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The RALI Machine Translation System for WMT 2010

We describe our system for the translation task of WMT 2010. This system, developed for the English-French and French-English directions, is based on Moses and was trained using only the resources supplied for the workshop. We report experiments to enhance it with out-of-domain parallel corpora sub-sampling, N-best list post-processing and a French grammatical checker.

Introduction

This paper presents the phrase-based machine translation system developed at RALI in order to participate in both the French-English and English-French translation tasks. In these two tasks, we used all the corpora supplied for the constraint data condition apart from the LDC Gigaword corpora.

We describe its different components in Section 2. Section 3 reports our experiments to subsample the available out-of-domain corpora in order to adapt the translation models to the news domain. Section 4, dedicated to post-processing, presents how N-best lists are reranked and how the French 1-best output is corrected by a grammatical checker. Section 5 studies how the original source language of news acts upon translation quality. We conclude in Section 6.

2 System Architecture

Pre-processing

The available corpora were pre-processed using an in-house script that normalizes quotes, dashes, spaces and ligatures. We also reaccentuated French words starting with a capital letter. We significantly cleaned up the parallel Giga word corpus (noted as gw hereafter), keeping 18.1 M of the original 22.5 M sentence pairs. For example, sentence pairs with numerous numbers, nonalphanumeric characters or words starting with capital letters were removed.

Moreover, training material was tokenized with the tool provided for the workshop and truecased, meaning that the words occuring after a strong punctuation mark were lowercased when they belonged to a dictionary of common all-lowercased forms; the others were left unchanged. In order to reduce the number of words unknown to the translation models, all numbers were serialized, i.e. mapped to a special unique token. The original numbers are then placed back in the translation in the same order as they appear in the source sentence. Since translations are mostly monotonic between French and English, this simple algorithm works well most of the time.

Language Models

We trained Kneser-Ney discounted 5-gram language models (LMs) on each available corpus using the SRILM toolkit [START_REF] Stolcke | SRILM -an extensible language modeling toolkit[END_REF]. These LMs were combined through linear interpolation: first, an out-of-domain LM was built from Europarl, UN and gw; then, this model was combined with the two in-domain LMs trained on news-commentary and news.shuffled, which will be referred to as nc and ns in the remainder of the article. Weights were fixed by optimizing the perplexity of a development corpus made of news-test2008 and news-syscomb2009 texts.

In order to reduce the size of the LMs, we limited the vocabulary of our models to 1 M words for English and French. The words of these vocabularies were selected from the computation of the number of their occurences using the method proposed by [START_REF] Venkataraman | Techniques for effective vocabulary selection[END_REF]. The out-of-vocabulary rate measured on news-test2009 and news-test2010 with a so-built vocabulary varies between 0.6 % and 0.8 % for both English and French, while it was between 0.4 % and 0.7 % before the vocabulary was pruned.

To train the LM on the 48 M-sentence English ns corpus, 32 Gb RAM were required and up to 16 Gb RAM, for the other corpora. To reduce the memory needs during decoding, LMs were pruned using the SRILM prune option.

Alignment and Translation Models

All parallel corpora were aligned with Giza++ (Och and Ney, 2003). Our translation models are phrase-based models (PBMs) built with Moses [START_REF] Koehn | Moses: Open source toolkit for statistical machine translation[END_REF] with the following non-default settings:

• maximum sentence length of 80 words,

• limit on the number of phrase translations loaded for each phrase fixed to 30.

Weights of LM, phrase table and lexicalized reordering model scores were optimized on the development corpus thanks to the MERT algorithm (Och, 2003).

Experiments

This section reports experiments done on the news-test2009 corpus for testing various configurations. In these first experiments, we trained LMs and translation models on the Europarl corpus.

Case We tested two methods to handle case. The first one lowercases all training data and documents to translate, while the second one normalizes all training data and documents into their natural case. These two methods require a postprocessing recapitalization but this last step is more basic for the truecase method. Training models on lowercased material led to a 23.15 % caseinsensitive BLEU and a 21.61 % case-sensitive BLEU; from truecased corpora, we obtained a 23.24 % case-insensitive BLEU and a 22.13 % case-sensitive BLEU. As truecasing induces an increase of the two metrics, we built all our models in truecase. The results shown in the remainder of this paper are reported in terms of caseinsensitive BLEU which showed last year a better correlation with human judgments than casesensitive BLEU for the two languages we consider [START_REF] Callison-Burch | Findings of the 2009 workshop on statistical machine translation[END_REF].

Tokenization Two tokenizers were tested: one provided for the workshop and another we developed. They differ mainly in the processing of compound words: our in-house tokenizer splits these words (e.g. percentage-wise is turned into percentage -wise), which improves the lexical coverage of the models trained on the corpus. This feature does not exist in the WMT tool. However, using the WMT tokenizer, we measured a 23.24 % BLEU, while our in-house tokenizer yielded a lower BLEU of 22.85 %. Follow these results prompted us to use the WMT tokenizer.

Serialization In order to test the effect of serialization, i.e. the mapping of all numbers to a special unique token, we measured the BLEU score obtained by a PBM trained on Europarl for English-French, when numbers are left unchanged (Table 1, line 1) or serialized (line 2). These results exhibit a slight decrease of BLEU when serialization is performed. Moreover, if BLEU is computed using a serialized reference (line 3), which is equivalent to ignoring deserialization errors, a minor gain of BLEU is observed, which validates our recovering method. Since resorting to serialization/deserialization yields comparable performance to a system not using it, while reducing the model's size, we chose to use it. LM Table 2 reports the perplexity measured on news-test2009 for French (column 1) and English (column 3) LMs learned on different corpora and interpolated using the development corpus. We also provide the BLEU score (column 2) for English-French obtained from translation models trained on Europarl and nc. As expected, using in-domain corpora (line 2) for English-French led to better results than using out-of-domain data (line 3). The best perplexities and BLEU score are obtained when LMs trained on all the available corpora are combined (line 4). The last three lines exhibit how LMs perform when they are trained on in-domain corpora without pruning them. While the gzipped 5-gram LM (last line) obtained in such a manner occupies 1.4 Gb on hard disk, the gzipped pruned 5-gram LM (line 4) trained using all corpora occupies 0.9 Gb and yields the same BLEU score. This last LM was used in all the experiments reported in the subsequent sections. 

BLEU

Domain adaptation

As the only news parallel corpus provided for the workshop contains 85k sentence pairs, we must resort to other parallel out-of-domain corpora in order to build reliable translation models.

If in-domain and out-of-domain LMs are usually mixed with the well-studied interpolation techniques, training translation models from data of different domains has received less attention [START_REF] Foster | Mixturemodel adaptation for SMT[END_REF][START_REF] Bertoldi | Domain adaptation for statistical machine translation with monolingual resources[END_REF]. Therefore, there is still no widely accepted technique for this last purpose.

Effects of the training data size

We investigated how increasing training data acts upon BLEU score. data", a PBM was built using all the parallel corpora at our disposal. Since the overall parallel sentences were too numerous for our computational resources to be simultaneously used, we randomly split out-of-domain corpora into 3 parts of 8.7 M sentence pairs each and then combined them with nc. PBMs were trained on each of these parts (lines 5 to 7), which yields respectively 0.5 and 0.8 BLEU gain for English-French and French-English w.r.t. the use of 1.7 M out-of-domain sentence pairs. The more significant improvement noticed for the French-English direction is probably explained by the fact that the French language is morphologically richer than English. The 3 PBMs were then combined by merging the 3 phrase tables. To do so, the 5 phrase table scores computed by Moses were mixed using the geometric average and a 6 th score was added, which counts the number of phrase tables where the given phrase pair occurs. We ended up with a phrase table containing 623 M entries, only 9 % and 4 % of them being in 2 and 3 tables respectively. The resulting phrase table led to a slight improvement of BLEU scores (last line) w.r.t. the previous models, except for the model trained on part 0 for French-English.

Corpus sub-sampling

Whereas using all corpora improves translation quality, it requires a huge amount of memory and disk space. We investigate in this section ways to select sentence pairs among large out-of-domain corpora. for English-French and French-English using translation models trained on nc and a subset of out-ofdomain corpora.

Unknown words

Unknown n-grams We applied the subsampling method available in the Joshua toolkit [START_REF] Li | Joshua: An open source toolkit for parsing-based machine translation[END_REF]. This method adds a new sentence pair when it contains new n-grams (with 1 ≤ n ≤ 12) occurring less than 20 times in the current corpus, which led us to add 1.5 M pairs for English-French and 1.4 M for French-English. A significant improvement of BLEU is observed using this method (0.8 for English-French and 1.0 for French-English) w.r.t. the use of 1.7 M randomly selected pairs. However, this method has the major drawback of needing to build a new phrase table for each document to translate.

Information retrieval Information retrieval (IR) methods have been used in the past to subsample parallel corpora [START_REF] Hildebrand | Adaptation of the translation model for statistical machine translation based on information retrieval[END_REF][START_REF] Lü | Improving statistical machine translation performance by training data selection and optimization[END_REF]. These studies use sentences belonging to the development and test corpora as queries to select the k most similar source sentences in an indexed parallel corpus. The retrieved sentence pairs constitute a training corpus for the translation models. In order to alleviate the fact that a new PBM has to be learned for each new test corpus, we built queries using sentences contained in the monolingual ns corpus, leading to the selection of sentence pairs stylistically close to those in the news domain. The source sentences of the three out-of-domain corpora were indexed using Lemur.1 Two types of queries were built from ns sentences after removing stop words: the first one is limited to unigrams, the second one contains both unigrams and bigrams, with a weight for bigrams twice as high as for unigrams. The interest of the latter query type is based on the hypothesis that bigrams are more domain-dependent than unigrams. Another choice that needs to be made when using IR methods is concerning the retention of redundant sentences in the final corpus. Lines 5 to 8 of Table 4 show the results obtained when sentence pairs were gathered up to the size of Europarl, i.e. 1.7 M pairs. 10 sentences were retrieved per query in various configurations: with or without bigrams inside queries, with or without duplicate sentence pairs in the training corpus. Results demonstrate the interest of the approach since the BLEU scores are close to those obtained using the previous tested method based on n-grams of the test data. Taking bigrams into account does not improve results and adding only once new sentences is more relevant than duplicating them.

Since using all data led to even better performances (see last line of Table 3), we used information provided by the IR method in the PBMs trained on nc + 8.7 M out-of-domain sentence pairs or taking into account all the training material. To this end, we included a new score in the phrase tables which is fixed to 1 for entries that are in the phrase table trained on sentences retrieved with unigram queries without repetition (see line 6 of Table 4), and 0 otherwise. Therefore, this score aims at boosting the weight of phrases that were found in sentences close to the news domain. The results reported in the 4 last lines of Table 4 show minor but consistent gains when adding this score. The outputs of the PBMs trained on all the training corpus and which obtained the best BLEU scores on news-test2009 were submitted as contrastive runs. The two first lines of Table 5 report the results on this years's test data, when the score related to the retrieved corpus is incorporated or not. These results still exhibit a minor improvement when adding this score. 4 Post-processing

N-best List Reranking

Our best PBM enhanced by IR methods was employed to generate 500-best lists. These lists were reranked combining the global decoder score with the length ratio between source and target sentences, and the proportions of source sentence ngrams that are in the news monolingual corpora (with 1 ≤ n ≤ 5). Weights of these 7 scores are optimized via MERT on news-test2009. Lines 2 and 3 of Table 5 provide the results obtained before and after N-best list reranking. They show a tiny gain for all metrics for English-French, while the results remain constant for French-English. Nevertheless, we decided to use those translations for the French-English task as our primary run.

Grammatical Checker

PBM outputs contain a significant number of grammatical errors, even when LMs are trained on large data sets. We tested the use of a grammatical checker for the French language: Antidote RX distributed by Druide informatique inc. 2 This software was applied in a systematic way on the first translation generated after N-best reranking. Thus, as soon as the software suggests one or several choices that it considers as more correct than the original translation, the first proposal is kept.

The checked translation is our first run for English-French.

Antidote RX changed at least one word in 26 % of the news-test2010 sentences. The most frequent type of corrections are agreement errors, like in the following example where the agreement between the subject nombre (number) is correctly made with the adjective coupé (cut), thanks to the full syntactic parsing of the French sentence. Source: [...] the number of revaccinations could then be cut The example below exhibits a good decision made by the grammatical checker on the mood of the French verb être (to be). Source: It will be a long time before anything else will be on offer in Iraq.

Reranking: Il faudra beaucoup de temps avant que tout le reste sera offert en Irak.

+Grammatical checker: Il faudra beaucoup de temps avant que tout le reste soit offert en Irak.

A last interesting type of corrected errors concerns negation. Antidote has indeed the capacity to add the French particle ne when it is missing in the expressions ne ... pas, ne ... plus, aucun ne, personne ne or rien ne. The results obtained using the grammatical checker are reported in the last line of Table 5. The automatic evaluation shows only a minor improvement but we expect the changes induced by this tool to be more significant for human annotators.

Effects of the Original Source Language of Articles on Translation

During our experiments, we found that translation quality is highly variable depending on the original source language of the news sentences. This phenomenon is correlated to the previous work of [START_REF] Kurokawa | Automatic detection of translated text and its impact on machine translation[END_REF] that showed that whether or not a piece of text is an original or a translation has an impact on translation performance.

The main reason that explains our observations is probably that the topics and the vocabulary of news originally expressed in languages other than French and English tend to differ more from those of the training materials used to train PBM models for these two languages. In order to take into account this phenomenon, MERT tuning was repeated for each original source language, using the same PBM models trained on all parallel corpora and incorporating an IR score.

Columns 1 and 3 of Table 5 display the BLEU measured using our previous global MERT optimization made on 2553 sentence pairs, while columns 2 and 4 show the results obtained when running MERT on subsets of the development material, made of around 700 sentence pairs each. The BLEU measured on the whole 2010 test set is reported in the last line. As expected, languagedependent MERT tends to increase the LM weight for English and French. However, an absolute 0.35 % BLEU decrease is globally observed for English-French using this approach and a 0.21 % improvement for French-English. 

Conclusion

This paper presented our statistical machine translation system developed for the translation task using Moses. Our submitted runs were generated from models trained on all the corpora made available for the workshop, as this method had provided the best results in our experiments. This system was enhanced using IR methods which exploits news monolingual copora, N-best list reranking and a French grammatical checker. This was our first participation where such a huge amount data was involved. Training models on so many sentences is challenging from an engineering point of view and requires important computational resources and storage capacities. The time spent in handling voluminous data prevented us from testing more approaches. We suggest that the next edition of the workshop could integrate a task restraining the number of parameters in the models trained.

  [...] Reranking: [...] le nombre de revaccinations pourrait 2 www.druide.com alors être coupées [...] +Grammatical checker: [...] le nombre de revaccinations pourrait alors être coupé [...]

Table 1 :

 1 BLEU measured for English-French on news-test2009 when training on Europarl.

	no serialization	23.24
	corpus serialization	23.13
	corpus and reference serialization 23.27

Table 2 :

 2 LMs perplexities and BLEU scores measured on news-test2009. Translation models used here were trained on nc and Europarl.

	corpora	Fr ppl BLEU ppl En
	nc	327 22.44 454
	nc + ns	125 25.69 166
	Europarl + UN + Gw	156 24.91 225
	all corpora	113 26.01 151
	nc + ns (3g, unpruned) 138 25.32	-
	nc + ns (4g, unpruned) 124 25.86	-
	nc + ns (5g, unpruned) 120 26.04	-

  Table 3 shows a high increase of 2.7 points w.r.t. the use of nc alone (line 1) when building the phrase table and the reordering model from nc and either the 1.7 M-sentence-pair

	Europarl (line 2) or a 1.7 M-sentence-pair cor-pus extracted from the 3 out-of-domain corpora: Europarl, UN and Gw (line 3). Training a PBM on merged parallel corpora is not necessarily the best way to combine data from different domains. We repeated 20 times corpora nc nc + Europarl nc + 1.7 M random pairs 26.02 En→Fr Fr→En 23.29 23.23 26.01 -26.68 20×nc + Europarl 25.86 -nc + 8.7 M pairs (part 0) 26.44 27.65 nc + 8.7 M pairs (part 1) 26.68 27.46 nc + 8.7 M pairs (part 2) 26.54 27.50 3 models merged 26.86 27.56 Table 3: BLEU (in %) measured on news-test2009 for English-French and French-English when translations models and lexicalized reorder-ing models are built using various amount of data in addition to nc.

nc before adding it to Europarl so as to have the same amount of out-of-domain and in-domain material. This method turned out to be less successful since it led to a minor 0.15 BLEU decrease (line 4) w.r.t. our previous system.

Following the motto "no data is better than more

Table 4 :

 4 BLEU measured on news-test2009

	The main interest of adding
	new training material relies on the finding of
	words missing in the phrase table. According to

Table 5 :

 5 Official results of our system on news-test2010.

			En→Fr			Fr→En	
		BLEU BLEU-cased TER BLEU BLEU-cased TER
	PBM	27.5	26.5	62.2	27.8	26.9	61.2
	+IR score	27.7	26.6	62.1	28.0	27.0	61.0
	+N-best list reranking	27.9	26.8	62.1	28.0	27.0	61.2
	+grammatical checker	28.0	26.9	62.0	-	-	-

Table 6 :

 6 BLEU scores measured on parts of news-test2010 according to the original source language.

		En→Fr	Fr→En
	MERT global lang dep global lang dep
	Cz	21.95	21.45	21.84	21.85
	En	30.80	29.84	33.73	35.00
	Fr	37.59	36.96	31.59	32.62
	De	16.60	16.73	17.41	17.76
	Es	24.52	24.45	29.25	28.31
	total	27.64	27.39	27.99	28.20

www.lemurproject.org