x

6∂x 0

)
and Hamiltonian densities defined by equation (2.3), where g1,1 is obtained from the D4 Hamil-
tonian (2.8) by imposing u2∗ = u4∗ = 0. It is equivalent to the G2 Drinfeld-Sokolov hierarchy.

3. Quantum double ramification hierarchy for the D4 Dubrovin-Saito CohFT

3.1. Quantum double ramification hierarchy. In [BR16b] Buryak’s original definition of
the integrable hierarchy associated to a CohFT was upgraded to include a quantization of
the classical double ramification hierarchy. It consists of a system of quantum differential

polynomials Gα,d ∈ (Â~)[≤0], 1 ≤ α ≤ N , d ≥ −1 , where Â~ = Â[[~]] and deg ~ = −2, such that

Gα,d|~=0 = gα,d. Similarly we define Λ̂~ = Â~/(Im∂x⊕C[[ε, ~]]) and the images Gα,d =
∫
Gα,ddx

of Gα,d in this quotient commute with respect to a star product that canonically quantizes the
Hamiltonian operator KDR = η∂x, i.e.

[Gα,p, Gβ,q] = 0, 1 ≤ α, β ≤ N, p, q ≥ −1

where, for any f ∈ Â~ and g ∈ Λ̂~, [f, g] =
∫

[f, g]dx and

[f, g] =
∑
n≥1

r1,...,rn≥0
s1,...,sn≥0

(−i)n−1~n

n!

∂nf

∂uα1
s1 . . . ∂uαnsn

(−1)
∑n
k=1 rk

(
n∏
k=1

ηαkβk

)
×

×
2n−1+

∑n
k=1(sk+rk)∑
j=1

Cs1+r1+1,...,sn+rn+1
j ∂jx

∂ng

∂uβ1r1 . . . ∂u
βn
rn

.

(3.1)

with

Ca1,...,an
j =

{
(−1)

1
2
(n−1+

∑
ai−j)C̃a1,...,an

j , if j = n− 1 +
∑n

i=1 ai (mod 2),

0, otherwise.
(3.2)
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and

k∏
i=1

Li−di(z) =

k−1+
∑
di∑

j=1

C̃d1,...,dk
j Li−j(z), Li−d(z) :=

∑
k≥0

kdzk.(3.3)

In case the CohFT is homogeneous of degree deg cg,n = δ(g − 1), then we have the following
grading for the quantum DR hierarchy:

|uαk | = 1− deg eα, |ε| = 1− δ
2

, |~| = 2− δ, |Gα,d| = d+ 3− δ − |uα|

In light of the results of section 2, the DR quantization procedure can be applied to obtain
a quantization of the D4 Drinfeld-Sokolov hierarchy, similarly to what was achieved in [BG16]
for the An Gelfand-Dickey hierarchies, for n ≤ 4.

3.2. Quantum systems of DR type and the quantum D4 hierarchy. In [BDGR16b] the
quantum version of Theorem 2.1 was also proved. We recall it here as, again, it will be applied
to compute the D4 quantum DR hierarchy. Let us consider the quantum Hamiltonian system

defined by a Hamiltonian H ∈ (Λ̂~)[≤0] with respect to the standard quantum commutator

introduced above. Consider the operator D~
H

: Â~[[z]]→ Â~[[z]] defined by

D~
H
f(z) = ∂x ◦ (D − 1)− z

~
[·, H], D :=

∑
k≥0

uαk + ε
∂

∂ε
+ 2~

∂

∂~
.

We warn the reader that we have upgraded the definition of the operator D. Suppose there

exist N solutions Gα(z) ∈ (Â~)[≤0][[z]], α = 1, . . . , N , to D~
H
Gα(z) = 0 with the initial con-

ditions Gα(z = 0) = ηαµu
µ. Then a new vector of solutions can be found by the following

transformation

(3.4) Gα(z) 7→ Aµα(z)Gµ(z) +Bα(z),

where Aµα(z) = δµα +
∑

i>0A
µ
α,iz

i ∈ C[[z]] and Bα(z) =
∑

i>0Bα,i(ε, ~)zi ∈ C[[ε, ~, z]].

Theorem 3.1 ([BDGR16b]). Assume that H ∈ (Λ̂~)[≤0] has the following properties:

(a) there exist N independent solutions Gα(z) =
∑

p≥0Gα,p−1z
p ∈ (Â~)[≤0][[z]], α = 1, . . . , N ,

to the equation

(3.5) D~
H
Gα(z) = 0

with the initial conditions Gα(z = 0) = ηαµu
µ,

(b)
δH

δu1
=

1

2
ηµνu

µuν + ∂xR + c(ε, ~), R ∈ (Â~)[≤−1], c(ε, ~) ∈ C[[ε, ~]],

(c) G1,1 = H.

Then, up to a transformation of type (3.4), we have

(i) G1,0 =

∫ (
1

2
ηµνu

µuν
)
dx,

(ii) [Gα,p, Gβ,q] = 0, α, β = 1, . . . , N, p, q ≥ −1,

(iii)
1

~
[Gα,p, Gβ,0] = ∂x

∂Gα,p+1

∂uβ
, β = 1, . . . , N, p ≥ −1,

(iv)
∂Gα,p

∂u1
= Gα,p−1, α = 1, . . . , N, p ≥ −1,

Again, we call a system of densities like the one described in the theorem above a quantum
integrable system of double ramification type and we recall from [BDGR16b] that the quantum
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DR hierarchy of any CohFT is of this type. In particular one has the quantum version of
equation 2.3,

(3.6) ∂x(D − 1)Gα,d+1 =
1

~
[Gα,d, G1,1], Gα,−1 = ηαµu

µ, 1 ≤ α ≤ N, d ≥ −1.

The following theorem is readily proved by direct computation along the line of Theorem 3.2.

Theorem 3.2. The quantum double ramification hierarchy for the D4 Dubrovin-Saito cohomo-
logical field theory is the quantum integrable hierarchy with quantum commutator given by (3.1)
and quantum Hamiltonian densities defined by equation (3.6), where

G1,1 = g1,1 + i~
∫ [
−13u3ε4

9072
+

(
− 1

540

(
u3
)2

+
1

108

(
u31
)2 − 1

135

(
u32
)2)

ε2 − 1

432

(
u3
)3

+
1

144
u3
(
u31
)2 − u1

6

]
dx

Proof. Since the D4 Dubrovin-Saito CohFT is homogeneous with δ = 2
3
, all variables have

positive degrees given by (2.7) and |~| = 4
3
. Since |G1,1| = 7

3
the quantum correction to the

classical DR Hamiltonian g1,1 is a polynomial and imposing the conditions of theorem 3.1
determine it uniquely up to a normalization constant for ~. The latter is fixed by recalling
that, by definition (see [BR16b]), for any CohFT we have Coefu1i~G1,1 = − 1
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