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Abstract. In the context of mathematical and computational represen-
tations of musical structures, we propose algebraic models for formaliz-
ing and understanding the harmonic forms underlying musical composi-
tions. These models make use of ideas and notions belonging to two al-
gebraic approaches: Formal Concept Analysis (FCA) and Mathematical
Morphology (MM). Concept lattices are built from interval structures
whereas mathematical morphology operators are subsequently defined
upon them. Special equivalence relations preserving the ordering struc-
ture of the lattice are introduced in order to define musically relevant
quotient lattices modulo congruences. We show that the derived descrip-
tors are well adapted for music analysis by taking as a case study Ligeti’s
String Quartet No. 2.

Keywords: Computational music analysis, Formal concept analysis, Math-
ematical morphology, Congruences, Quotient lattices, Harmonico-morpholo-
gical descriptors, Musical Information Research

1 Introduction

Despite a long historical relationship between mathematics and music, computa-
tional music analysis is a relatively recent research field. In contrast to statistical
methods and signal-based approaches currently employed in Music Information
Research (or MIR5), the paper at hand stresses the necessity of introducing
a structural multidisciplinary approach into computational musicology making
use of advanced mathematics. It is based on the interplay between algebra and
topology and opens promising perspectives on important prevailing challenges,

5 Following the Roadmap described in [18], we prefer to consider MIR as the field of
Music Information Research instead of limiting the scope to purely Music Informa-
tion Retrieval.



such as the formalization and representation of musical structures and processes,
or the automatic classification of musical styles. It also di↵ers from traditional
applications of mathematics to music in aiming to build bridges between di↵er-
ent musical genres, ranging from contemporary art music to popular music, and
therefore showing the generality of the conceptual tools introduced into compu-
tational musicology. Most of these tools belong to the domain of Formal Concept
Analysis (FCA), a research field that has been introduced in the beginning of
the 1980s by Rudolf Wille and, independently, by Marc Barbut and Louis Frey
[3], in both cases as an attempt at reconstructing Lattice Theory [20, 23].6 In-
terestingly, music was a major inspirational field for applying formal concept
analysis, within the Darmstadt tradition. In his introductory essay on the link
between mathematics and music [22], R. Wille proposed to represent the chords
of the diatonic scale as equivalence classes, leading to a chord concept lattice.
Following this seminal work, a morphology of chords has been proposed by T.
Noll [13], showing the interest of this approach for computational music analysis.
Some recent work renewed the interest of this approach as an original way to
represent musical structures within the field of Music Information Research, by
stressing the underlying algebraic aspects, with application of ordered structures
and concept lattices to the algebraic enumeration and classification of musical
structures for computational music analysis [17, 16].7

In this paper, we propose a way to combine algebraic formalizations and
lattice-based representations of harmonic structures within existing musical com-
positions. Instead of analyzing the musical pitch content,8 formal concept lat-
tices are built from intervallic structures. The objective is to provide a way of
summarizing the harmonic musical content by studying the properties of the
underlying lattice organization. We make use of operators belonging to Mathe-
matical Morphology (MM) which are defined on such lattices. This enables to
define congruences between elements of the lattice and associated quotient lat-
tices. These quotient lattices are in fact the symbolic and structural descriptors
of the musical pieces that we propose to use as a generic tool for computational
music analysis. As a case study, we show how the first movement of Ligeti’s
String Quartet No. 2 can be compactly described with three of such quotient
lattices.

This paper is organized as follows. In Section 2 we summarize previous work
on the definition of lattices of harmonic structures by means of their interval
content. In Section 3 we recall some definitions of mathematical morphology on
complete lattices and propose specific operators (dilation and erosion) on musical
concept lattices. The main original contribution of this paper is contained in

6 See [21] for an interesting discussion on the mutual influences between the Darmstadt
school on Formal Concept Analysis and the French tradition on Treillis de Galois.

7 See the Mutabor language (http://www.math.tu-dresden.de/
~

mutabor/) for a
music programming language making use of the FCA-based Standard Language for
Music Theory [12] originally conceived by Rudolf Wille and currently developed at
the University of Dresden.

8 Note that, at this stage, the time information is not taken into account, and a musical
excerpt is considers as an unordered set of chords.



Section 4 where we define a way to reduce a given concept lattice to its “core”
structure via congruence relations. The resulting quotient lattices are precisely
the structural descriptors used in the representation of a given musical piece. This
opens new challenging perspectives for automatic music analysis and structural
comparison between musical pieces of di↵erent styles.

2 Lattice of interval structures

In this section we recall how a concept lattice can be built from harmonic forms
(as objects) and intervals (as attributes) [16, 17].

Definition 1 (Harmonic system) Let T be a set, I = (I,+,�, 0) an Abelian

group, and � : T ⇥ T ! I a mapping such that 8t1, t2, t3 2 T :

�(t1, t2) +�(t2, t3) = �(t1, t3) and �(t1, t2) = 0 i↵ t1 = t2.

Then the triplet T = (T,�, I) is called algebraic harmonic system. Elements of

T are tones and any subset of T is a chord. Elements of I are musical intervals.

Here we consider Tn = (Zn,�n,Zn), where n 2 Z+ represents an octave, Zn =
Z/nZ, and �n is the di↵erence modulo n. All chords are then projected in Tn

using a canonical homomorphism. Moreover, two chords having the same number
of notes (or chromas) and the same intervals between notes (i.e. defined up to a
transposition) are considered equivalent, thus defining harmonic forms.

Definition 2 (Harmonic forms) The set H(Tn) of the harmonic forms of Tn

is composed by the equivalence classes of the following equivalence relation  :

8H1 ✓ Zn, 8H2 ✓ Zn, H1 H2 i↵ 9i | H1 = H2 + i

where H + i = {t+ i | t 2 H} if t+ i exists for all t 2 H.

In the sequel, we will use the following notation: IH,t = {�(t, t0) | t0 2 H}.

Definition 3 (Musical formal context) A musical formal context, denoted

by K = (H(Tn),Zn, R) is defined by considering harmonic forms, in G = H(Tn),
as objects and intervals, in M = Zn, as attributes. The relation R is defined from

the occurrence of an interval in an harmonic form. A formal concept is a pair

(X,Y ), X ✓ G, Y ✓ M such that X ⇥ Y ✓ R and that is maximal for this

property. The concept lattice (C(K),�) is then defined from the formal context

and the partial ordering � defined as:

(X1, Y1) � (X2, Y2) , X1 ✓ X2(, Y2 ✓ Y1).

For X ✓ G and Y ✓ M , the derivation operators ↵ and � are defined as ↵(X) =
{m 2 M | 8g 2 X, (g,m) 2 R}, and �(Y ) = {g 2 G | 8m 2 Y, (g,m) 2 R}. The
pair (↵,�) induces a Galois connection between the partially ordered power sets



(P(G),✓) and (P(M),✓), i.e. X ✓ ↵(Y ) i↵ Y ✓ �(X). Then the pair (X,Y )
(with X ✓ G and Y ✓ M) is a formal concept if and only if ↵(X) = Y and
�(Y ) = X (X is then called extend and Y intend of the formal concepts).

As in any concept lattice, the supremum and infimum of a family of concepts
(Xt, Yt)t2T are:

^t2T (Xt, Yt) =
�\t2TXt,↵

�
�([t2TYt)

��
, (1)

_t2T (Xt, Yt) =
�
�
�
↵([t2TXt)

�
,\t2TYt

�
, (2)

Example 1. As a running example in this paper, we consider 7-tet T7 (e.g. the
diatonic scale C, D, E, F, G, A, B). Let us define the formal context K =
(H(T7),Z7, R), where R is a binary relation such that for any harmonic form
F 2 H(T7) and any interval i 2 Z7, we have (F, i) 2 R i↵ there exists t 2 F
such that i 2 IF,t. Intervals are denoted by the index of the last note from the
starting one, hence for the 7-tet intervals are unison (0), second (1), third (2),
fourth (3). Note that other intervals (4, 5, and 6) are derived from these basic
ones by group operations (inversion modulo octave).

Figure 1 illustrates the formal context K = (H(T7),Z7, R) and the concept
lattice (C(K),�) as defined in Definition 3.

Fig. 1. Formal context K = (H(T7),Z7, R) and concept lattice (C(K),�) (reproduced
from [17]).



3 Mathematical morphology operations on musical
concept lattices

3.1 Preliminaries

Let us recall the algebraic framework of mathematical morphology. Let (L,�)
and (L0,�0) be two complete lattices (which do not need to be equal). All the
following definitions and results are common to the general algebraic framework
of mathematical morphology in complete lattices [4, 5, 7, 8, 11, 15, 19]. Note that
di↵erent terminologies can be found in di↵erent lattice theory related contexts
(refer to [14] for equivalence tables).

Definition 4 An operator � : L ! L0
is an algebraic dilation if it commutes

with the supremum (sup-preserving mapping):

8(xi) 2 L, �(_ixi) = _0
i�(xi),

where _ (respectively _0
) denotes the supremum associated with � (respectively

�0
).

An operator " : L0 ! L is an algebraic erosion if it commutes with the infimum

(inf-preserving mapping):

8(xi) 2 L0, "(^0
ixi) = ^i"(xi),

where ^ and ^0
denote the infimum associated with � and �0

, respectively.

This general definition allows defining mathematical morphology operators such
as dilations and erosions in many types of settings, such as sets, functions, fuzzy
sets, rough sets, graphs, hypergraphs, various logics, etc., based on their corre-
sponding lattices.

Algebraic dilations � and erosions " are increasing operators; moreover �
preserves the smallest element and " preserves the largest element.

A fundamental notion in this algebraic framework is the one of adjunction.

Definition 5 A pair of operators (", �), � : L ! L0
, " : L0 ! L, defines an

adjunction if

8x 2 L, 8y 2 L0, �(x) �0 y () x � "(y).

Note that the notion of adjunction corresponds to the Galois connection by
reversing the order of either L or L0. This induces a first direct link between
derivation operators ↵,� on the one hand, and �, " on the other hand. Further
links between FCA and MM have been investigated in [1, 2].

Some important properties, that will be used in the following, are summarized
as follows.

Proposition 1 [e.g. [8, 15]] If a pair of operators (", �) defines an adjunction,

then the following results hold:

– � preserves the smallest element and " preserves the largest element;



– � is a dilation and " is an erosion (in the sense of Definition 4).

Let � and " be two increasing operators such that �" is anti-extensive and "� is

extensive. Then (", �) is an adjunction.

The following representation result also holds. If " is an increasing operator,

it is an algebraic erosion if and only if there exists � such that (", �) is an

adjunction. The operator � is then an algebraic dilation and can be expressed as

�(x) = ^0{y 2 L0 | x � "(y)}. A similar representation result holds for erosion.

All these results hold in the particular case of a concept lattice.
Particular forms of dilations and erosions can be defined based on the notion

of structuring element, which can be a neighborhood relation or any binary
relation [5, 19]. In particular, such structuring elements can be defined as the
balls of a given distance. This has been investigated in concept lattices, using
several distances, in [1, 2].

In the next sections we describe two examples of dilations and erosions,
defined on the lattice C, used to handle musical format contexts. They have
been implemented in SageMath.9 The other definitions proposed in [1, 2] could
be exploited as well for musical concept lattices.

3.2 Dilations and erosions from the decomposition into join or meet
irreducible elements

The first example relies on the decomposition of a concept in a join-irreducible
form (hence suitable for defining dilations), respectively meet-irreducible for
defining erosions.

Definition 6 (Join and meet irreducible element) An element a of a lat-

tice C is join (respectively meet) irreducible if it is not equal to the least element

of the lattice (respectively the largest element) and 8(a, b) 2 C2, a = b_ c ) a =
b or a = c (respectively a = b ^ c ) a = b or a = c).

Any element of the lattice can be written (usually not uniquely) as the join
(respectively meet) of some irreducible elements.

Since a dilation (respectively erosion) is defined as an operator that com-
mutes with the supremum (respectively infimum), it is su�cient to define these
operators on join (respectively meet) irreducible elements to extend them to any
element of the lattice. This will be exploited next, in the proposed algorithm in
Section 4.

3.3 Dilations and erosions based on structuring elements derived
from a valuation

In the second example, we define dilations and erosions, based on structuring
elements that are balls of a distance derived from a valuation on the lattice. In
the following we propose to use valuations defined as the cardinality of filters or
ideals.
9 http://www.sagemath.org/



Definition 7 (Filter and ideal) Let a be an element of a lattice C. The filter

and ideal associated with a are the subsets of C defined as:

F (a) = {b 2 C | a � b}
I(a) = {b 2 C | b � a}

Definition 8 Let (C,�) be a concept lattice. A real-valued function w on (C,�)
is a lower valuation if it satisfies the following (supermodular) property:

8(a1, a2) 2 C2, w(a1) + w(a2)  w(a1 ^ a2) + w(a1 _ a2), (3)

and is an upper valuation if it satisfies the following (submodular) property:

8(a1, a2) 2 C2, w(a1) + w(a2) � w(a1 ^ a2) + w(a1 _ a2) (4)

A real-valued function is increasing (isotone) if a1 � a2 implies w(a1)  w(a2)
and decreasing (antitone) if a1 � a2 implies w(a1) � w(a2).

Proposition 2 ([9, 10]) Let w be a real-valued function on a concept lattice

(C,�). Then the function defined as:

8(a1, a2) 2 C2, dw(a1, a2) = 2w(a1 ^ a2)� w(a1)� w(a2) (5)

is a pseudo-metric if and only if w is a decreasing upper valuation.

The function defined as:

8(a1, a2) 2 C2, dw(a1, a2) = w(a1) + w(a2)� 2w(a1 _ a2) (6)

is a pseudo-metric if and only if w is a decreasing lower valuation.

Proposition 3 (Valuation from a filter or ideal) Let wF be the mapping

defined on a concept lattice C as 8a 2 C, wF (a) = |F (a)| where F is the fil-

ter associated with a. Then wF is a decreasing lower valuation, i.e.

8(a1, a2) 2 C2, wF (a1) + wF (a2)  wF (a1 ^ a2) + wF (a1 _ a2)

The mapping d from C ⇥ C into R+ defined as 8(a1, a2) 2 C2, d(a1, a2) =
wF (a1) + wF (a2)� 2wF (a1 _ a2) is therefore a pseudo-distance.

Similarly, a pseudo-distance can be defined from the cardinality of the ideals.

Once the distance is defined, a structuring element is defined as a ball of this
distance, for a given radius n. Dilations and erosions then write:

8A ✓ C, �(A) = {b 2 C | d(b, A)  n}
8A ✓ C, "(A) = {b 2 C | d(b,C \A) > n} = C \ �(C \A)

Note that in the first example, such dilations and erosions can also be ap-
plied to irreducible elements, in order to derive dilations and erosions using the
commutativity with the supremum or infimum, as will be used in Section 4.



4 Harmonico-morphological descriptors based on
congruence relations

By using the concepts we have previously introduced, we define a way of reducing
a concept lattice via some equivalence relations, namely congruences. This ideas
goes back to Birkho↵ [4], and was used in several works such as [6] with extension
to non transitive relations (tolerance relations). Here propose new congruences
based on mathematical morphology.

4.1 Definitions

Definition 9 (Congruences and quotient lattices) An equivalence relation

✓ on a lattice L is a congruence if it is compatible with join and meet, i.e.

(✓(a, b) and ✓(c, d)) ) (✓(a _ c, b _ d) and ✓(a ^ c, b ^ d)), for all a, b, c, d 2 L.
This equivalence relation allows defining a quotient lattice which will be denoted

as L/✓.
Hence _ and ^ induce joint and meet operators on the quotient lattice L/✓.

By denoting [a]✓ the equivalence class of a 2 L for ✓, we have [a]✓_ [b]✓ = [a_b]✓,
and a similar relation for ^ (note that the same notations are used on L and on
L/✓ for meet and join, when no ambiguity occurs). This way of defining quotient
lattices enables to transfer the structure from the original concept lattice to the
reduced one, therefore preserving the order relations between the elements.

Example 2. Let us apply these notions to the concept lattice (C(K),�) asso-
ciated with the musical formal concept defined from the 7-tet, as before (see

Example 1). Ajouter l’explication sur la multiplicit des intervalles... In this di-

atonic space, one may define a formal equivalence relation between major/minor
chords and major/minor seventh chords allowing us to reduce the initial lattice
to the corresponding quotient lattice. More precisely, the congruence relation
is defined in order to group {0, 2, 4} and {0, 1, 3, 5} into the same class. The
other classes are derived so as to preserve the ordering relations between con-
cepts. This reduction process is represented in Figure 2. For instance, let us
consider {0, 1} (we only mention the extend of the concepts here). We have
{0, 2, 4} ^ {0, 1} = {0} and {0, 1, 3, 5} ^ {0, 1} = {0, 1}, which is consistent with
the fact that {0} and {0, 1} are in the same congruence class.

Expliquer les noeuds intermediaires (deja chez Wille etc.)

The quotient lattice C/✓ formalizes the partition of the harmonic system,
preserving its structure. A sub-lattice of C(K) isomorphic to C/✓ is interpreted
as a harmonic sub-system compatible with the harmonic structure generated by
the partition defined from a set of harmonic forms.

Example 3. An interesting congruence, from a musical point of view, can be
defined by gathering the most common harmonic tonal forms in the same equiv-
alence class (perfect chords, seventh chords and ninth chords). The generating



Fig. 2. Left: concept lattice, where all concepts of a same color belong to the same
equivalence class according the to chosen congruence. Right: quotient lattice.

elements for this class are {0, 2, 4}, {0, 1, 3, 5}, and {0, 1, 2, 3, 5} (again only the
extend is mentioned here). Another class is generated from {0, 3} (i.e. fourths,
which are also interesting from a musical point of view). The other classes are
derived to preserve the ordering relations. This congruence ✓⇤ is illustrated in
Figure 3, still for the 7-tet, along with the corresponding quotient lattice. The
first generated class in displayed in pink and the second one in green. In this
case, the quotient lattice, is simply a chain, representing a linear complete or-
dering among equivalence classes.10 The remaining concepts (excluding the top
and the bottom of the lattice) form a third equivalence class. Let us consider
the following example, to illustrate the consistency of the generated classes:
{0, 3} and ({0, 1, 3}, {0, 2, 3}) are congruent (both are in the green class); simi-
larly {0, 1, 3, 5} and {0, 1, 2, 3} are congruent (both in the pink class). The con-
junctions {0, 3} ^ {0, 1, 3, 5} = {0, 3} and ({0, 1, 3}, {0, 2, 3}) ^ {0, 1, 2, 3} =
({0, 1, 3}, {0, 2, 3}) are congruent, and the disjunctions {0, 3} _ {0, 1, 3, 5} =
{0, 1, 3, 5} and ({0, 1, 3}, {0, 2, 3}) _ {0, 1, 2, 3} = {0, 1, 2, 3} are also congruent.

We now propose to exploit the two notions of congruence and of morpholog-
ical operators to define musical descriptors.

10 An interesting question, which still remains open, concerns the possible ways of
generating chains which are musically relevant by carefully selecting the underlying
equivalence classes.



Fig. 3. Left: congruence ✓⇤ on the 7-tet concept lattice. Right: quotient lattice C/✓⇤.

Definition 10 (Harmonico-morphological descriptors) Let M be a musi-

cal piece, TM the harmonic system associated with it, and C(M) the correspond-

ing concept lattice. The core idea of the proposed descriptors is to use dilations

and erosions of the set of formal concepts to provide upper and lower bounds

of the description on the one hand, and congruences to provide a structural

summary of the harmonic forms on the other hand. The set of formal concepts

corresponding to the harmonic forms in M is denoted by HM
C . The dilations �

and erosions " can typically be defined from a metric associated with a valuation

on C(M). Three congruences are then defined:

– ✓ grouping all formal concepts in HM
C into one same class;

– ✓� grouping all formal concepts in �(HM
C ) into one same class;

– ✓" grouping all formal concepts in "(HM
C ) into one same class.

The proposed harmonic descriptors are the quotient lattices C(M)/✓, C(M)/✓�,
and C(M)/✓".

We argue that these descriptors are good representative ofM, since they preserve
the intervallic structures, and provide compact summaries, which would allow
for comparison between musical pieces.



4.2 Algorithm

The procedure developed to generate the proposed descriptors is given in Algo-
rithm 1 (implementation was done in SageMath).

Algorithm 1 Generating a morphological interval of harmonic descriptors based
on congruence relations and quotient lattices
Require: C(M): concept lattice built from the harmonic system TM
Require: HM: set of harmonic forms present in M
Require: w: valuation on C(M)
Require: Mw: metric associated with w on C(M)
Require: (", �): adjunction C(M), where the dilation � and the erosion " are built

from the metric Mw

Require: n size of the dilation and erosion
Ensure: C(M)/✓, C(M)/✓� et C(M)/✓": harmonico-morphological descriptors of M
1: function harmonico-morphological descriptors(C(M), HM, (�, "), n)
2: Compute the set of formal concepts HM

C associated with the harmonic forms
present in HM

3: Compute the congruence relation ✓ on C(M) such that all concepts in HM
C

belong to the same equivalence class [·]✓
4: Compute the dilation �(HM

C ) and the erosion "(HM
C ) of the set of formal con-

cepts HM
C using a structuring element defined as a ball of radius n of the considered

metric
5: Compute the congruence relation ✓� such that all concepts in �(HM

C ) belong to
the same equivalence class [·]✓�

6: Compute the congruence relation ✓" such that all concepts in "(HM
C ) belong to

the same equivalence class [·]✓"
7: Compute the quotient lattices C(M)/✓, C(M)/✓� and C(M)/✓" according to

the congruence relations ✓, ✓� and ✓", respectively
8: return (C(M)/✓, C(M)/✓�, C(M)/✓")

4.3 Example on Ligeti’s String Quartet No. 2

As an illustrative example, we apply the proposed method for computing the
musical descriptors on M corresponding to the first movement of Ligeti’s String
Quartet No. 2. For example, the first set, {0, 1}, corresponds to the two notes
chord {C,D}, whereas the last one, {0, 1, 2, 3}, corresponds to the tetrachord
{C,D,E, F}.

We use the previous 7-tet lattice for the analysis by selecting a limited number
of harmonic forms which are used by the composer. These forms are given in
Figure 4 by means of a circular representation corresponding to the underlying
cyclic group of order 7.

The chosen valuation is the cardinality of the filter wF (see Section 3). Note
that other valuations could be used as well. The associated distance was used
to defined elementary dilations and erosions (with n = 2) on join-irreducible



Fig. 4. Some harmonic forms in Ligeti’s quartet fragment.

(respectively meet-irreducible) elements. The dilation or erosion of any concept
is then derived from its decomposition into irreducible elements and using the
commutativity with the supremum, respectively the infimum.

The steps of Algorithm 1 for this fragment are illustrated in Figures 5–7. As
we could guess from the congruence relations, the final quotient lattices show
isomorphic relations between C(M)/✓ and C(M)/✓�. The presence of a larger
number of di↵erent congruence classes in the erosion "(HM

C ) reflects in the form
of the corresponding quotient lattice C(M)/✓", which contains more elements.

This example is interesting because the musical excerpt does not contain only
the usual perfect chords, seventh and ninth chords. However, the use of the 7-tet,
used here for the simplicity of the illustration, is too limited. It would be even
more interesting to use the 12-tet, which would better account for chromatic
parts. This is more relevant for atonal pieces of music, where tonality cannot
help analyzing and comparing di↵erent pieces of music. However, the proposed
approach paves the way for such deeper investigations.

5 Conclusion

This paper suggests for the first time a possible strategy to approach music in-
formation research by combining tools and ideas belonging to two autonomous
fields, i.e. mathematical morphology and formal concept analysis. Although some
of the concepts described in the paper had already found potential applications
in computational music analysis, it is the first attempt at conceiving structural
descriptors based on the joint exploitation of these concepts. Introducing congru-
ence relations in lattice-based representations provides a new way of extracting



Fig. 5. Formal concepts associated with the harmonic forms found in HM. From left to
right: HM

C (concepts displayed in red), dilation �(HM
C ) (green concepts), and erosion

"(HM
C ) (yellow concepts).

Fig. 6. Congruence relations ✓, ✓�, and ✓" on C(M) (7-tet) generated by: HM
C , �(HM

C ),
and "(HM

C ), respectively (from left to right).

and summarizing the information contained in a musical piece by preserving the
core intervallic structure. The proposed descriptors, particularly suited for atonal
and contemporary music which explores the whole space of harmonic forms, are
aimed to be used to characterize styles of music, or comparing di↵erent pieces
of music, using matching between quotient lattices for instance.

Further investigations are needed in order to find meaningful distances (or
pseudo-distances) between formal concepts in order to express musically relevant



Fig. 7. Quotient lattices. From left to right: C(M)/✓, C(M)/✓�, and C(M)/✓".

morphological operations. At a more abstract level, the question of comparing
quotient lattices still remains open in the context of music information research.
This goes with the definition of similarities between the descriptors, as for ex-
ample by establishing whether quotient lattices from two di↵erent pieces, or two
excerpts of a musical piece, are (or are not) isomorphic. In order to make this
comparison computationally reasonable, the compact representation provided by
the quotient lattice would be directly exploited. This would clearly provide an
assessment of the structural and harmonic similarity between them.

discussion a developper matching de graphes vs de treillis (prenant en
compte la structure d’ordre),
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