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A Redundant Parallel Robotic Machining Tool:
Design, Control and Real-Time Experiments

H. Saied, A. Chemori, M. Michelin, M. El Rafei, C. Francis and F. Pierrot

Abstract In this chapter, we present a machining device, named ARROW, designed
with the architecture of a redundant parallel manipulator capable of executing five
degrees-of-freedom in a large workspace. Machine-tools based on parallel robot de-
velopment are considered a key technology of machining industries due to their
favourable features such as high rigidity, good precision, high payload-to-weight
ratio and high swiftness. The mechanism of ARROW robot isolates its workspace
from any type of inside singularities allowing it to be more flexible and dynamic. An
improved PID with computed feedforward controller is implemented on ARROW
robot to perform real-time experiments of a machining task. The control system
deals with antagonistic internal forces caused by redundancy through a regulariza-
tion method, and achieves a stability conservation in case of actuators saturation.
The results are evaluated using a root mean square criteria over all the tracking error
confirming the high accuracy and good performance of ARROW robot when used
for machining operations.

1 Introduction

Machining is the process of a controlled material-removal that makes a desired de-
formation in the shape and size of raw materials. The theme of material-removal
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classifies machining in the subtractive manufacturing classes [6]. It is considered
as an essential part in the manufacturing of many products based on metal, wood,
plastic, ceramic, and composites. The conventional term, ”machining”, refers to a
set of processes such as turning, boring, drilling, milling, broaching, sawing, shap-
ing, planing, reaming, tapping ... etc [3]. Nowadays, most of the recently mentioned
operations are carried out by Computer Numercial Control (CNC) in which the com-
puters are used to control the movement and act of shaping.

Three principal operations of machining are classified as turning, drilling and
milling. All other operations are considered as miscellaneous categories described
in what follows:

• Turning operation is performed by rotating the workpiece and facing it over the
cutting tool as shown in Fig. 1(a).

• Milling operation is the operation in which the cutting tool rotates bringing the
cutting edges to bear against the workpiece, see Fig. 1(b).

• Drilling operation is the most common machining process. It is the generation
of cylindrical holes by bringing the rotating cutter with cutting edges into the
workpiece as illustrated in Fig. 1(c).

• Miscellaneous operations are secondary swarf producing operations performed
on the workpiece after the principal machining processes using the typical ma-
chining tools. For example: boring, broaching, burnishing ... etc.

The successful design of machine-tools is based on several requirements such
as: high accuracy resulting in a best surface integrity, acceptable level of vibration,
high speeds and feeds increasing the productivity, high static stiffness of the dif-
ferent machine-tool elements such as structure, joints, and spindles, avoidance of
unacceptable natural frequencies that may cause resonance of the machine-tool, and
finally adopting modern control techniques [27].

Traditional machine-tools are based on serial manipulators designed as a series
of links connected via actuated joints from the base to the end-effector (see Fig. 2).

(a) (b) (c)

Fig. 1 Principal machining operations. (a) turning. (b) milling. (c) drilling [4].
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Fig. 2 Illustration of Kinematic manipulators. (a) serial manipulators. (b) parallel manipulators.
[8].

These manipulators, known with their large range of motions, lack to the good ac-
curacy and high stiffness. Moreover, they have low dynamic response and valuable
level of vibration [8, 11].

Parallel Kinematic Manipulators (PKMs) offering many advantages over their
serial counterparts are welcomed candidates to be the future machining robots. Ac-
cording to [11], any structure made up of a fixed base and traveling plate linked to-
gether with at least two independent kinematic chains is called a PKM (see Fig. 2).
PKMs provide large accuracy, low vibration, high acceleration capabilities thanks
to the light moving parts, and high stiffness due to the closed-chains structure. How-
ever, these manipulators are characterized by a limited workspace especially in the
rotational motion. In the addition to their complexity in the forward kinematic solu-
tions, and the considerable number of singularities inside and on the borders of their
workspace [8, 11].

Due to the satisfying features of PKMs, they have achieved a real success in var-
ious applications other than machining. PKMs are considered the leading robots in
the automated industrial applications, particularly in the pick-and-place food pack-
aging tasks which require rapid execution maintaining an acceptable precision [18].
Also they are used in the field of laser cutting operations [1], medical applications
(Robot-Assisted Surgery (RAS) [23], CardioPulmonary Resuscitation (CPR) [9]),
flight simulators (Stewart platforms [24]), Haptic devices (delta robot [5]).

Beside their closed-chains structure which increases the stiffness, decreases the
level of vibration and enhances the precision, PKMs shall be equipped with ad-
vanced control techniques to have the best performance of automation. Control of
PKMs is considered as a very challenging task in the literature due to a set of factors
including:

• PKMs are known by their higly nonlinear dynamics which may increase consid-
erably when operating at high speeds.
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• Actuation redudancy which means that the number of actuators is greator than
the number of degrees of freedom [11] exists in some parallel robots.

• Uncertainties and variations of the dynamics and operating conditions are often
present in PKMs.

Several control techniques have been proposed and studied in the literature starting
from the non-model-based non-adaptive and adaptive controllers, ending up with
model-based non-adaptive and adaptive controllers. One can mention few examples
from the aforementioned classes of control implemented on PKMs respectively:
Proportional-Integral-Derivative (PID) [29, 18], nonlinear PID [25], Augmented PD
(APD) [28], Adaptive Feedforward plus PD [2, 17], Desired Compensation Adap-
tive Control Law (DCAL) [12], Adaptive controller based on the Robust Integral
of the Sign of the Error (RISE) [13], Feedforward Compensation in L1 Adaptive
Control [14].

This chapter introduces a five-degree-of-freedom redundantly actuated PKM
named ARROW1 characterized by the good compromise between rapidity and pre-
cision developed for machining tasks. In section 2, a general overview on ARROW
PKM’s structure is stated, in addition to the kinematic and dynamic modeling with
a brief presentation of the analyzed singularities. Section 3 describes the machin-
ing task to be tested, the required trajectory generation, and the proposed control
solution. Experimental results are illustrated, discussed and interpreted in section 4.
Finally, section 5 concludes the chapter and provides future work suggestions.

2 ARROW PKM: General Overview, Modeling and Singularity
Analysis

The ARROW robot is a redundantly actuated PKM has been designed and developed
at LIRMM within the ARROW project1. This section covers the general description
of ARROW PKM, the detailed inverse kinematic model, the differential kinematics
and dynamics associated to ARROW robot, and a brief analysis for the singularities
related to the operational workspace. Note that the reader can refer to [21, 22] for
further information.

1 ARROW project: a national french research project financed by the National Research Agency
(ANR). Its main objectives can be summarized in the design of Accurate and Rapid Robots with
large Operational Workspace, from which the acronym ARROW has been derived. The project
embraces three partners: IRCCyN (Institut de Recherche en Communication et Cyberntique de
Nantes), LIRMM (Laboratory of Informatics, Robotics and Microelectroncs of Montpellier) and
Tecnalia France.
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2.1 General Overview of ARROW PKM

The structure of ARROW PKM consists of two separate modules as illustrated in
Fig. 3: the parallel module and the turntable. The parallel module involves six linear
actuators each pair lays in the same slider track and equidistant each other. This
configuration facilitates the geometric calibration and reduces the overall cost from
manufacturing point of view. These six actuators are linked by means of spherical
joints to the kinematic chains which are attached to the articulated traveling plate by
revolute joints (see Fig. 4). The idea behind using revolute joints is to avoid some
possible internal collisions between the arms. The two intermediate parallelogram
arms are responsible of the rotation of the traveling plate around the vertical axis
parallel to the z-axis, while its position and orientation are originated from the settle
of all the actuators together. Note that the traveling plate can reach ±45◦ as limits
for its allowable range of rotation around z-axis. Thus, the prismatic motion of the
linear actuators sets up the traveling plate in 3T-1R2 dofs.

The turntable is placed facing the parallel module (of Fig. 3) and kept outside
the severe zone of collision with the traveling plate. It is actuated with two rotating
motors allowing it to turn around the axis parallel to the x-axis of the fixed frame
shown in Fig. 4(a). It handles the object to be machined and provides the 5th ro-
tational dof to the motion range of the traveling plate. It is equipped with a spring
assembly, as illustrated in Fig. 5, contributing against gravitational effect and allows
maintaining the turntable orientation fixed without any need to the motors torques.
This is beneficial regarding energy saving and reduces control efforts.

From a control point of view, the main part to be controlled is the parallel mod-
ule. It holds the machining tool represented as a traveling plate which is a milling
machine in our case. Implementing robust control algorithms to the linear actuators
will set up the machine-tool in a precise tracked trajectory for machining purpose.

2.2 Modeling of ARROW PKM

This part explains in details the kinematic, differential kinematic and dynamic mod-
els of ARROW robot. In view of the reported mutations in [22] that have been sug-
gested to implement ARROW PKM avoiding internal arm collisions, the Forward
Kinematic Model (FKM) is difficult to establish if not impossible. Thus, only the
Inverse Kinematic Model (IKM) will be presented and clarified.

Fig. 6 shows the parallel module with some notations to be used in modeling. Six
arms numbered from I to VI are grouped as simple and parallel arms. The lengths
Li(i = 1,2,5,6) of the simple arms are equal to Ls, while lengths Li(i = 3,4) of the
parallel arms are equal to Lp.

2 ”T” corresponds to translational motion and ”R” corresponds to rotational motion.



6 H. Saied, A. Chemori, M. Michelin, M. El Rafei, C. Francis and F. Pierrot

Fixed base

Linear actuators
Simple arms

Slider

Parallelogram

Rotating actuator

Turntable

Moving platform

(milling tool)

Fig. 3 CAD view of the ARROW machining PKM.

(a) (b)

Fig. 4 ARROW PKM. (a) 3D CAD view of the parallel module. (b) graph diagram [22].

Two frames are defined for the modeling: Base frame (O,ex,ey,ez) and Platform
frame (P,exp,eyp,ezp) (see Fig. 9, Fig. 8). The following recorded points are coor-
dinated in the base frame:

• Ai = (xi yi zi)
T = (qi yi zi)

T is the point attached to the spherical joint
for i = 1,2,5,6 and the center of the linear actuator for i = 3,4. qi is the position
of the linear actuator in the x-direction ∀i = 1, ..,6 (see Fig. 6).

• Bi = (xbi ybi zbi)
T ∀i = 1, ..,6 and Di = (xdi ydi zdi)

T for i = 1,2,5,6
are the points attached to the revolute joints at the level of the platform, and that
is shown clearly in the schematic view of Fig. 9. For i = 3,4, Di is centered
between the two revolute joints of the platform on its y-axis (see Fig. 8).



Title Suppressed Due to Excessive Length 7

Fig. 5 Close side view to the CAD drawing of ARROW PKM showing the springs used in the
turntable. [22].

(I)(II)

(III)(IV)

(V)(VI)

Fig. 6 Facing CAD view of the parallel module of ARROW PKM with some notations. [22].

• Ci = (xci yci zci)
T is the intersection between two lines perpendicular to the

axes of revolution of both revolute jointsBi andDi ∀i = 1, ..,6 (see Fig. 9).

In Fig. 7, we can see the distance separating two points Ai and Ai+2 evaluated
by Lz ∀i = 1,2,3,4. Moreover, Di, for i=1,2,5,6, are located at distance ”a” from the
y-axis in the platform frame.

Two mandatory assembly conditions for the mechanism to function properly are
given in the following two equalities:

Lz 6= a, Here Lz is chosen greater than a. (1)

qi = xi ≤ xdi ≡ xdi+1 ≤ qi+1 = xi+1,∀i = 1,3,5 (2)
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Fig. 7 Side CAD view of the parallel
module of ARROW PKM. [22].

Fig. 8 Side CAD view of the traveling plate of
ARROW PKM. [22].

Fig. 9 ARROW PKM: schematic view of a kinematic chain with different notations.

2.2.1 Inverse Kinematic Model

Regarding the parallel module of ARROW PKM, the position and orientation of
the moving platform in the 3T-1R DoFs is represented by the 4-dimensional coor-
dinate vectorXPM = (x y z θz)

T . The six actuators positions are parametrized
by the 6-dimensional coordinate vector qPM = (q1 q2 q3 q4 q5 q6)

T . IKM
represents the transformation between the cartesian space (XPM) and the joint space
(qPM) for any configuration in the workspace.

Knowing the end-effector posture XPM in the base frame and the coordinates of
Di in the platform frame PDplat

i , we getDi as follows:

Di = P +R(PDplat
i ), f or i = 1, ..,6 (3)

where P = (x y z)T is the 3T coordinates of the end-effector, and R ∈ R3×3 is
the basic rotation matrix of the platform frame around the z-axis. Note that Bi, Ci
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andDi are in the same horizontal plane (xy), whereasAi,Bi andCi remain in the
same vertical plane as illustrated in Fig. 9. Thus, A†

i, the projection of Ai on the
xy plane, is collinear with Bi and Ci. Then, a right triangle is formed at Ci in the
horizontal plane and we get the following equation:

||A†
iDi||

2 = ||A†
iCi||

2 + ||CiDi||2, f or i = 1, ..,6 (4)

||A†
iCi|| can be calculated using the collinearity property of A†

i, Bi and Ci as
follows:



||A†
iCi||= ||A

†
iBi||+ ||BiCi||, ∀i = 1, ..,6

||BiCi||= ri, constant value

||A†
iBi||=

√
||AiBi||2−||AiA†

i||2, right triangle
4

AiA
†
iBi

=

√
L2

i − (zi− z†
i )

2

z†
i = zbi = zdi

(5)

Knowing that ||CiDi||= r′i is a constant value, one can substitute (5) in (4) and get
the length ||A†

iDi||. Then, replace the value of ||A†
iDi|| in the following equation:


||A†

iDi||=
√

(x†
i − xdi)2 +(y†

i − ydi)2 +(z†
i − zdi)2, ∀i = 1, ..,6

=
√

(qi− xdi)2 +(yi− ydi)2

z†
i = zbi = zdi, x†

i = xi = qi

(6)

Based on the assembly mode condition mentioned in (2), the IKM of ARROW PKM
parallel module is derived by solving (6) and written as follows:

qPMi = xdi +(−1)i
√
||A†

iDi||2− (yi− ydi)2, ∀i = 1, ..,6 (7)

As discussed before, the turntable adds the 5th DoF to ARROW robot allowing
the rotation around x-axis. IKM of the turntable delivers the joints position, knowing
the value of the rotational angle is θx, as follows:{

qT 1 = θx

qT 2 =−θx
(8)
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2.2.2 Differential Kinematic Model

The differential Kinematic model of the parallel module can be defined as a relation
between the moving platform’s velocity, ẊPM , and the actuated joints velocity, q̇PM .
The matrix links both velocities known as Jacobian is derived in this paragraph.

As AiBi is supposed to be a rigid body doesn’t change its length whatever is
the configuration of the robot, we have:

AiBi
TvAi = AiBi

TvBi ∀i = 1, ..,6 (9)

with the velocities of vAi and vBi being respectively:

vAi = q̇iex ∀i = 1, ..,6 (10)vBi = vDi +whp×DiBi, ∀i = 1, ..,6

vDi = vP +wPlat ×PDplat
i

(11)

where whp = ψ̇iez ∀i = 1, ..,6 and wPlat = θ̇iez ∀i = 1, ..,6 are the angular veloc-
ities of the horizontal plane BiCiDi and the moving platform respectively (see Fig.
9), knowing that both axes of rotation are parallel to the z-axis in the base frame.
Substituting (10) and (11) in (9) yields to a relation where q̇PM and ẊPM are cou-
pled to ψ̇. So, there is need to find another equation that leads to uncoupled relation
between q̇PM and ẊPM . This equation is expressed by writing vAi in terms of vBi

and warm knowing that each arm AiBi is performing two rotations: one around
an axis parallel to the z-axis in the base frame and the other is around the axis µi
defined in Fig. 9. The expression will be as follows:

vAi = vBi +warm× (−AiBi), ∀i = 1, ..,6

warm =wAiBi = ϕ̇iµi+ ψ̇iez

µi =
ri×ez
||ri×ez ||

(12)

From the relations in (9) and (12), with some computations and simplifications, the
Inverse Differential Kinematic Model (IDKM) for the parallel module is derived
and the form of the inverse Jacobian matrix, Jm, is obtained:
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JqPM q̇PM = JXPMẊPM =⇒ q̇PM = JmẊPM with Jm = J−1
qPM
JXPM

JqPM =


(m1

T ex)(e
T
z (L1×µ1))

. . .

(m6
T ex)(e

T
z (L6×µ6))



JXPM :



JX (i,1) = (eTz (Li×µi))(eTxmi)

JX (i,2) = (eTz (Li×µi))(eTymi)

JX (i,3) = (eTz (ni×µi))(eTzmi)

JX (i,4) =−(eTz (Li×µi))(eTz (mi×PDplat
i ))

ni =AiCi, ∀i = 1, ..,6

mi =AiDi, ∀i = 1, ..,6
(13)

Note that Jm is not invertible in the case of redundant actuated PKMs, so the
pseudo-inverse of the inverse Jacobian is used as a solution widely adopted in
robotics. Thus, the Forward Differential kinematic Model (FDKM) of the parallel
module is obtained as follows:

ẊPM = J∗mq̇PM (14)

where J∗m ∈ R4×6 is the pseudo-inverse of the inverse Jacobian matrix.
In regard to the turntable, the IDKM can be obtained by differentiating the equa-

tions of (8) as the following: {
q̇T1 = θ̇x

q̇T2 =−θ̇x
(15)

2.2.3 Dynamic Model

To establish the dynamics of the parallel module of ARROW PKM, two assumptions
have been taken into consideration, similar for the hypothesis applied usually on
Delta-like robots, are mentioned below:

1. The dry and viscous friction forces are neglected in all passive and active joints.
2. The rotational inertia of the arms is neglected, due to their small masses in com-

parison with the other components. The mass of each arm is split up into two
equivalent parts, one part is added to the mass of the corresponding linear actua-
tor while the other part is considered with the moving platform.

Applying the law of motion on the linear actuators gives the following equation:
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f

Ma = diag(mas,mas,map,map,mas,mas)
(16)

where mas ∈ R is the mass including the actuator, moving cart and the half-mass of
the simple arm, while map ∈ R is the mass including the actuator, moving cart and
the half-mass of the parallelogram arm. Ma is called the actuators’ inertia matrix.
ΓPM ∈ R6 is the vector representing the six actuation forces provided by the linear
motors. JqPM ∈ R6×6 is the joint Jacobian matrix defined in (13). f ∈ R6 is the
vector of the applied forces on the arms, at Ai, resulting from the acceleration and
gravitational forces acting on the platform.

The dynamics of the moving platform is described by Newton-Euler’s method as
follows: 

MPẌPM +ΛcẊPM = JTXPM
f +mPg

MP =


mP 0 0 −bmP sin(θz)

0 mP 0 bmP cos(θz)

0 0 mP 0
−bmP sin(θz) bmP cos(θz) 0 Ipzz



Λc =


0 0 0 −bmP cos(θz)

0 0 0 −bmP sin(θz)

0 0 0 0
0 0 0 0



(17)

withMP andΛc are the mass matrix and the centrifugal and Coriolis effects of the
moving platform respectively. JXPM ∈R6×4 is the Cartesian Jacobian matrix defined
in (13). mP ∈R symbolizes the total mass of the traveling plate including the added
half-masses of the arms, and g = (0 0 − 9.8m/s2 0)T is the gravity acceleration
acting on it. The term ”b” refers to the x-coordinate belonging to the center of mass
of the cluster formed by the platform and the added point masses on Bi, whereas
”Ipzz” refers to the total moment of inertia about the z-axis through TCP of the same
formed cluster.

The mass mP and the moment of inertia Ipzz are given as follows:

mP = (mass o f plat f orm)+
1
2

6

∑
i=1

(mass o f arm)i (18)

Ipzz = Iplat f orm +
6

∑
i=1

Ii (19)

for which Iplat f orm is the moment of inertia about the z-axis passing through TCP
only of the platform’s body, and Ii is that of the point mass formed at Bi after making
assumption (2) around the same axis.
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Differentiating the IDKM obtained in (13) delivers the acceleration kinematic
relation as: q̈PM = JmẌPM + J̇mẊPM . By the use of this relation and equations of
(16) and (17), one can formulate the Direct Dynamic Model (DDM) of the parallel
module as follows:

ẌPM =HΓPM−ΛẊPM +AG (20)

whereH ∈ R4×6, Λ ∈ R4×4 andAG ∈ R4 are expressed by:

H =

(
MP +JTmMaJm

)−1

JTm, dim(H) = 4×6

Λ=HMaJ̇m+

(
MP +JTmMaJm

)−1

Λc, dim(Λ) = 4×4

AG =

(
MP +JTmMaJm

)−1

mPg, dim(AG) = 4×1

(21)

The Inverse Dynamic Model (IDM) of the parallel module can be reformulated
from (20) by getting the actuator forces vector ΓPM as function of the moving plat-
form’s position XPM and its derivatives. In case of actuation redundancy, there is
no unique ΓPM vector for a specific desired acceleration. Considering the minimum
norm solution of ΓPM and maintaining the condition of |ΓPMi | ≤ ΓPMmax ∀i =
1, ..,6 (all actuators are similar) [21], the IDM of the parallel module is then ar-
ranged in joint space as follows:

ΓPM =H∗
(

ẌPM +Λ ẊPM−AG

)
(22)

withH∗ ∈ R6×4 being the peusdo-inverse ofH .
Considering the dynamics of the turntable part, the varying inertia of the object

to be machined is neglected due to the low acceleration needed for the tuntable
rotation. The total moment of inertia of turntable with respect to the axis of rotation
is given as follows:

IT = 2Iact + Itxx (23)

where Iact is the rotative motor’s inertia and Itxx is the inertia of the table rotating
around its proper axis which is x-axis. Assuming that the gravitational effect is com-
pensated for by the springs (see Fig. 5), meaning that the effect of gravity and spring
cancel each other, the IDM of the turntable is given by the following equations:{

ΓT1 = (IT θ̈x)/2
ΓT2 =−ΓT1

(24)

with ΓT1 and ΓT2 being the torques provided by the rotative actuators driving the
turntable into its rotational operation.
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2.3 Singularity Analysis

In this branch, a summarized singularity analysis is stated asserting that within the
feasible workspace no existence for all types of singularities [22]. Two cases have
been studied: constraint and classical singularity analysis.

At first, let the desired workspace be defined as follows:

(x) :−1.5m≤ qi ≤+1.5m

(y) :−0.15m≤ y− y0 ≤+0.15m

(z) :−0.15m≤ z≤+0.15m

(θz) :−45◦ ≤ θz ≤+45◦

(θx) :−45◦ ≤ θx ≤+45◦

(25)

with y0 being the y offset of the center of the desired workspace knowing that the
axis of rotation of the turntable passes through P0 = (0 y0 0)T and parallel to
the x direction.

2.3.1 Constraint Singularities

Constraint singularities occur when the pair of complex chains (III) and (IV) per-
form undesired rotation for the platform. Normally, the angular velocity of the plat-
form is represented by the vector wP = (wx = 0,wy = 0,wz)

T . Only the two com-
plex arms are considered in this study with modifying the position of P ≡ TCP to
be confounded withD3 ≡D4 for more simplicity. Fig. 10 shows the virtual equiv-
alent chains with the modification, and defines new notations and subscripts i j with
i = 3,4 and j = 1,2.

Investigating the constraint singularities starts from analysing the following
equation: 

vAi j = vAi = vBi j +wai j × (−Li j), ∀i = 3,4;∀ j = 1,2

wai j =wP + ψ̇i jez+ ϕ̇i jµi j
(26)

Recalling that in the absence of any constraint singularity we should have wx =
wy = 0 and normal generation for all necessary velocities (vx,vy,wx,wy, ψ̇i j, ϕ̇i j,∀i=
3,4;∀ j = 1,2), (26) yields to the condition below:

h
(
m3xm4y−m3ym4x

)(
L3xµ3y−L3yµ3x

)(
L4xµ4y−L4yµ4x

)
6= 0 (27)

From (27), one can distinguish three cases lead to constraint singularity:
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Fig. 10 The complex chains (III) and (IV) with notations [22].

1. h = 0. This is not possible because h is restricted to be opposite to zero by man-
ufacturing process.

2.
(
m3xm4y−m3ym4x

)
= 0. This means the xy projections of m3 and m4 are

collinear. This practically is preceded by collision between platform and slider’s
wall, or between the actuators. So it is on the borders or outside the accessible
workspace.

3.
(
L3xµ3y−L3yµ3x

)
= 0 or

(
L4xµ4y−L4yµ4x

)
= 0. These two terms are simul-

taneously zero or non-zero due to the structural symmetry of the mechanism. If
both are zero, this means that L3//L4//ez which comes after a collision in the
exterior region of the allowed workspace.

Therefore, the analysis outcomes guarantee that there are no constraint singular-
ities within the operational workspace.
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2.3.2 Classical Singularities

Two cases can be defined for the classical singularities to be existing: First case is
described by knowing q̇PM but we cannot definitely determine ẊPM, ϕ̇ =(ϕ̇1, ..., ϕ̇6)

T

or ψ̇ = (ψ̇1, ..., ψ̇6)
T , second case is when knowing knowing ẊPM but we cannot

definitely determine q̇PM, ϕ̇ or ψ̇ . Mathematically, the matrices JqPM ,JXPM ,Jϕ and
Jψ should not be rank deficient in order to avoid the aforementioned two cases.
JqPM , JXPM were given in (13), and Jϕ, Jψ are derived also from equations (9) and
(12) as follows:

Jϕϕ̇= JXPMϕẊPM

Jϕ =


(eTz (L1×µ1))

. . .

(eTz (L6×µ6))



JXPMϕ =


−eT

z 0 0 0

−eT
z 0 0 0

−eT
z 0 0 0

−eT
z 0 0 0


(28)



Jψψ̇ = JXψẊPM

Jψ =


(m1

T ex)(e
T
z (L1×µ1))

. . .

(m6
T ex)(e

T
z (L6×µ6))



JXPMψ =


0 eT

z(L1×µ1) −(eT
xµ1)(e

T
zL1) (ex

TP1)(e
T
z (L1×µ1))

...
...

...
...

0 eT
z(L6×µ6) −(eT

xµ6)(e
T
zL6) (ex

TP6)(e
T
z (L6×µ6))


Pi = PD

plat
i , ∀i = 1, ..,6

(29)
The rank deficiencies of JqPM = Jψ and Jϕ are given by the following singular-

ities respectively:

det(JqPM ) = det(Jψ) = 0 ⇐⇒ ∃i0 ∈ {1, ..,6}; eTxmi0 = 0 or eTz (Li0 ×µi0)= 0
(30)

det(Jϕ) = 0 ⇐⇒ ∃i0 ∈ {1, ..,6}; eTz (Li0 ×µi0)= 0 (31)

Notice that (30) covers also the singularity of Jϕ . The case of eTxmi0 = 0 means
that mi0 is perpendicular to the x-axis of the base frame which takes place when mi0
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lays in the yz plane. Still this configuration is outside the regional workspace and it
provokes prior collisions. For the other case, when eTz (Li0 ×µi0)= 0, thenLi0//ez
which is similar to the what have been discussed in the constraint singularities of
collision between sliders and platform.

On the other hand, the rank deficiency of JXPM is studied after performing some
linear operations achieving a simpler form. The changing of P to be confounded
withD1 was for that purpose. Having a deficient rank of JXPM turns mathematically
into the following equations:

eTz (L3×µ3)= e
T
z (L4×µ4)= 0

or
eTz (m3×rc)= eTz (m4×rc)= 0

with rc =D1D3 ≡D1D4

(32)

Or
(eTz (L1×µ1))(m

T
1 ex)= 0

and
(eTz (L5×µ5))(m

T
5 ex)= 0

(33)

Or
eTz (L1×µ1)= 0 or eTz (n5×µ5)= 0 or LT5 ez = 0

and
eTz (L5×µ5)= 0 or eTz (n1×µ1)= 0 or LT1 ez = 0

(34)

Regarding the conditions in (32), for eTz (L3 ×µ3) = eTz (L4 ×µ4) = 0 it
was proved in the previous paragraph that it is not possible to occur without a
prior collision. However, the second case of condition (32) (i.e eTz (m3 × rc) =
eTz (m4×rc) = 0) can be interpreted by having the four vectors ez,m3,m4 and
rc in the same plane which is either xy or yz plane. This can be take into consid-
eration after a collision between the platform and the slider’s plane or between the
actuators numbered 3 and 4. Thus, it is not possible to have such condition within
the operating workspace. Therefore, condition (32) has no concern with singularities
inside ARROW’s workspace.

Furthermore, both cases of condition (33) have been interpreted in the previous
parts (specifically condition (30)).

Moreover, the possibility of having eTz (L1×µ1)= 0 or eTz (n5×µ5)= 0 in
condition (34) has been verified in the precedent parts that it is outside the executable
range of the platform. For the case of eTz (L5×µ5)= 0 or eTz (n1×µ1)= 0, it
can be analysed as having the three corresponding vectors laying in the same vertical
plane. Actually, we have µi ⊥ ni and µiz = 0, so the only incidents lead to the
aforementioned condition is having n1//ez or n5//ez which occur after falling
in collisions. Besides, the situations of LT1 ez = 0 and LT5 ez = 0 take place just on
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the boundaries of the workspace, but it can’t happen simultaneously because of the
assembly condition (1) that states Lz 6= a. So, as well as for conditions (32) and (33),
condition (34) has no possibility to lead ARROW robot falling in any singularity in
the feasible workspace.

Lastly, it was shown that ARROW PKM can not fall into any type of singular-
ities inside the functional workspace providing more flexibility and less danger of
structural damaging.

3 Motion Control

In this section, the implemented control solution on ARROW robot is explained
which is proportional-integral-derivative with computed feedforward. An improved
PID controller is used in our case to deal with the produced internal forces due
to redundancy. The integral term’s overshoot and oscillations in case of saturated
actuators have been avoided thanks to the anti-windup strategy added to the PID
controller to be clarified in this part.

3.1 PID Control in Case of Non-Redundancy

The Proportional-Integral-Derivative (PID) control law proposed in [29] is the sim-
plest and easiest algorithm that can be adopted for motion control of parallel robots.
Although PID is non-robust against nonlinearity effects, changing parameters and
uncertainties which are abundant in parallel robots, it is still the most implemented
control strategy in the industrial robotized applications.

In a typical non-redundant parallel robot, the PID control law employed in joint
space can be defined in discrete form as follows:

ΓPID(k) = ΓP(k)+ΓI(k)+ΓD(k)

ΓP(k) =KP q̃(k)

ΓI(k) = ΓI(k−1)+KITsq̃(k)

ΓD(k) =KD

(
q̃(k)−q̃(k−1)

Ts

) (35)

where ΓP (k), ΓI(k) and ΓD(k) are the corresponding output torques or forces of
the proportional, the integral and the derivative controllers at time step k, while
KP , KI and KD are their diagonal positive definite matrices gains respectively.
q̃ = qd−q is the joint position error vector defined by the difference between the
desired position trajectory and the measured one. Ts is the sampling period. The
schematic diagram of the PID controller for non-redundant parallel manipulators is
shown in Fig. 11.
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Fig. 11 Schematic view of the PID control for non-redundant parallel robot in joint space.

However, this control scheme doesn’t work correctly for the redundant parallel
manipulators since there are more measures than the DoFs of the moving platform,
which will be discussed in the next subsection.

3.2 PID Control in Case of Redundancy

Beside the various advantageous of the actuation redundancy in parallel robots such
as providing more accuracy, improved stiffness and more dexterity, it may declines
the control performance of PKMs in the presence of undesired internal generated
forces. These forces are mainly due to the ”fight against” actuators efforts since
there are more inputs than required to accomplish a specific end-effector motion.

3.2.1 Actuation Redundancy Effects

Fig. 12 shows the one DoF of the moving platform which is actuated by one actu-
ator for the non-redundant case and by two actuators in the redundant case. In the
ideal case shown in Fig. 12, the actuators and moving platform can always track
the desired trajectory in both cases of redundancy and non-redundancy. Indeed, ge-
ometric errors always work out from various sources such as inaccuracies in the
model geometry, measurement errors, assembly errors, non-synchronized control of
the actuators, backlashes, thermal expansion, etc [15]. In the shade of those errors,
applying the classical scheme of PID control shown in Fig. 11 may lead to an error
with the moving platform’s position tracking while still able to follow the desired
actuators position signal. On the other hand, the two actuators in the redundantly
actuated systems can hardly reach the desired positions at the same time conflicting
to each other, which may generates antagonistic internal forces that may destroy the
whole mechanism of the robot.
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The position vector q̃ can be considered as a vector from the actuator velocity
space which always be in C(Jm)3 in case of non-redundant actuated mechanisms
even with the existence of geometric errors. On the contrary, in case of redundantly
actuated mechanisms, q̃ may has some portions from the null space and not only
formed of C(Jm). These errors may accumulate in the integral term of PID control
generated as an input control torques or forces to the actuators. Thus the internal
forces of the mechanism will be more and more significant becoming destructive to
the mechanisms.

3.2.2 Adopted Solutions

Several approaches are proposed in [26] by following a general idea that is to get
rid of the null space portions of q̃ in the control loop. One of the propositions is to
perform regularization for the input of the PID block as well as for its output.

3.2.2.1 Regularization before PID block

The regularization for the input, q̃, consists of two steps described as follows:

1. Transforming the error vector from the joint space to the Cartesian space using
the velocity mapping which guarantees the elimination of any residual parts out
of C(Jm).

X̃ = J∗
mq̃ (36)

2. Calculating again the joint space error from the Cartesian one by the inverse ve-
locity mapping relationship, which results a regularized joint space error vector.

q̃Reg = JmX̃ (37)

(a) (b)

Fig. 12 Actuator measurements and the moving platform’s position. (a) Ideal non-redundant case.
(b) Ideal redundant case [26].

3 Columns of Jm
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The transformations in (36) and (37) are combined as follows:{
q̃Reg = RV q̃

RV = JmJ
∗
m

(38)

withRV being the regularization matrix in the velocity space.

3.2.2.2 Regularization after PID block

As it has been explained in [16], the internal forces are caused by the control inputs
which are in the null space of the inverse Jacobian matrix. The regularization ma-
trix projects the generated control inputs into the range space of Jm in two steps
described as follows:

1. Using the force mapping relationship, the output forces in the actuation space are
transformed to the wrench in the Cartesian space.

w = JTmΓ (39)

2. Calculating again the actuation space forces from the wrench by the inverse force
mapping relationship, which results a regularized output forces vector.

ΓReg = (JT
m)∗w (40)

The transformations in (39) and (40) are combined as follows:{
ΓReg =RΓΓ

RΓ = (JTm)∗JT
m

(41)

with RΓ being the regularization matrix in the force or torque space. It was shown
in [26] that the two regularization matrices in velocity and force spaces are equal,
RΓ =RV ≡Rm.

3.2.2.3 Regularization for the integral term

The output ΓPID(k) generated from the PID given in (42) can be shown as a linear
function of the current input to PID block q̃(k), the previous input q̃(k− 1), and
the previous output ΓPID(k− 1). This linear relation is addressed in the following
equation after several manipulations as follows:
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Fig. 13 Regularization algorithm for the integral term of PID controller in discrete form.



ΓPID(k) =α1q̃(k)+α2q̃(k−1)+α3ΓPID(k−1)

α1 =KP +TsKI +
1
Ts
KP

α2 =− 1
Ts
KD

α3 = I

(42)

To be sure that both the input and output of PID control remain in the same subspace,
we shall confirm that q̃(k−1) and ΓPID(k−1) have the same subspace as q̃(k).

For a PID block having a regularized input position error vector, q̃Reg, the C(Jm)
may conserve its dimensions but may not stay in the same subspace during opera-
tion. This may influence the output of PID block, ΓPID(k) may not stay always in
R(Jm)4. Moreover, ΓPID(k− 1) which is calculated in a recursive way may accu-
mulate undesired quantities in the null spaces. So there is a need to an independent
regularization process on the ΓPID(k− 1) to ensure the space conservation of the
input and output of PID block.

As well as the PID block with after regularization needs to a regularizedΓPID(k−
1) since the generated regularized output ΓReg eliminates the antagonistic forces
from the mechanism but doesn’t solve the problem of the increasing value of the
integral term with time.

A solution for the aforementioned problems is proposed in [26] which requires a
regularization for the integral term at each time step using the algorithm below (see
Fig. 13):

At each step time k:

1. Regularize the generated force from the applied integration on the regularized
error joint position vector q̃Reg(k).

Γ Reg
I (k) =Rm

(
Γ Reg

I (k−1)+KITsq̃Reg(k)
)

(43)

2. Update the regularized value for the next time step.

Γ Reg
I (k−1) = Γ Reg

I (k) (44)

4 Rows of Jm
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3.2.3 Anti-Windup Strategy

To this end, it has been proposed an improved PID controller to deal with the antago-
nistic forces and integral term accumulation in the null space in case of redundantly
actuated parallel robots. One more modification was employed to PID controller is
the anti-windup strategy.

During the step change in PID controller, the integral windup occurs for satu-
ration of actuator. Hence the system error decreases more slowly than ideal case
causing the value of integral term to be increased, which may lead to significant
large overshoot and settling time. This loss of performance provoked by the integral
windup in systems of saturated actuators guides mostly to remove the integral term
missing out its advantages in omission of the stable residual errors coming from
friction or external loads.

The aim behind using the anti-windup strategy is to ensure conservation of the
controller stability avoiding the oscillatory behaviour when the actuators saturated.
The back-calculation approach of anti-windup strategy proposed in [7] is used here
for the PID controller block. It requires feeding back the difference between sat-
urated and unsaturated signals which may reduce the integral value. The integral
output of the PID block with the three regularization treatments mentioned before
and anti-windup strategy is then written as follows:

Γ Reg
I (k) =Rm

(
Γ Reg

I (k−1)+KITs
(
q̃Reg(k)−KAWP∆ΓReg

))
∆ΓReg = Γ sat

Reg −ΓReg

(45)

where Γ sat
Reg and ΓReg are the generated output forces or torques from the PID block

after and before saturation block respectively. KAWP is a diagonal positive definite
matrix representing the anti-windup feedback gain. The schematic diagram illustrat-
ing the regularization technique of the integral term and the anti-windup strategy for
the PID block is shown in Fig. 14.

3.3 Proposed Control Solution for ARROW PKM

PKMs are well known with their highly nonlinear dynamics which increase con-
siderably when operating at high speed leading to instability. These nonlinearities
shall be treated carefully in control algorithms in order to compensate their effects,
knowing that linear controllers fail to attain this mission such as PID control.

In fact, a closed-loop control algorithm full enough with knowledge about the
dynamics of the PKM will bring out good robustness against nonlinearities and dis-
turbances. A PID control with computed FeedForward (PIDFF) is one of the most
efficient non-adaptive model-based controllers that exist for parallel manipulators.
PDFF control was firstly suggested in [10] as an alternative to the on-line com-
putation requirements of others model-based motion control schemes, particularly
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Fig. 14 PID block schematic diagram with regularized integral term and anti-windup strategy in
the discrete form.

the computed torque control method. PIDFF control law consists of a linear PID
feedback plus a feedforward part results from the dynamics of the robot evaluated
using the desired motion trajectory. Consequently, the feedforward dynamics can be
computed offline reducing the control computation efforts and making this type of
model-based controllers easy and simple for implementation as well as PID con-
troller.

For ARROW PKM, the implemented control law is the PIDFF controller using
the PID block recently obtained in Fig. 14, individually for each part of ARROW:
the parallel module and the turntable. The PIDFF control implemented for ARROW
PKM can be written in joint space as follows:

UPM;T =Rm

(
KP q̃+Γ

Reg
I +KD ˙̃q

)
+ΓPM;T f f

ΓPM f f =H
∗
d

(
ẌPM

d +ΛdẊPM
d −AGd

)
ΓT f f =

(
IT/2
−IT/2

)
θxd

(46)

where Γ
Reg

I is the modified integral term including the regularization and anti-
windup strategy obtained in (45). XPM

d , ẊPM
d and ẌPM

d are the desired position,
velocity and acceleration of the moving platform respectively.Hd,Λd and AGd are
the matrices used in the dynamic model of the parallel module in (22) calculated
based on the desired generated trajectory. UPM;T is the control input forces vector
applied to the linear actuators or torques vector applied to the rotative motors. θxd
is the desired generated rotation in the Cartesian space around x-axis. The proposed
control solution for ARROW PKM is described as a schematic view in Fig. .

It is visible in (46) that feedfoward dynamics are composed from the desired
trajectories making this controller preferable for real time implementation. In other
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meaning, PIDFF controller enhances the general performance and increases the ac-
curacy with the same processing time cost of a simple PID. As well as it avoids the
noise estimations of velocity and acceleration for the actuators knowing that most of
the real manipulators are equipped only with position sensors (i.e encoders). Nev-
ertheless, such kind of model-based controllers needs a precise knowledge about
the dynamics of the parallel robot, which is a difficult development task, in order to
achieve high level of performances.

The stability analysis of this model-based controller has been studied in the lit-
erature. In [19], it has been reported that the position error of a PD control with
computed feedforward will vanish asymptotically in a local sense after selecting
properly the feedback matrices. Furthermore, it has been proved in [20] that this
controller is able to yield a globally asymptotically stable closed-loop system with
an experimental validation.

4 Motion Generation

A strong requirement in the motion generation for a machining tool is the constant
feed rate. The tool have to maintain a constant velocity along the path. To ensure
this, the Gcode position data series coming from a CAD/CAM software are used as
input for a Spline based definition of path.

4.1 Spline Description

We can extract, from the Gcode instructions, the tool positions along the machining
path. The first idea in creating a trajectory through points is to generate straight

Fig. 15 PIDFF block schematic diagram with regularizations and anti-windup strategy applied on
ARROW PKM.
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lines between points such as in the Fig. 16. This kind of trajectory ensure a position
continuity at each junction point called C0 continuity.

Off course, this kind of trajectories will generate velocity discontinuities along
the path which isn’t suitable to generate a proper machining motion. A second man-
ner to generate a trajectory is to create polynomials between points and ensure that
the successive polynomials are tangent at junction points (see Fig. 17). This kind of
continuity is called C1 and is characterized by an equality of the first derivatives of
successive polynomials at a junction point.

In the context of high speed machining, the continuity C1 isn’t sufficient. Indeed,
the path curvature from one side to the other of a point isn’t continuous (ex: point
2 in Fig. 17). To ensure the continuity of curvature, called C2 continuity, the second
derivative of successive polynomials have to be equals at the junction points (ex:
point 2 in the Fig. 18).

This natural cubic spline technique is used to create a path which is optimal for
the machining process. A spline is a function defined piecewise by polynomials
between each successive pair of points describing the path. In the case of natural
cubic spline, those polynomials are of degree three with the following form:

P(t) = a+bt + ct2 +dt3 (47)

Fig. 19 shows a spline made of four polynomials (P1(t), ..,P4(t)) passing through
five points. The position continuity C0, the tangency continuity C1 and the curvature
continuity C2 are ensured by the use of natural cubic spline curve. Warning to the
parameter t which is not a time variable but a sort of spline abscissa.

In 3D space, the polynomial Pi(t) is represented by a concatenated vector of three
coordinate polynomials xi(t),yi(t) and zi(t) with a similar form to (47) as follows:

Pi(t) =

xi(t) = aix +bixt + cixt2 +dixt3

yi(t) = aiy +biyt + ciyt2 +diyt3

zi(t) = aiz +bizt + cizt2 +dizt3

 (48)

The Matlab curve fitting toolbox provide the ”cscvn” function allowing to get the
natural cubic spline definition. This function takes as input the n Gcode path points
series and give as output the spline structure. It is specified by a ”break sequence”

1

2

3

Fig. 16 Straight lines path with C0 position continuity.
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1

2

3

Fig. 17 Path with a tangency continuity C1.

along the ”spline abscissa” for each Gcode path point and the ”coefficient array” of
polynomials composing the spline shown respectively as follows:

breaks = [0 break1 break2 ... breakn] (49)

coe f s =



coe f f or P1 =


d1x c1x b1x a1x

d1y c1y b1y a1y

d1z c1z b1z a1z

coe f f or P2 =


d2x c2x b2x a2x

d2y c2y b2y a2y

d2z c2z b2z a2z

...
...

coe f f or Pn =


dnx cnx bnx anx

dny cny bny any

dnz cnz bnz anz



(50)

1

2

3

Fig. 18 Path with a curvature continuity C2.
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P4(t)

Fig. 19 Spline passing through four points (defined by four polynomials).
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3

4

5

Gcode path points

Re-sampling points 

Fig. 20 Trajectory re-sampling at each sampling period.

Thus, the polynomial P1(t) give the position of Gcode point 1 when parameter
t = 0 and gives the position of point 2 when parameter t = break1. The spline P2(t)
give the position of Gcode point 2 when parameter t = 0 and gives the position of
point 3 when parameter t = break2.

4.2 Spline Re-Sampling during Constant Velocity Phase

During the real time execution of the machining motion, the sampling period is
fixed at 0.2 ms (5KHz). The Gcode path points are generated from CAD/CAM
geometrical specifications and are not distributed in terms of sampling period. The
spline re-sampling will consist in generating the path at each sampling period as
illustrated in the Fig. 20.

As the velocity has to be constant along the path during a machining process,
we have made the assumption that the distance between two successive re-sampled
points is constant. Indeed, we consider that distance between two points along the
path is very close to the cord distance between those two points. The determination
of re-sampling points position is done by the following iterative process:

1. From Gcode point 1, small iterations δ t are done on the parameter t and the
corresponding position on the curve is computed from spline polynomial P1(t)
as shown in Fig. 21.

2. This is repeated till the distance between the Gcode point 1 and the actual posi-
tion on the curve exceed the desired distance between two successive re-sampling
points.
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Last posi�on considered 

as a resampling point

Fig. 21 Iterative process for re-sampling point determination.

3. The last position reach via this iterative process is considered as the first re-
sampling point.

The process is re-iterated for the following successive re-sampling points (black
points in the Fig. 21) till the reaching of Gcode point 2, 3 and so on. The more
tiny δ t is considered, the more precise process is obtained. During this process, the
increasing of parameter t along the break sequence allow to know which polynomial
has to be used to compute the positions on the curve (ex: (t) is used between Gcode
point 1 and 2, P2(t) between Gcode point 2 and 3).

During the constant velocity phase, the use of spline curve guarantees an opti-
mal trajectory in terms of velocity and acceleration discontinuities for machining
motion.

4.3 Acceleration and Deceleration Phases

The previous section deals with the motion generation along the spline curve when
the velocity is constant. In a fast machining process, the reaching of the constant
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Fig. 22 Acceleration phase.

velocity phase has to be done in a smooth way aiming at increasing durability of
mechanical parts. The motion has to start with an acceleration phase and to finish
with a deceleration phase. A suitable acceleration procedure is used in integrating
a constant jerk profile to get a proper acceleration and velocity profile. The Jerk
profile (Fig. 22(a)) is introduced as follows:

Jerk =


J, 0 < t < t1
0, t1 < t < t2
−J, t2 < t < t3

(51)

The integration of Jerk versus time t gives the acceleration profile shown in Fig.
22(b) such as:

Acceleration =


Jt, 0 < t < t1
A, t1 < t < t2
A− J(t− t2), t2 < t < t3

(52)

A second integration of acceleration versus time t gives the Velocity profile shown
in Fig. 22(c) such as:
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Fig. 23 Deceleration phase.

Velocity =


Jt2

2 , 0 < t < t1
Jt2

1
2 +A(t− t1), t1 < t < t2

Jt2
1

2 +A(t2− t1)+A(t− t2)− J(t−t2)2

2 , t2 < t < t3

(53)

The deceleration phase is only an inversion of acceleration phase as shown in the
Fig. 23. Thus, the Velocity profile can be given as follows:

Velocity =


V −

( Jt2

2

)
, 0 < t < t1

V −
( Jt2

1
2 +A(t− t1)

)
, t1 < t < t2

V −
( Jt2

1
2 +A(t2− t1)+A(t− t2)− J(t−t2)2

2

)
, t2 < t < t3

(54)

Those velocity profiles are used in determination of re-sampling points spacing
along the spline curve during acceleration and deceleration phases. Now, we have
got a complete motion description at a considered sampling period.
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5 Real-Time Experiments

This section exposes the real-time evaluation for the machining performance of the
introduced ARROW robot. It covers the description of the experimental testbed con-
sists of ARROW, the generated machining trajectory and the results concerning pre-
cision and performance.

5.1 Experimental Testbed of the ARROW Robot

The mechanical structure and general mechanism of ARROW PKM has been dis-
cussed previously a lot in this chapter. The manufactured ARROW robot is shown
in Fig. 24, where you can see the turntable with the object to be machined, the arms
and the actuators.

The parallel module actuators are all identical of type Ironless ETEL ILM12-
060, providing each one a maximum force of 2500 N and reaching speed up to 15
m/s.

The actuators of the turntable are of type TMB0140-100-3RBS ETEL direct-
drive motors. They can provide a maximum peak torque of 127 Nm and they are
able to reach 550 rpm of maximum speed. Each actuator is equipped with a non-
contact incremental optical encoder providing a total number of 5000 pulses per
revolution.

The experimental setup of the ARROW robot is displayed in Fig. 25. Simulink
and Real-Time Workshop from Mathworks Inc. are used to implement the control
scheme and to generate the real-time execution code. The target PC is running under
5 kHz of frequency (i.e. sample time of 0.2 ms). The set of various geometric and

Fig. 24 The manufactured ARROW robot.
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Table 1 The main dynamic parameters of ARROW robot

Parallel Module
Parameter Value

Simple slider cart’s mass 11.1 kg
Parallelogram slider cart’s mass 11.34 kg
Simple arm linear mass 1.744 kg/m
Parallelogram arm linear mass 3.488 kg/m
Simple arms’ length 0.96 m
Parallelograms arms’ length 0.61 m
Platform’s mass 10.2 kg
Platform’s inertia 0.414 kg.m2

Turntable
Parameter Value

Turntable actuator’s inertia 0.004 kg.m2

Total inertia of the turntable 1.204 kg.m2

dynamic parameters of the different parts of the ARROW robot are summarized in
Table 1.

The control tuning gains that are specified for both control architectures of par-
allel module and turntable are shown in Table 2.

The chosen machining trajectory leads to obtain the pyramid squared shape seen
in Fig. 26 after the milling operation is performed on a cubed shape. A 3D plot is
illustrated in Fig. from the side view of the parallel module. The chosen machined
shape estimates the five DoFs of ARROW robot and allows us to evaluate the whole
performance in the accessible workspace.

3

1

2

4

Fig. 25 The experimental setup of ARROW robot. 1: Master computer, 2: xPC Target, 3: Power
supply, 4: Emergency button.
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Milling process

Fig. 26 The machining object before and after performing the milling process.

5.2 Experimental Results

In order to evaluate the performance of the proposed control solution, PIDFF control
law, on the whole trajectory in both Joint and Cartesian spaces, the Root Mean
Square of the tracking Error in Translational (RMSET) and Rotational (RMSER)
motion is calculated as follows:

RMSETC =
( 1

N

N

∑
i=1

(
x̃2(i)+ ỹ2(i)+ z̃2(i)

))1/2
(55)

RMSERC =
( 1

N

N

∑
i=1

(
θ̃

2
z (i)+ θ̃

2
x (i)

))1/2
(56)

RMSETJ =
( 1

N

N

∑
i=1

6

∑
j=1

q̃2
j(i)
)1/2

(57)

RMSERJ =
( 1

N

N

∑
i=1

2

∑
j=1

q̃2
j(i)
)1/2

(58)

where N is the number of the time-samples.
The actual operating motion of the moving platform compared to the desired

trajectory shows a high performance in terms of accuracy. Both trajectories are plot-
ted in Fig. 28. The evolution of the tracking Cartesian error is shown in Fig. 29
zoomed to the interval [90,95] seconds for clarification purposes. The evaluation of
the Cartesian tracking error is done by calculating the root mean square over the
whole trajectory and is shown in Table 3. The root mean square values show a very

Table 2 Summary of the controllers’ parameters

Parallel Module
Gain Value

kP 5860796.8
kD 8070.24
kI 20425584.8
kAWP 0.00166

Turntable
Gain Value

kP 5550
kD 25.9
kI 7400
kAWP 0.000037
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Fig. 27 3D plot for the machining trajectory as if seen from the parallel module side view.

small error over the whole trajectory which validate the high expected precision of
the designed ARROW robot.

Fig. 28 Evolution of the tracking Cartesian coordinates while following the machining trajectory.



36 H. Saied, A. Chemori, M. Michelin, M. El Rafei, C. Francis and F. Pierrot

Fig. 29 Evolution of the Cartesian tracking error while following the machining trajectory.

The tracking joint errors of the parallel module and turntable are shown in Fig.
30 and Fig. 31 respectively. Also it verifies a very high performance of trajectory
tracking machining task, and the evaluations of the root mean squares are mentioned
in Table 3 approving the good precision. Indeed, the monitoring of Cartesian coor-
dinates is available through measuring the joints’ positions using encoders, and then
transforming the obtained errors into Cartesian space by kinematic mapping (Jacco-
bian). This is used in the most of the parallel manipulators. As shown, both joint and
Cartesian tracking errors achieved very high accuracy and that is an extra evidence
to the accurate kinematic model designed for ARROW robot.

The evolution of the control input forces and torques applied to their correspond-
ing linear motors and rotative motors are shown in Fig. 32 and Fig. 33 respectively.
It is clear that all the control inputs are in the safe range of the allowed capability for
the actuators. Moreover, it seems that at some instants the actuators reached the sat-
uration zone, but the control maintained the stability and performance thanks to the
anti-windup strategy that eliminates overshoots and prevent undesired oscillatory
behaviour which might be dangerous for the structure.

Table 3 Root mean square of Cartesian and joint tracking errors.

Cartesian Space

RMSET [m] RMSER [deg]

7.0574e-06 0.0170

Joint Space

RMSET [m] RMSER [deg]

6.8796e-06 0.0240
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Fig. 30 Evolution of the joints tracking error of the parallel module while following the machining
trajectory.

6 Conclusions and Future Work

In this work, a 5-DoFs (3T-2R) machining tool named ARROW robot based on re-
dundantly actuated parallel structure is presented. ARROW robot is featured with
a special mechanism providing a combination between rapidity and precision with
large operational workspace without any type of interior singularities. A detailed
explanation for the kinematics and dynamics associated to ARROW PKM were in-
troduced in this chapter, in addition to the singularity analysis. In order to follow

Fig. 31 Evolution of the joints tracking error of the turntable while following the machining tra-
jectory.
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Fig. 32 Evolution of the control input forces of the parallel module linear motors.

Fig. 33 Evolution of the control input torques of the turntable rotative motors.

up a machining trajectory, an improved PID with computed feedforward have been
proposed as a control solution. Regularization techniques were used to eliminate
the undesired antagonistic forces resulting from redundancy and to deal with the
increasing value of the integral term in the PID control block. Thanks to the adopted
anti-windup strategy which preserves the stability of the controller in case of satu-
ration. Real-time experiments were conducted on ARROW PKM making a certain
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machining task. The general performance was evaluated using the root mean square
criteria justifying a good accuracy sufficient for a machining procedure.

For the future work, one can enhance more the control performance in terms of
precision, motion speed and robustness. Implementing some adaptive model-based
controllers based on the online dynamic calibration technique provides more robust-
ness against parameters variation and disturbances. From a control point of view,
considering more aspects in a PKM to be enclosed in the control-loop system can
improve the general performance, such as motor drivers, actuators dynamics, trans-
mission system and friction in the articulations.
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