N
N

N

HAL

open science

The Cauchy problem for the inhomogeneous
non-cutoff Kac equation in critical Besov space

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu

» To cite this version:

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. The Cauchy problem for the inhomogeneous
non-cutoff Kac equation in critical Besov space. 2019. hal-02021526

HAL Id: hal-02021526
https://hal.science/hal-02021526

Preprint submitted on 16 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02021526
https://hal.archives-ouvertes.fr

THE CAUCHY PROBLEM FOR THE INHOMOGENEOUS
NON-CUTOFF KAC EQUATION IN CRITICAL BESOV SPACE

HONGMEI CAO, HAO-GUANG LI, CHAO-JIANG XU AND JIANG XU

ABSTRACT. In this work, we investigate the Cauchy problem for the spatially inhomogeneous
non-cutoff Kac equation. If the initial datum belongs to the spatially critical Besov space, we
can prove the well-posedness of weak solution under a perturbation framework. Furthermore,
it is shown that the solution enjoys Gelfand-Shilov regularizing properties with respect to the
velocity variable and Gevrey regularizing properties with respect to the position variable. In
comparison with the recent result in [18], the Gelfand-Shilov regularity index is improved to be
optimal. To the best of our knowledge, our work is the first one that exhibits smoothing effect
for the kinetic equation in Besov spaces.
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1. INTRODUCTION

In this work, we consider the spatially inhomogeneous non-cutoff Kac equation
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where f = f(t,z,v) > 0 is the density distribution function depending on the position z € R,
velocity v € R and time ¢t > 0. The Kac collision operator is given by

(o)) = [

101<

50 ([ g~ gy dv. ) .
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4

Date: February 16, 2019.

2010 Mathematics Subject Classification. 35B65,35E15,35H10,35Q20,35505,82C40.

Key words and phrases. Inhomogeneous Kac equation, Gevrey regularity, Gelfand-Shilov regularity, Critical
Besov space.



2 H.-M. CAO, H.-G. LI, C.-J. XU AND J. XU

with the standard shorthand f. = f(¢,z,v)), f' = f(t,z,v"), f« = f(t,z,0.), f = f(t,z,v), where
the pre and post collision velocities can be defined by

v +iv, = e (v +iv,), i, v =vcosh —v,sinf, v, =wvsinf+ v, cosh, v,v, €R.
Indeed, the relation follows from the conversation of the kinetic energy in the binary collision
v? 4 v =02 42
We consider a cross section with a non-integrable singularity of the type

(12) 50) =, 1617

for some given parameter 0 < s < 1. For more details on the physics background, the reader is
referred to [6, 25] and references therein.
We study the Kac equation (1.1) around the normalized Maxwellian distribution

lv]?

w(v) = (27r)*%e* > veR

In a close to equilibrium framework, considering the fluctuation of density distribution function

[t m,0) = p(v) + Vi(v)g(t, z,v).
Note that K(u,u) = 0 by conservation of the kinetic energy, we turn to the following Cauchy
problem

(1.3) Org +v0,9+Kg=T(g,9), t>0,veR,
. 9|t:0 = 9o,
where
K(g) £ K1(g) + K2(9),
with
Ki(9) = —pu 2K (u, u?g),  Ka(g) = —pn~ V2K (1" ?g, 1)
and

D(g,9) = p~ 2K (u'g, ' %g).
The linearized Kac operator I has been investigated by Lerner, Morimoto, Pravda-Starov and Xu
in [17]. It is shown that K is a non-negative unbounded operator on L*(R,) with a kernel given by

Ker K = Span{eg, e2}.

Here the Hermite basis (e,,),>0 is an orthonormal basis of L?(RR), which is presented in Section

5.1. The harmonic oscillator
2

1
H = _Av + ’UZ = Z(n+ _)]P)na

2
n>0

where P, stands for the orthogonal projection
P, f = (f7 en)LQ(R)en'
Furthermore, the fractional harmonic oscillator
S 1 S
H® = Z(/ﬂ + 5) Py,
k>0

can be defined by the functional calculus. The linearized Kac operator is diagonal in the Hermite
basis

(1.4) K= Z)\k]}nk
>1

with a spectrum only composed by the non-negative eigenvalues

Aors1 = | BONL — (cos§)P+1)do >0, k>0,

jus
4

Mok = [ BO)(1 — (cos)? — (sin0)2F)do >0, k> 1,

us
4
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satisfying the asymptotic estimates

(1.5) Ai =~ kP
Now we take the following choice for the cross section
| cos &

[sin 21425

(1.6) p(O) = 6] <

m
4 )
in part because of the usage of those results in [17] directly. In that case, the eigenvalues satisfy
the asymptotic equivalence

21+s

(1.7) A~

(1 —s)k®,
k—+4o00 S
where I' denotes the Gamma function.

It is known that the solution of Boltzmann equation without angular cutoff can enjoy smooth-
ing effects. The non-integrability of the cross section is essential for the smoothing effect, see for
example [9]. Alexandre-Morimoto-Ukai-Xu-Yang [3] highlighted the importance of regularization
effects for Boltzmann equation (see also [1, 4, 10, 11]). They studied C'*° smoothing properties of
the spatially inhomogeneous non-cutoff Boltzmann equation in [1, 2, 3]. In [19], Lerner-Morimoto-
Starov-Xu studied the linearized Landau and Boltzmann equation and proved that the linearized
non-cutoff Boltzmann operator with Maxwellian is exactly equal to a fractional power of the lin-
earized Landau operator. In addition, Lekrine-Xu [16] investigated the Gevrey regularizing effect of
the Cauchy problem for non-cutoff homogeneous Kac equation. Later, Lerner-Morimoto-Starov-Xu
[17] considered the linearized non-cutoff Kac collision operator around the Maxwellian distribution
and found that it behaved like a fractional power of the harmonic oscillator and was diagonal in
the hermite basis. Moreover, it was shown in [20] by Lerner-Morimoto-Starov-Xu that the Cauchy
problem to the homogeneous non-cutoff Kac equation

g +Kg=T(g,9),
gli=o = g0 € L*(R,),
enjoys the following Gefand-Shilov regularizing properties

V>0, gt) € ST (R),

where the Gefand-Shilov space S#(R?) with p,v > 0, + v > 1, are defined as the set of smooth
functions f € C(R?) satisfying
JA,C >0, Yo, B € N%, sup [vP9% f(v)| < CAlHBI(al)r(BY).
vER4
The Gevrey class G*(R?) is the set of smooth function fulfilling
JA,C >0, Ya e N4, sup |82 f(v)] < CAll (al)®,
vERE

The analysis of the Gevrey regularizing properties of spatially inhomogeneous kinetic equations
with respect to both position and velocity variables is more complicated. Up to now, there are few
results expect for a very simplified model of the linearized inhomogeneous non-cutoff Boltzmann
equation, say the generalized Kolomogorov equation

Org+v-Veg+(=A,)°g =0,
gli—o = go € L*(R2,)),

with 0 < s < 1. Morimoto and Xu [21] found that the solution to (1.8) satisfied
ElC > O,Vt > 0) eC(t28+1(_Az)s-i_t(_Av)S)g(t) S LQ(Ri(fU)v

(1.8)

which implies that the generalized Kolomogorov equation enjoys a G 2 (Ri‘fv) Gevrey smoothing
effect with respect to both position and velocity variables. The phenomenon of hypoellipticity
arises from non-commutation and non-trivial interactions between the transport part v - V, and
the diffusion part (—A,)® in this evolution equation. On the other hand, for the Cauchy problem
of the linear model of spatially inhomogeneous Landau equation,

(1.9) { g +v-Vag =V, (a(n) - Vg —b(n)g) ,
. gli=0 = g0
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with

aij (1) = 6ij ([v]* + 1) — vy,
b](u):_vjﬂ iaj:]-a"'ada

they showed in [21] that the solution to (1.9) enjoyed a G'(R2%) Gevrey smoothing effect with
respect to both position and velocity variables with the estimate

1 1
36> 0,V >0, AT HEAID (1) @ L2RA),

which coincides with the fact that the Landau equation can be regarded as the limit s = 1 of the
Boltzmann equation.

Recently, Lerner-Morimoto-Starov-Xu [18] considered the spatially inhomogeneous non-cutoff
Kac equation in the Sobolev space and showed that the Cauchy problem for the fluctuation around

1
the Maxwellian distribution admitted Sllj:i
2s

the velocity variable and G I+gs Gevrey regularizing properties with respect to the position variable.
In [18], the authors conjectured that it remained still open to determine whether the regularity
indices 1 + 2_15 is sharp or not. On the other hand, Duan-Liu-Xu [12] and Morimoto-Sakamoto
[22] studied the Cauchy problem for the Boltzmann equation with the initial datum belonging to
critical Besov space. Motivated by those works, we intend to study the inhomogeneous non-cutoff
Kac equation in critical Besov space and then improve the Gelfand-Shilov regularizing properties
and Gevrey regularizing properties.
Now, our main results are stated as follows (see Section 2 for the definition of Besov spaces ).

Gelfand-Shilov regularity properties with respect to

Theorem 1.1 (Main Theorem). Let 0 < T < 4o00. We suppose that the collision cross section
satisfies (1.6) with 0 < s < 1. There exists a constant €9 > 0 such that for all go € L%(B;/f)

satisfying

lo0llz2 my/2) < <o
then the Cauchy problem (1.3) admits a weak solution g € E%"Z%(B;/f) satisfying
z T
||g|‘Z%OZ%(B;{12) + HHQgHZ%Z%(B;/f) S cp€ HgOHZ%(B;/f)a

for some constant ¢y > 1. Furthermore, this solution is smooth for all positive time 0 < t < T,
which satisfies the following Gelfand-Shilov and Gevrey type estimates: For § > 0, there exists
C > 1 such that for all 0 <t <T and for all k,l,q >0,

Ck+l+q+1 3s+1 3541 s
lv*0,02(1) (kD) ZGrm (1) 70717 () 255

o2y < o pl/2y -
||L121(B2,/1 )~ t—zg(tfn(k+l+2)+_232t1q+5 |go||L%(Bz,/1)

Our result deserves some comments in contrast to the result of [18].

Remark 1.2. (1) We show the well-posedness of Cauchy problem with the initial datum be-
longing to the spatially critical Besov space L%(B;/f), rather than in the Sobolev space
L3(Hy).

(2) For the regularizing effect, our result indicates that
3s41
Vt>0, Ve €R, g(t,z,)) e SECTT(R); VE>0, weR, g(t-,v) € G5 (R).
2s(s+1)

Actually, the Gelfand-Shilov index for the wvelocity variable is sharp for 0 < s < 1, if
noticing that

3s+1 2s+1 3s+1 1
= <14 —.
2s(s+1) 2s (2s+1)(s+1) 2s
(3) If s is close to 1, the solution is almost analytic in the velocity variable, since
3s+1 1
25(s+1) '

Therefore, our Gelfand-Shilov index for the velocity variable should be optimal.
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The paper is arranged as follows. In Section 2, we recall the definitions of Besov spaces and
Chemin-Lerner spaces as well as some key estimates for the Kac collision operator. Section 3 is
devoted to establish the local existence for (1.3) in critical Besov space. In Section 4, we establish
Gelfand-Shilov regularizing properties with respect to the velocity variable and Gevrey smoothing
effects with respect to position variable. Section 5 is Appendix, where instrumental estimates in
terms of Hermite functions, the definition of the Kac collision operator as a finite part integral,
some estimates of Kac collision operator, the equivalent definitions of Gelfand-Shilov regularity
and analysis properties in Besov spaces are presented.

2. ANALYSIS OF KAC COLLISION OPERATOR

In this section, we present the trilinear estimates of the Kac collision operator which will be
used in the subsequent analysis. Firstly, we recall the Littlewood-Paley decomposition. The reader
is also referred to [7] for more details. Let (¢, x) be a couple of smooth functions valued in the

closed interval [0, 1] such that ¢ is supported in the shell C(0,2,3) = {¢ € R: 2 < |¢([ < £} and

X is supported in the ball B(0, %) = {5 eER: [ < %} In terms of the two functions, one has the
unit decomposition

XE€)+Y ¢ (27%) =1, VEeR.

q>0

The inhomogeneous dyadic blocks are defined by
A_ju = x(D)u, Aju®p(2 Dy, ¢>0
for u = u(z) € §'(R,). Hence, the Littlewood-Paley decomposition for any tempered distribution

u reads
u = g Agu.

g=—1
It is also convenient to introduce the low-frequency cut-off:
Squ= Y Apu.
p<q—1

Now, we give the definition of main functional spaces in the present paper.

Definition 2.1. Let 0 € R and 1 < p,r < co. The nonhomogeneous Besov space By . is defined
by

B, = {u eSR):u=Y Aguin s" lullss, < oo}
q>—1

where
1/r

lulpg, = D “IAS )"

q=>—1
with the usual convention for p,r = oo.

For the distribution u = u(t, z,v), we define the mixed Banach space

LR LR LB & L7 ((0, T); L (Ry; L7 (R,,))

for 0 < T < oo and 1 < py,pa2,p3 < 0o, whose norm is given by

T p2/p3 p1/pz2
ullLe1 pp2 pps = / / (/ lu(t, z,v)|"* dx) dv dt
e 0 R \J/R

with the usual convention if py, ps, p3 = cc.
In addition, we give another mixed Banach space, which was initialed by Chemin and Lerner in

[8].

1/p1
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Definition 2.2. Let 0 € R and 1 < p1,02,p,7 < 00. For 0 < T < oo, the space E%Zg? (By ) is
defined by

L L (By,) = {ult.-v) € 8+ ullzor zoa sy, < 20

where

1/r

ks
lallzezez oy = | D2 (2% NAguller oo
' q=—1

with the usual convention for o1, 02,p, 7 = 0.
Due to the coercivity of the linearized Kac collision operator I, we have the following result.

Lemma 2.3. For the linear term K, there exists a constant C > 0 such that for the suitable
function f,g

1 s =
6||APH2f||2L2(RU) < (ApKF, Apf)LQ(]Rv) + ”Apr%%]R,,) < C||APH2f||2L2(RU)
for each p > —1. Moreover, for o >0 and T > 0, it holds that
T 1/2 ) )
S 27 ([ @k Ay dt) = Gl ey )~ ol rzcog,

p=>—1

Proof. Observe that the inner product (-,-)r2(r,) is with respect to v, A, acts on = and the
linearized non-cutoff Kac operator K is independent of x. Thus, the first inequality can be obtained
by using the spectral estimate for I in Section 5.2. The second inequality just follows from the
first inequality and the definition of Chemin-Lerner spaces. |

For the nonlinear term I'(f, g), the authors [18] showed some trilinear estimates in the Sobolev
space. Here, we establish the trilinear estimates with minor changes, which will be used in the
proof of local existence of (1.3).

Lemma 2.4. Let f,g,h € S(RZ ). Then there exists a constant Cy > 0 such that for all 0 < § <
1,j1,J2 2 0 with j1 + j2 < 1, it holds that

‘ (L4 8V + 8(D.) "' T (1 + VH)" 1, (1 + 8VH) ), 1)

2
Lz,v

< Collfllpzpe IH2gllz NIHER] L2,

x,v

[ (0 6V + 8(D2) T (D1 + 3V + 3(D2)) ). )

L2

x,v

< Coll flezreIH2gllea 13 A L2

x,v

Proof. For f,g,h € S(RZ ), we decompose these functions into the Hermite basis in the velocity
variable

+oo
F= " fa@en(),  fo={f(@"),en) L2,
n=0

and similar decomposition for g, h. Notice that

—+oo

too 1 m 1
@) flzar = (X Waldomn) 13 lizee = (3 (04 5) aloen)”
n=0

n=0
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with 1 < p < co and m € R. Following from Lemma 5.4 and Cauchy-Schwarz inequality, we obtain

((1 +O0VH 4+ 8(D,))"'D((1 + SVH) f, (1 n 5@)%), )

L3

=[ 3 5 enal(1engrawa) (i)
n=0k+l=n
k,1>0

x (14814 %)jszgl,hn)@

<Z|040n||\f0||L°°||gn||L2Hh 2 +Z Y lazealll foellze gl ez bl 2,

n=0 2k+l=n
k>1,1>0

where we used that

[+ ayfns 5+ 0002) " (rayfion 5)" (14014 3 e, <

since k + 1 = n and j1,j2 > 0 with j; + jo < 1. Under the assumption (1.6), it follows from the
formula (1.7) and Lemma 5.5 that for f,g,h € S(RZ ),

| <(1 +OVH + 6(D,)TID((1 + SVH) (1 + 5\@)%), )

L3,
+oo 1 +oo ,Ukl
Slollez >0+ 5 gulzz bz + 3 Ihalez (D 5 :)
n=0 n=0 2k+Il=n
E>1,1>0
= Il"’IQ.
By using (2.2), we have
+oo 1 +oo 1 1
5 < ol (o4 2 lal ) (S n+ 2 Ihalts)’
n=0 n=0
< follee|HEgllez  IH PRz -
On the other hand, we obtain
Pk 1
L= >
k>1,1>0 ki
= i
=Y+ 5) il Si’snfzuu;ouh%ﬂum)
22 ;mmé)a
“+o00 400 ~ %
< Wl gz, (23 i T thnm) .
1=0 k= 1
Here, we may calculate that
400 400 +o00 2 1
/‘kl 9 My 2
(XY ||h2k+z|\m) AN I
1=0 k= 1]€2 n=0 TN o, K24 5)°
k>1,1>0

Since )
firg S kT when k> 0Lk>1,0>0; jig; S S(+3) when1<k<l,
it follows from Lemma 5.5 that
l 1\s
:ukl k2 (I+3) 1
> S Y e ¥ B ca
2Uti=n ka(l+g)s ™ Ut i— U+3)7° i, k2 2

k>1,1>0 k>1, z>o k<1,0>0
kS k<I
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Thus, we are led to

+o00o +o00o

(2.3) X v ngﬂmm)2<nﬂ Bles,

l()kl

We can conclude that there a positive constant Cy > 0 such that

'((1 +OVH +8(Da) I (14 OVH) f, (1 + 6VH)2g), )

L3,
<Gy 2 I1H3R] L2,
which leads to the first inequality in (2.1). Slmllarly, we have
| ((1+ 0V 4+ 6(D2)) ™" T(f, 8D (1 + 0VH + 6(D.)) " g). 1)
5(Dy,
= | Y an / (fe £23 o) (@)da
n=0 k-+i= (1+9¢ 14+68(Dy))  (1+64/l+ 3+ 5(Dy))

k l>0

+oo —+oo
<> laomllfollzgellgnllzzlhsnllze + > D leokall farll oo llgell 2 a2,

n=0 n=0 2k+Il=n
k>1,1>0

H(S (1 * 5\/ n % + 5<Dw>)_1H£(L2(Rz)) =1
H (1 + 5\/ ne % + 5<Dz>)71HL(L2(]Rm)) s1

Hence, by proceeding the similar procedure, we can obtain the second inequality in (2.1). O

where we used

Putting § = 0 in Lemma 2.4, which coincides with Lemma 3.5 in [20].
Remark 2.5. Let f,g,h € S(Rim), then there exists a constant Cy > 0 such that

|(C(f.9). 1)z

x,v

< Colfllpepe 1H2gllez 172 0ll2z

x,v

By the similar proof as in [18], we also have

Lemma 2.6. Let f,g,h € S(R2 o). Then there exists a constant Cy > 0 such that
||H T'(f,g HL2 W < Co Hf”LgL;o HQHng-

We prove the following result in order to estimate the nonlinear collision operator in the frame-
work of Besov spaces.

Lemma 2.7. There exists a constant C; > 0 such that for all f,g € S(R,),t > 0,0 < k <
1,m,n >0,

(2.4) 1Gs e (V[ Greon ()7 F1( G (D))~ D)2 < Call £l e llglcz,

with the Fourier multiplier

3s+1

_2s

eXP( ((n+ HF + <Dz>2;—+1)33“)
2s .
1+ kexp (t((n_'_%)% +<Dw>%ﬁ)_ss+1)

Proof. Notice that the operator G, ,(t) is a bounded isomorphism of L*(R,) such that

(2.5) Grn(t) =

_2s
1+ kexp (t((n + %)% 4 (DQC)ZE) 35“)

(Gen(t) ™ = .
t exp (tn+ 5)F +(D,) F) )
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Set
h=Grman (D) ([(Gr,m (1)~ F1(Gre,n (8)) " 9]),

then we have

X xp (t( (m+n+3)2 + (&>
h(§) = : p( (( ) - e F(([(Grom () FIUGrn ()~ 9]))
B A

« 1 (o)
_ % exp (t( (m +n -+ 2) Sj'l <§> 3S)+1 e ]-"((g,{,m(t))_lf) « }-((g&n(t))—lg%
1+mexp(t((m+n+%) )

where F denotes the Fourier transform. Consider the increasing function

e
Z(zr) = ———
(z) =7 et
we can calculate and obtain
Z(x+y) 11—k k(e® +eY) 1 1
Ve,y >0, ————=~ = <14+ —=+4+ =<3,
hY= Z@Zy) " Thret T Tire St E T

which implies that the function Z(z) satisfies the inequality
(2.7) Vo,y =20, Z(z+y) <3Z(x)Z(y).

Since for all m,n > 0,£,n7 € R,

1 5;1 3s+1 33—?-1
((m+n+3) " +©FF)
s+1 26 s+1 25

()T B (o)

by using (2.7), we obtain

s+1 s =

exp (1 (m+n+ ) 4 @ F) )

2

om0 )
1 s+1 3541 3o

3eXP(t((m—|—§) > +<77>25+1) )
1+/€exp(t((m+%)2 +<77>2511 35+1)

1 s+1 3541 -
exp(t((n+§) 2 +<§_77>23+1) )
2

st1 3 2 !
oo (114 D7 + 60 H) )

X

Then it follows from (2.6) and (2.8) that

3 P 3 1 E s
12llzz < WWI *9lllzz = WH}-}- YA 1) e

B 1 BN T
= o IF T 19z =3I AFDF (gD ez
<3IF A DIz 17 (3D 22 < Cullfll g2 llgllzz,
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which leads to the desired (2.4). Here we used |F~'(|a|)[[ree < Cyllul| a2 on RY(d > 1) for
: 2.1
u € S(RY). Indeed,

IF - a)lze < llallzs < Y 1Apulle

p>—1

:/ A 1u|ds+z/ |Aulde
el<4 =0 aar<ie<sor

d
< 2b =
< 3 Ca¥Aguliz = Calul o

p=—1

where Cy > 0 is a positive constant depending on the dimension d. Hence, the proof of Lemma 2.7
is finished. O

Now, we establish the key trilinear estimates for I'(f, g).
Lemma 2.8. Let f,g,h € S(RZ ). Then it holds that for allt >0 and 0 < x < 1

(GelhAT(Ga() ™, (Gelt) ) Aph) 1
S D Y] P AP p ETA N

(2.9) l7—p|<4
ST Ul ey 1HE Aggla IIHE AR 2
j>p—4 ‘
with
2s
exp (t(’H R (D) 3 ) Sott
G/{(t) = 2s

1+ kexp (t(’Hsgl +(D,) zﬂ)
Proof. Firstly, recalling Bony’s decomposition, one can write A, (

A, (ww) = Ap (Tyv + Tyu+ R(u,v)),

uv) as follows

where T and R are called as “paraproduct” and “remainder”. They are defined formally by
T,v = Z Si—1uljv,  R(u,v) = Z Z Ajuljv,  for u,v € S'(R).
J Joli=i'1<1
Notice that
ATUU—ZA i—1ulAv) = Z A, (Sj—1uljv),

J li—pl<4
ATUu—ZA (AjuS; ) = Y Ap(AjuS;qv),
li—pl<4
=> ) Aj(Ajudw) = > > A(Ajud ),
VERVES US| max(j,j')>p—2[j—j’|<1

so it holds that
= ) ANSjaud)+ Y A(AjuSi )+ Y > A(Ajulw).
li—pl<4 li—pl<4 max(j,j’)> p—2[j—j'|<1

Since

exp (t(?—[sgl + (D) 3211) 35“)

1+ Kexp (t(’HST+1 + (Dm>z—ﬂ) 35“)

Gﬁ(t): Zgnn ny

where G, ,, is given by (2.5) and P, denotes the orthogonal projections onto the Hermite basis
described in Section 5. Taking u = (Gx k() ™' fr,v = (Gru(t)) g1 for f,9,h € S(RZ ), it follows
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from Lemma 5.4 that

(GeOAL(Gr(t) T, (Grl(t) ™ 9). Aph)
+oo
=2 >t (Gen D ((Gese(®) " fillGra () au)  Apha) 1

n=0k+l=n
k,[>0

= > Z Dkt (Gran (A (811G (1) ] A (Gt (0) " ) s Aphn) 1

p|<4 n=0k+l=n
li—pl< k0>

+ ) Z Dkt (Grn()Ap (Aj[(Gre(6) il Si-1[(Gra (1) " anl)  Aphn) 1

|J p|<4n Ok—i—l n
JA>0

Y Y Y Y a0, (A G0) R (Gurl) ) Ak,

max(j,j ) >p—2 |j—7|<1n=0 k+I=
(4,3") l7—3"1< pArve

£ A+ Ay + As.

For Ay, since [Sj_1, (Gx k(1)) = 0 and [A;, (Gxu (1)1 = 0 with j > 1,0 < k < 1,k > 0, we

obtain

| A
< > Z S awilllGrm(t) (Si-1[(Grk () Frl A 1(Gr i () i) L2 | ARl 2

p|<4n=0k+I=
U < Tl >0

= > Z D lakdllGun(®) (G ) S-1/1](Gra (1)) 7 [A591]) 2z 1A a2

‘] p‘<4n 0 k+l=n
k,0>0

+oo
< >N |k 11951 Fkll /2 1A el L2 [| Aphn [ 22

j—p|<4n=0k+Il=n
‘ | k,[>0

+ oo
S 3 laonllfol gzl Agnlcz | Aphal 2

|j—p|<4n=0

+oo
+ >0 D > leawallfarll el Az | Aphal 2,

|J p|<4n 0 2k+1l=n
k>1,1>0

where we used Lemma 2.7 in the forth line, and Lemma 5.4 and Lemma 5.8 in the last two line.

Bounding As, A3 are similar, we have

| As|

“+o0
< D0 DD lawalllGen(®) (A51(Grk ()™ £e1Si-11(Gra () i) L2 I AZ ]| 2

‘] p‘<4n Ok+l n
A>0

+ > Z > |2k 114 farll 22 lgell g1z [ Aphin ]l 22,

<4 n=0 2k+I=
li=rl< k> 1l>0
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|As]

+oo
< > ST lewalllGrm(®) (A5 [(Grek ()" Fr g (G (1) " i) 2 | AD R || 2

max(j,7)>p—2|j—7'|<1n= 0k+l n
(3:3") li—=3"1< Ay

OO
+ > > > ool A Farllzz ell gzl Apfenll e

j>p—3n=0 2k+i=n
k>1,1>0

Combining the three estimates for Ay, A, A3 implies that

|(GeBALT((G() ™ £, (Gul0) ), Ah) .

LU

—+oo
> Z|040,n||\f0||B;/12IIAjgnlngHAphnHLg

lj—p|<4n=0

—+o0
+ D > looalldjfollzzlgnll gz Aphnll 2

j=>p—4n=0

—+o0
+ > > D leawalllferl gzl Azl 2| Aphallze

‘] p‘<4n 0 2k+1l=n
k>1,1>0

+
+ > > |2l A Farllzz 9ell g1z | Aphenlizz

j>p—4n=0 2k+Il=n
k>1,1>0

S+ T+ T3+ Jy

By using the formula (1.7) and (2.2), we arrive at

hth< Y Zn+ ol 2180l 22 1 Aphnl 2

|j—p|<4 n=0

+ ) Z n+ N4 foll 2 llgnll g1z Aphn 22

(2.10) j> p—4n=0
< Z ”fOHB;/fHAjH%gHL%Li”HgAPh”Lgm
li—pl<4 ’
1A ol # gl gm0 Al
jzp—4 1

On the other hand, for J3 and .Jy, by using the Lemma 5.5 once again, we obtain

< YN NMHfzkHBl/zHAggl||L2||A hoteil| 2

lj—p|<4 k>1,1>0

+Z Zukz

j>p—4k>1,1>0

1/2HA hak+il 22

(211) +o00 +oo ~ 1
< 30 Wy 3850l (XX oy 1Avhanaliz)”
lj—pl<4 ’ =0 k=1 F

h 1

||A h2k+lHL2)

I\J\w

+o00 400
+ 2 185 flle, 150l 1) (sz
=0

j>p—4 k=1
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Therefore, we conclude that from (2.3), (2.10) and (2.11)

(GO AT (Gul) ™, (Gu(1) " 9), By,
S D Il pagrrmy 15 Aggllna IHE ALz

z0
l7—p|<4

3 Al WHE Gl e [HE Ahlz

j=>p—4

which is (2.9) exactly. The proof of Lemma 2.8 is completed. O

Take k =t = 0 in Lemma 2.8, we have the following consequence.

Remark 2.9. Let f,g,h € S(RZ ). Then it holds that
(AT (9), Aph) s
<Y 1Al |

|7—p|<4

+ D F iz e 112 Aggllea 112 Aph]| 2

xT,v
j>p—4

L2 ||'H2A hHLz

vz

Lemma 2.10. Assume ¢ > 0,7 > 0 and 0 < k < 1. Let f = f(t,z,v), g = g(t,x,v) and
h = h(t,x,v) be three suitably functions such that all norms on the right of the following inequalities
are well defined. Then there exists a constant C1 > 0 such that

T 1/2
22‘”[/ [(Ga®AT(Gr(t) 7 F, (Gal0) " 9), Aph) \dt]
p>—1 0
(2.12) 1/2 gl|2 1/2
S CleHZ%OZ?,(BgJ) 2 L2(Bl/2 HH ||L2 L2 B" )
1/2 1/2 57111/2
+ Cl Hf”L%OL?,(BzJ) L2 L2 B" )”H HL2 Z%(BgJ)'
Proof. Based on Lemma 2.8, it follows from Cauchy-Schwarz inequality that
1/2
> o V (GO AT(Crl) ™ (Cult) ). D) 2 ]
p>—1
1/2
SDIESA 1D SN AN VPR N I T Y
p=—1 li—p|<4
1/2

2(B,/%) HH :A hHL2

DY / 185 £l 1

p>—1 j>p—4

s 1/2 s
S ey 22 27 (2 1Al ) IHEAMLS,
p>

>-1 li—p|<4

1/2 B
[l ey 30 2 S 18 s, ) AL

T x,v
p=>—1 j=p—4

1/2 2, 11/2
22y )M P 2 g > 2

p=—1|j—p|<4

1/2

< 1/2
S W amyre)

1/2

El 1/2 1/2 o
FIHEI o IR ) | D22 20 27 185 aera |

p=>—1j>p—4
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where c(j) = 277 ||H? ngL2 L2, /H"2g| 72 272(5g.,) and [|c¢(j)[|o < 1. Hence, with Fubini’s theo-
rem and Young’s inequality, we have

SO 2007 = 3 (15124277 # ()] ()

p>—1|j—p|<4 p=—1

<1< [l lle(@)ller < +oo.
Since 4
Z 9p=d)o — 9=(G+N)o 4 9—jo 4 .. | 9do _ %
—1<p<j+4

it follows that

33 e, = () I8,

< 400,

p=2—1lj=p—4 j2-1 —1<p<j+4
S Z 27° HAjf”L%ong = ||f||f%ofg(35’l)-
jz-1

Consequently, we conclude that

T 1/2
> 2 VO (G AT (Gr(t) 7 (G ())lg)Aph)\dt]

p>—1
1/2 1/2 1/2
< G ey 1200 g PRI T
1/2 1/2 1/2
+Cl||f||LooL2(Ba )HH2gHL%L%(321/2 HH h‘||L2L2 Ba )
Hence, the proof of Lemma 2.10 is complete. O

Similarly, it follows from Remark 2.9, Lemma 5.9 and Lemma 5.11 that

Corollary 2.11. Set T > 0. Let f = f(t,z,v), g = g(t,x,v) and h = h(t,z,v) be three suitably
functions. Then it holds that

1/2
1/2 1/2 1/2
32t ( / (AT (f.9),0 Liw\dt) S 2o vy IO e PHERI

p>—1

3. THE LOCAL EXISTENCE OF WEAK SOLUTION
This section is devoted to proving the local existence of weak solution to the Cauchy problem
(1.3).

3.1. The local existence of weak solution. We first state the local-in-time existence of weak
solution to (1.3).

Theorem 3.1 (Local existence). Let 0 < T < 4+o00. We assume that the collision cross section
satisfies (1.6) with 0 < s < 1. There exists a constant €9 > 0 such that for all go € L2(Bl/2)
fulfilling

lgollz2 (172 < €0,

then (1.3) admits a weak solution g € L>([0,T]; L*(R2 ) satisfying
(3.1) ||gHZ%°E3(B%ff) + HH%QHE%E%(B;/I?) < COeTHgO”Eg](B;/f)a
for some constant ¢y > 1.

Remark 3.2. Furthermore, we can obtain the uniqueness of solutions to the Cauchy problem (1.3)
among the small solutions satisfying (3.1). The uniqueness of solutions will be used in establishing
the Gelfand-Shilov and Gevrey reqularizing effects as in Section 4.

Actually, in order to prove the above theorem, the following local existence of linearized Kac
equation is necessary.
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Theorem 3.3 (Local existence for linearized equation). There exists a constant eg > 0 such
that for all T > 0, gy € L%(B;/lz), fe L%L%(Bé{f), satisfying
12 i) < €0

then the Cauchy problem

(3.2) g(t,x,v)|1=0 = go(x,v),

admits a weak solution g € L*([0,T7; LQ(]R?M)) satisfying
(3.3) ||g|\zqagzg(35/12) + HH%gszTz%(B;f) < Co€T||go||zg(B;/12),
for some constant ¢y > 1.

Once having this result, Theorem 3.1 follows from the standard procedure.

Proof. Let 0 <A < 1,7 >0 and g € E%(B;/f) be the initial fluctuation satisfying

~ . - . €0 1 A
. = < = <
(34)  lgollzs(pyz) < 20, with 0< & =inf (COeT, T \/ﬁcocfeBT) < eo,

where C,C1, co, €¢ are those constants defined in Lemma 2.3, Lemma 2.10 and Theorem 3.1. We
define

go = exp (~0t(VH + (D)) T ) go, 0T

with 0 < § < 1. With aid of Theorem 3.3, we prove the local existence of solutions to the nonlinear
Kac equation by constructing a local solution to the Cauchy problem (1.3) for the nonlinear Kac
equation as the limit of the following sequence of iterating approximate solutions:

8t§n+1 + 'Uazgn+1 + K§n+1 - F(§n7§n+l)7 n Z 0;

(3.5) ~
gn+1(t; x, U)|t:0 = go(xa U)'

The procedure is standard, which is similar to that of Theorem 4.2 in [18]. Here, we omit details

for simplicity. U

In order to show Theorem 3.3, we need to develop the regularization method in [18]. The proof
can be divided into several steps for clarity.

3.2. The local weak solution of linearized Kac equation. In the first step, we give the
existence of local weak solution with the rough initial datum, the interested reader is referred to
Lemma 4.1 in [18] for similar details.

Proposition 3.4. There exists a constant ¢g > 0 such that for all T > 0,99 € Lg(wa),f €
L*°([0,T] x Ry; L*(R,)) satisfying

Il fll o (jo, 7 xR0 s22) < €0,
then the Cauchy problem (3.2) admits a weak solution

g€ L>([0,T; L*(R3 ,)).

Next, we turn to prove the regularity with respect to x and v, which is shown by the following

two subsections.
3.3. Regularity of weak solution in velocity variable. A rigorous proof of Theorem 3.3 is
to mollifier the weak solution g € L>([0,T]; L*(R3 ,)) in velocity and position variables. To do
this, we mollifier the function f, that is, setting fy = Zévz__ll Apf for N € N, then we have
fn € LPL2(HF). For each fy(N € N), we consider a weak solution gy € Le>([0,T]; L*(R2 ,))
to the following Cauchy problem
(36) OrgN +v0zg9n + Kgn =T(fn, gn),
. gN(taxath:O :go(x,v).

Some simple calculations enable us to obtain the following proposition for fx.



16 H.-M. CAO, H.-G. LI, C.-J. XU AND J. XU

Proposition 3.5. If f € 5%25(35/12) For N e N, put fy =Snf = Z;Vg_ll Apf. Then we get
i) If fn € Z%"Z%(Bgl/lz), then {fn} is a Cauchy sequence in Z%"E%(B;/f)
it) For 0 <o <1/2, fn satisfies || fnlzgrzrz < C|fllpsgrzrz and

Ifnllegrarz < Collfnlligramg,) < Callinllzetaisg ) < Callflzeizss )
where Cy,Cs,Cy > 0 are constants independent of N.
Then, we can establish the following proposition for the weak solution gy .

Proposition 3.6. For N € N, put fy = Zﬁ;}l Apf. There exists a constant g > 0 such that
for all T > 0,90 € L*(R2 ), f € L*([0,T] x Ry; L*(R,)) satisfying

I £1 oo (j0,7) xRws22) < €05
then the Cauchy problem (3.6) admits a weak solution gn(t,x,v) € L>=([0,T]; L*(R2 ,)) such that
(3.7) lgnllrserzre + HH%QN”LQTLﬁLg < coe® |l gollL2 2,
for some constant ¢y > 1.

Proof. By applying Proposition 3.4, we see that the Cauchy problem (3.6) admits a weak so-
lution gn(t,2,v) € L>([0,T]; L*(RZ ,)). It only need to show (3.7) for a weak solution gy €
L>([0,T]; L*(R2 ,)) under the assumption that || fx|| Lo (jo,7)xr,;r2) is sufficiently small, indepen-
dent of N.

It follows from (1.4), (1.5) and Lemma 2.6 that

H™*Kg e L=([0,T); L*(R ), H™°T(f.g) € L=([0,T]; L*(R3 ,)).
for f e L>([0,T] x Ry; L*(Ry)), g € L>([0,T]; L*(RZ ,)). Define
(3.8) gs = (14+6VH+6(D,) tgn, 0<6<1.
Notice that
(1+VH +6(Dx))gs € L([0,T]; L*(RZ ) © L2(10, T} L2 (R, ).
According to Theorem 3 in [13], we deduce that the mapping
tos llgs®l3s

is absolutely continuous with

d
(3.9) 7 (||96H%g,v) = 2Re(9:95,95) 12 -
Taking the inner product of (3.6) with (14+-6vH+6(D,.))~2g and integrating the resulting inequality
with respect to (z,v) € R2. It follows from (3.8) and (3.9) that

1d
S (195132 ) +Re (Cas, 95) 1z | + Re (00295,05),

+Re([(1+0VH +6(Dy)) ' 0](1+ 0VH + 3(D2)) 0295, 95) 12,
= Re((1+ 0VH + 8(D,) "I (fn, (1 + 0VH + 8(Da))gs), 95)12

since [(1 4+ 6vVH + 6(D,))~', K] = 0. Due to the coercivity estimate of the linearized Kac collision

operator I, we obtain, for all 0 <t < T,

1d

2 dt

< (1 +6VH +6(Dy)) " o) (1 + 6VH + 6(D2)) 0295, 95) 12 |
+ (1 +6VH +6(De)) ' T(fwv, (1+0VH)gs). 95) 2

+ (1 + 6VH +6(D2) ' T(fx, 6(D)gs), 95) 12, |

1 s
lgsliZz,) + =13 gsl3s , — losllZe,

(3.10)
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since K is a selfadjoint operator and Re(v0.gs,gs)r2 . = 0. Furthermore, it follows from Lemma
2.4 with j; =0,j2 = 1 that forall 0 < § <1,

‘ ((1 + 6VH + 5<DI>)71 r (fN, (1+ 5\/@95) ,gs>

(3.11) e
< Coll fullzare 1M g5l -
Similarly,
‘ (<1 +8VH +6(D;)) T (fx, 6(Da)gs)s gé)Lz
(3.12)

2
x,v

= | (P D211+ VR 8D ). M)

< CollfnllezeeH2gnlLz, 1HZ gsll Lz -

Thanks to the commutator estimate in (4.10) of [18], we have

H (L4 VA + 8(D.) 0] (14 8VH + (D) ) 0u f

2
L <Al

which leads to

RES T

(3.13) ‘ ([(1 + OVH +6(D.)) " 0)(1+ 6VH + 6(Ds))Drgs, gg)

Consequently, we can deduce from (3.10), (3.11), (3.12) and (3.13) that forall 0 <t <T,0<§ <1

1d 1 s
5&(”9&”%3,”) + 5”7'[296”%3,”

<3lgsllZz , + Collfvllezree (IH2gn 2, + 1H2gsllLz ) H2gsll 22 -

Furthermore, if taking

1
||f||L°°([O,T]><]Rm;L%) < 10Cy T >0,

then we obtain
= (losl3z, ) + Z1HE a3, < BllgsliZz, +2Collfvllze HEgnls

which leads to
L ofh Gtmmyia, s
losliz, + 5 | O IHEgs(r) s o

t
<e%|gollZ2 , + 200||fN(T)||Loo([o7T]sz;Lg)/ S| HE g (7)]|72 dr
: ) :

for 0 <t <T and 0 < § < 1. Consequently, we obtain

1 s
lgslZeers | + 5||H295(7—)||%2([0,T]><]R§:’v)
<e|goll72 + 2Coe® || fa (7)) L2y [HE gn (7|17
=€ llgollLz 0¢ NAT)IILo=([0,T]xRy;L2) INAT)IIL2([0,T]xR2 )"

On the other hand, noticing that

1 +oo 1 _9
loslis, = 3= [ (1+8/n+5+60) " Fuan(toPas
n=0

%2 g5(T) |72 (0.1 XRZ.,)
T 400

_ i ls l —2 _ 2
=5 /. ;(Twz) /R(1+5,/n+2+5<§>) | Fagn (t, €)|2dédt,
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with gy = (gn(t,2,-), en)L2(r,), Where F, denotes the partial Fourier transform in the position
variable, it follows from the monotone convergence theorem (passing to the limit 6 — 0) that

1,
lonlZrz , + FI1H29n (M2 qo,rixz2 )

T Hx,v

< ellgoll72 , +2Coe® || (Tl Lo (10,1 xmei22) [HE g8 (7172 (0,77 022 -

Thanks to the smallness of HfN(T)HLoo([O7T]><RI;L%) (taking || fn (7)o (0,1)xR,:L2) < m), we
arrive at

lowlszs , + IHEn (D20 rpez ) < 2(C + e goll3s -
Hence, the proof of Proposition 3.6 is finished. O

Remark 3.7. Owing to the embedding Z%Oz%(Bg/f) — L>([0,T] x Ry; L3(R,)), we deduce that

the norm || f|| Lo ([0,7]x®,;L2) 15 small, since ||f||ZOO’L'2(Bl/2) is sufficiently small. However, there is
v T HolP21

no regularity available in position variable x for the weak solution gn according to Proposition 3.6.

In that case, we cannot attain desired solutions presented by Theorem 3.3.

3.4. Regularity of weak solution in position variable. In what follow, we establish the reg-
ularity of gn with respect to z.

Lemma 3.8. Let 0 <0 <1/2 and 0 < T < 4o00. For N € N, setting fn = Eévgjl Apf. If gn
satisfies B

gy € L=((0,T]; L*(R2 ),  Hign € L*([0,T] x RZ,),

1/2
dt>

then there exists a C' > 0 independent of N such that for any k> 0

2pa

T
2. Ty (/0 (AT, 98): Bpgn),

p>—1

(3.14)

~ 1/2 5
< OV 2o ey IR, 23 1
T L% s ’

1/2 s
+ CN||fNHZ/mZQ(B;/12) IH2gn 222,
T v N

where Cy > 0 is a constant depending only on N and
2p2
lonlzs 22 mg0) = ; Tz 1Avan s
p>—1

Proof. For o,k > 0, we have

s 2p2 s
" 9Nl za 22 sy = D T oo 1R 9N 2021
p>—1

< Ck Z 271)0”7‘[%9NHL2TL3L§ < CHHH%QNHL%LﬁLﬁa
p>—1

where C); > 0 is a constant depending only on «. Hence, one has HH%gN”ZQ T2(pgr) < T0 due
T"v 2,1

to H2gy € L*([0,T] x R2 ).
By using Bony’s decomposition, we divide the inner product into three parts:

(AT (fsgn), Apgn) = (Ap (T (fv, gn) + T2 (fv, gn) + T3 (fv, gn))s Dpgn )

where T (fn,gn) £ 30, T(Sj-1/n, Ajgn), T2 (fn,gn) = 35, T(Ajfn, Sj—1gn) and T?(f, gn) =
> 2 —n<a LAy fn, Ajgn). For I'Y(fn,gn), note that

ApZ(Sj—lfNAjgN)ZAp D (Si-fnAjgn).

J l[7—p|<4
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opo T 1/2
J— 1
Z 1+ K22po / ‘(APF (fNagN)aApgN)w’U
p>—1 0

~ Z 1+Kj22pg Z / ”Sj lfNHLZLoo ||H A]gNHLQ . HHZ pgNHL2

—p|<4

s 1+ k2%° ;
< 1/2 5o~ ~ _ E : o(P=0)s o( 5
N7z vy 129NN 22 22 g ) pZ> o T T V)

1/2

1/2

1/2
< ”f HL/°°L2( 1/2 ”H gNHL2 L2(B‘7 )
where we used Lemmas 5.8, 5.9 and 5.11 in the third line and the following sequence {c(j)}

%"H%AJgNHL%Lgm

c(j) =

”H%QNHZ?TZ%(B;‘f)

satisfying [|c(j)||o < 1.
For I'%(fn, gn), similarly, we get

oo T 1/2
2 T ( |2 on). am), , )
p>—1 0
1/2
2p7
S S VA S L R P L
li—p|<4
J<N
1/2
< ON||fNHLaoL2(Bl/2 &% gnllrzrzr2,

where Cy = CN2V? with N € N. Owing to

D7) (Apfvlgn) | =4, > > (AjfnAsgn)

I li=i'l<t max j,j' >p—2[j—j'|<1

=0, if p> N+ 3,

then I'*(fn, gn) can be estimated as follows:

- - 1/2
3
E 5 / ‘(Apl—‘ (fN7gN)7Ap9N)$7v‘dt>
p>—1 1 + K:2 v < 0

N+2 opo 1/2

T
- Z 1+ 5221)0 </ |(APF3(fN’gN)a A;DgN)z,v| dt)

N+2

T 1/2
Z Z 1_'_/{62217[, (/0 ||Aj/fN||L3L;o ||H§AjgN||Li’v HHEAPQNHL%U dt)

p>—1j<N+1

< OnllfnllY?

LmLQ(Bl/2 HH QNHL2 L2L2-

Together the above three inequalities, we can get (3.14). O

Based on Proposition 3.6 and Lemma 3.8, we obtain the regularity of the weak solution gy to
(3.6).
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Proposition 3.9. There exists a constant g > 0 such that for all T > 0,90 € Z%(B;/lz),f S
L L2(By/Y) fulfilling
||f||L°°L2(B1/2) < €,

then (3.6) admits a weak solution gy € L>([0,T]; L*(R2 ,)) satisfying

||gN||LaoL2 1/2 \/—”H gN||L2 L2(31/2)

1/2
< " llgoll g vy + VEONET NN L

(3.15)
1/2 ||H 9N||L2 L2L2,

where Cn > 0 is some constant depending on N.

Proof. Applying A,(p > —1) to (3.6), and then taking the inner product with A,gn over R, x R,
gives
1d
2dt

where we used the coercivity estimate of IC. It follows that

1,
(12pgnliZ ) + F 13 Apgn 22 | < 1ApgnlI32 , + (AT (Fnsgn) Apgn) sz -

d / _ 2 _ s -
(e Iapgnls ) + 2o 2 IHE Al < 267 (AT (. x) Apon) 2|

for0<t<T.
Integrating the above inequality with respect to the time variable over [0,¢] with 0 < ¢ < T and
taking the square root of both sides of the resulting inequality, we get

2 t . . 1/2
[Apgnllrz , + \ 5(/0 e )||H2Ap9N(T)||%g,vdT)
t ! 2(t—r) 1/2
< e 18pnlza + V([ I 0m). gz lar)

then, taking supremum over 0 < ¢ < T on the left side and multiplying the resulting inequality by
op/2

Txrop? we obtain

op/2 2 9p/2 1/2
1+ k2P HApgN”L%Li + C1+ rK2v </ HH2 pgN||L2L2 dt)

1/2
T op/2 5T op/2 T
<e T H2p”A;DgO”L§L§ + V2e T o /o ‘(APF(fN7gN),ApgN ‘dt )

Further taking the summation over p > —1, the above inequality implies

[2 s
”gNHE%OZg(Bl/Qv*‘ + _”H29NHZ2 f2(31/2v~

1/2
< eMllgollza 172y + V2CET | .

LooL2(Bl/2 ||H gN||L2L2(Bl/2 "

1/2 s
+2 cNeT||fN||L;L2 RV GA1ON [P

. . 1
where we used the Proposition 3.5 and Lemma 3.8. Then, by taking HfHZ;f’Zg(B;ff) < Zross and

letting k — 0, we obtain
||gN||LaoL2( 1/2 \/—”H gN||L2 L2(Bl/2)

1/2
< " lgollz ey + V2ONET NI 2y rray IHE o g 1212,

which ends the proof of Proposition 3.9. g
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3.5. Energy estimates in Besov space. It follows from (3.15) in Proposition 3.9 that
oz z3my/a 120 i 1y oy < +oo
Then applying the Corollary 2.11 to fy and gy, we get the following inequality

(3.16) 2% </ ‘ (ApL(fNy 9N ), Apgn ),

1/2
1/2 e
) < CleN” / 1/2 ”IH29NHZ2TZ%(B;/12)a
p>—1 ’

LgeL2(B,/}

for some constant C'; > 0 independent of N.
With aid of (3.16), one can obtain the further energy estimate, which is independent of N for
the weak solution gy .

Proposition 3.10. There exists a constant €9 > 0 such that for T > 0,90 € Z%(B;/f),f €
LEL2(B,YY) fulfilling
1 2522 i) < €0

then (3.6) admits a weak solution gy € L>([0,T]; L*(R2 ,)) satisfying

(317) HgNHLooL2 1/2 \/—”H gNHL2 L2(Bl/2) = eTHg()HE%(B;/f)v

where C' > 0 is some constant independent of N.
Proof. Applying 2PA,(p > —1) to (3.6) and taking the inner product with A,gn over R, xR, give

1d

1 s
s (Z12uonl2: ) + 527175 Avgn |25

< 27 Apgnl3a | + 2" (AT (v, n), o) 1 -

It follows that

d/_ 2 s .
7 (e 2%1agn 3 ) 2 HE A F2 | < 267227 (AL () Apgn) 1z |

forall0 <t <T.
Integrating the above inequality with respect to the time variable over [0,¢] with 0 < ¢ < T and
taking the square root, we obtain

5 2,1 ' 2(t—7) |19 3 2 1/2
28180l + ) 25 ([ I AR )

t 1/2
<2t ||Ap90||L2L2 + V228 (/ ez(t_7)| (ApL(fns N ) Apgn) 12 |d7') :
vz 0 x,v

Taking supremum over 0 < ¢ < T on the left side and summing up over p > —1, we get

2,
”gN”Z%Z%(B;,/f)* EHHQQN”Z%H(B;,?)

T 1/2
< eTHgoHZE(B;/lz) +v2eT Z 22 </o ‘(APF(fNagN)vAPgN ’dt>

p>—1

T T 1/2 s
< laolzgeaysy + VI CUINIYE, i M5y

where we used Proposition 3.5 and (3.16). It follows from the smallness of HfHZmZQ(Buz) (taking
T v 2,1
||f||z%oig(B;/12) S m) that
1 s -
HQNHZ%"Zg(B;(lz) + —/_20||H2QNHZ%~Z,2,(B;GZ) <e HgoHZg(B;ffy

which indicates the desired inequality (3.17). The proof of Proposition 3.10 is completed. g
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In the following, we prove Theorem 3.3 with the help of Proposition 3.10.
The proof of the Theorem 3.3 It suffices to show that the sequence {gn, N € N} is Cauchy in
the space

X ={ge LFLA(B")H3g € L3LA(B))}.
Set war v = g — gae for M, M’ € N. Then it follows that (3.6) that
Ovwar, v + V0w v + Kwar v = T(fvrs war ) +T(far — e, gn)-

Following from the proof procedure of Proposition 3.10, we can obtain

[OYRY \f 42 ewns e |25 1 sy
T

37 5 1 [ it o )

p>—1 0

: . e ) 1/2
VBT T 2 ([ (O0 — faan) Byunaae)y o)

p>—1
T 1/2 E
< VRO Il gy i I wrnn g5 o v
T 1/2 s 1/2
+ \/_Cle |(far — fM/)||L°QL2 31{12)|‘H2gM|‘Z2TZ§(B;/2 HHQU)MM HL2 L2(Bl/2)

/ 2T s
< v2C0Cte H(fM—fM/)Hz;?zgl(B;{f)|\H29M|\E2T53(B;(12)

3 /2 s
3y gl enar iz 2 sy

The smallness of ||g0HZ2(Bl/2) (taking Hgo||z2(Bl/2) < QCC%) and Proposition 3.10 enables us to
v(DPa1 v(Pa)1 1

obtain
lwaraer ez a2y + \/—||7'l wa gz 2 p1/2)
< 20012€3TH90HZ%(B;(12)||(fM - fM')HZ%oZg(B;(f)
< N|(far — fM')Hzoogg(Bm)
for 0 < A < 1. Tt follows from Proposition 3.5 that {fy} is a Cauchy sequence in L°°L2(B1/2)

which implies that {gn} is a Cauchy sequence in X. Letting g = limy_,., gn, We can get the
desired result.

4. GELFAND-SHILOV AND GEVREY REGULARIZING EFFECT

In this section, we prove that the Cauchy problem (1.3) enjoys the Gelfand-Shilov regularizing
properties with respect to the velocity variable v and Gevrey regularizing properties with respect
to the position variable x.

4.1. A priori estimates with exponential weights. Firstly, it is shown that the sequence of
approximate solutions (gn)n>0 (which defined by (3.5)) satisfies a priori estimate with exponential
weights for sufficiently small initial data.

Proposition 4.1. Let T > 0. There exist some positive constants C,e1 > 0,0 < cg < 1 such that

for all initial data ”90”Z2(31/2) < e1, the sequence of approzimate solutions (Gn)n>0 satisfies
v 2,1 =

(4 1) HGK(Ct)gn”Z;}oZ%(B;/f) + HH%GK(Ct)gnHy L2(Bl/2)
N S ~ cT
+ [[{Dg) =T GR(Ct)g7L||E2TE%(B;{12) <Ce HQOHE%(B;/f)a

for0 <k <1,0<c<cy,n>1, where

exp(t(H =

Go(t) = EEn s
" 1—|—,‘$exp( (7—[ 3 —|—<Dw>2:s+1)33+1)'
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To prove Proposition 4.1, we need some lemmas.

Lemma 4.2. There exists a constant ¢s > 0 such that for all f € S(R2 ),

s41 Bs4l. s (1+s)s e
[(H= + <DI>25+1)355+1 f||Liv < c5||H 264D fHL%U + C5||<Dr>255+1 fHL%U

Proof. We decompose f into the Hermite basis in the velocity variable

+oo
(4.2) fla,v) =Y fal@)en(v), with fu(z) = (f(2,), en)12(r,)-
n=0
Since

VO<a<l1, Va,b>0, (a+b)*<a®+10b%

one can verify that

s+1

0%+ 0l = (L3 [ (e D¥ 5 038 P Fopa)
n=0

IN

(L3 [ [0+ hy# s g e pae)
s(s+1) =2 1/2
= (A8 115+ 1013 )

Remark 4.3. Since the indices
(14 9)s <8
2(3s+1) 27
we always use the following result
s+1

| 4+ (D) #5) 5 £ 3, < eslHE fliz,, + sl (Da) ™ f2 -
Lemma 4.4. For all 0 < a <1, there exists a constant ¢ > 0 such that for all f € S(RZ ),
IH*QAp Sz, < CallH*ApflL2 -

Proof. We can deduce from (5.5) that

2

1HeQA Iz, < [Jop” (1407 +5) )@, f

L2

< Jaov (e + 7))o

(4.3) y

L2

x,v

o (10 +p)"). s

)

L2

x,v

since (@, Ap] = 0. Due to the fact that the multiplier is a bounded operator on L*(R2 ) and (5.

we can obtain

oo (12 5) s

2\ «
< w 2 ’U_
e, Slor (1 F) ) 2ot
SIH A ez -
On the other hand, we deduce from (4.13) and (3.7), (3.8), Lemma 3.2 in [18] that

o (1472 +2)").@] € 0p” (S(((w.m)*2.1) € Op(S(1.To)).

uniformly with respect to the parameter £ € R because 0 < a < 1. It implies that
H[Op ((1+772+Z) )7Q}Apf < HApf”Lgyu-

Combining (4.3), (4.4) and (4.5) gives
IH*QAp Sz, < CallH*ApflL2 -

2
Lz,v

(4.4)

» ;
L3,

23

5))
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Lemma 4.5. There exists a constant ¢, > 0 such that for all f € S(RZ,), 0 < ¢ < 1,0 < k <
1,t >0,

1773 [Gulet)o(Gulet) ™! =] Bp0uf |y | < Ercte®t[{Da) 2551 Apfl 12

x,v

Proof. For all f € S(R? ), and the decomposition (4.2), by using the identities (5.1)-(5.2) satisfied
by the creation and annihilation operators

A+€n = (g - 8@)611 =Vvn-+ 1€7L+1)
A—en - (% + 81))677, = \/ﬁen—lv

we have immediately,
ven, = Aren, +A e, =vVn+leyyr +vVne, 1,
1 1
H = 5 (A+A7 + A,A+)€n = (n + —> €n.

It follows that

exp(ct(?—[lgs + (&) 331’1)352i1) 1 + kexp(ct(H'E + (£) 331’1)33%)
U meplet(HS + (©FF) ) expla(mT + (FF)F)
 explet((n + g) o6 ) 1+ kexp(ct((n + L5 4 () 3211)33%)\/?
Lt resplet((n+ DF HOFD) T eplet((n+ 3)F +@FN @)
exp(ct((n — %)133 + ()7 55T) 14 mexp(ct((n + 1) B (€) e )w)
Trs 3511 . o= Trs 3511 . o= \/ﬁen 1

Lt mexplet((n — 55 +(©FF) ) explet((n+ 1) + (@ FH) )
One can verify that

s

Fo (M2 [Gulct)v(Grlet)) ™ —v] A0 f)

+oo
—_— 3 s
= Y iR F( Vi 1+ 5)TFAL enin

n=0
T 1

+ DA )Vl — 5)TEA g ent,
n=1

where F, stands for the partial Fourier transform with respect to the position variable x and
_2s 28
exp (ct (49 +©F) ™ —at (n+ )7 +(9H) ) 1
& = 3\ stl 3541\ o1 ’
1+ Kkexp|ct ((n+5) 2 <§>25+1)
- 341 3T +1 3541\ ToT
exp<0t((n_%)sJ2r +<§>‘2;+1)‘S —ct((n+ )8 +<§>2;+1)‘S )_1

n)<€> B N 3 92_5
(1+nexp <ct ((n— L= <§>%)3 +1)>

Then by the Plancherel theorem and Cauchy-Schwarz inequality, we have
Vor ||’H_% [G,{(ct)v(G,{(ct))_1 — v} ApﬁszB
=||Fo (H™2 [Grlct)o(Gulct)) ™" —v] A0, f)

<Z|5Apfn AT o I72(n) )

n=0

A+

Iz,

<Z A, Fule 5>|‘ig<n>1—5>

n=1

(4.7)

[V
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with A €y An () defined in (4.6). Now we come to estimate |4 ) I, 14, ) |. It follows from the
mean value theorem that

_2s as
(4 + <f>3iﬂ) L <<n+ 1y+1 . <§>z;;¢1)

2 2
cts(l1+s 1
which leads to
1+4s
2cts(1+ )\ cts(1+ s) 3s+1 ) FFL 1, 521
<AT < : z
0A“7<§>eXp( 35+1 > 38"‘1 ( <€>2+1) (n+ 2) 2
2cts(1 4 s)\ 2cts(1+s) e
<
= ( 35+ 1 ) e O
This shows that, for all n > 0,
2cts(1+s)\ 2cts(l+s),  _ 1ts a1
+ s
(4.8 47 gl oo (20T ) 2ROL (g

On the other hand, we use the mean value theorem again,
2s 2s
s s 3s5+1 1 s 3s5+1
ozszexp(ct((n— 1 @F ) o ()T O )—1

1+4s
1 1 s+1 3s41 ) O3ot1 1 s—1
= exp (-M <(n— S 40) +<§>zsil) (n— §+9)2> —1 (0<6<1)

N =

3s+1

_ 1+s
s+1 3s41 3s+1 s—1
= exp <_M <(n_l_|_9) ; +<§>2511 (n_%+9)2>

3s+1 2
1+s
ts(1 1 s s T 3sH 1 s—
x%ﬁ((n—§+9) ¥1+<g>3511> (n—5+6) T (0<0<1)

Then for all n > 1, we have

_ 2cts(1+s),  _1ts ac1
(49) Aol < =55 @ Fim =

Substituting the results (4.8) and (4.9) into (4.7), we conclude that
[H72 [Gu(ct)v(Grlet)) ™ — 0] ApaerLi )

o 2cts(14s)\ 2cts(1+s) 1
X
= CXPp 3s+1 3s+1 or

+00 3
« <Z e = A, fn (€) |L2> (Z 1€ 2;1Apfn(€)lli§>
n=0

< 510756610t||<D96>?:'1A;DJCHL?C 0"

1

2

The proof of Proposition 4.1. Let 0 < ¢ <1 and 0 < k < 1. Define
(4.10) hn.es = Giu(ct)gn, n>0.

The function Ay, ., depends on the parameters 0 < ¢ < 1 and 0 < k < 1. Here, we write h,, for
P, e, for simplicity. Notice that

ho(t) = (1 + kexp(t(H =

4+ (Dg)241)541)) gy, 0<t<T,

satisfies

(4.11) |\h0|\z%oz%(35(12) < HQOHZ%(B;(f)-
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By using (4.10) that
Gn = (Gulet) ™ hn = (k +exp(—ct(H = + (Dy) 57 ) 3550)) A,

then the equation

8t§n+1 + U8r§n+1 + Kgn—i-l = F(@n; §n+1)
can be rewritten as

(G (Ct))ilathn+l + Uaz(Gn(Ct))ilhn+l + ( ( t)” YR i
— C(HF 4 (D) 55 )T exp(—ct (KT + (D) 558 ) 55 )y
=T ((Gu(ct) ™ hn, (Grlet) hpsr).
Due to (1.4), the linearized Kac operator K = f(H) is a function of the harmonic oscillator acting
on the velocity variable v, which can commute with the exponential weight (G (ct))~'. Applying
Ap(p > —1) to the resulting equality, we have
Ot Aphny1 + Go(ct)v(G(ct)) 0 Aphpst + KA

(M + (D) 57) 5
(4.12) N s+1 3s+l . 2s Apthrl
1+ rsexp(ct(H 2 + (Dy)2+1)5+1)

= Gr(ct) AL ((Gr(ct) ™ i, (Grel(et) ™ hngr).

According to Lemma 5.2 and (5.4) in Section 5, we choose the positive parameter 0 < ¢ < gq in
order to ensure that the multiplier

(4.13) Q=Q(,Dy,D;) =1—em"(v,D,, Dy)

is a positive bounded isomorphism on L?(R2 ).
By integrating with respect to the {—variable and using the multiplier QAph, 41 in LQ(R?E’U),
we deduce that from (4.12)

5 QY Akl |+ ReUCA 1, QAphn )15
+ Re(Gu(ct)o(Gu(ct)  0:Aphni1, QAphni1) 22 )
~ e c(H%:1<DI>3?L)3s+1

exp(—ct(H =z + (D, >2s+1) ST
= Re(Gr(ct) AT ((Grlct)) ™ hn, (Grlet) ™
which leads to

%%”Ql/zAphnHH%g’v + Re((v0y + K)Aphni1, QAphni1)r2re )

+ Re([Gr(ct)o(Gr(ct) ™ = 0]0eAphni1, QAphni1) 22 )
< (KT + (Do) =) 55 Aphga iz |(HF + (Do) 550) T QA by 13,
+ [(Grlet) AL ((Gr(et)) ™ hn, (Grlet) ™ hnsr), QAphnt1) L2 ez )

It follows from Lemma 5.3 that
Re((v&r + IC)Apu, QAPu)Lz(]Ri,U)

2 03”H%APUH%2(R§:’U) + 03||<Dm>ﬁApU||%2(ngu) - C4||Apu||%2(u§g,u)

(4.14)

P, QAphn1 )

) L2(R2 )
'h n+1) QA hn+1)L2(R2 )7

(4.15)

(4.16)

for some constants cg, cs > 0. We deduce from (4.15) and (4.16) that

||Ql/2A hn+1||L2, +esl|HEA hn+1||L2(]R2 ) +asll{D >ﬁ“Aphn+1||%2(ngu)

2dt
s+1 3s+l s s+1 3s4+1 s
<l (B + (D)) T A a2 I+ (Da)>55) 55 QA 1 12,
(4.17) + |([Grlet)o(Grlet)) ™ = v]0eAphny1, QAphn 1) L2(e2 )|

+(G(et) ApT((Gr(et) ™ s (Gr(et) ™ 1), QAphni1) L2 ez )|
+eall AphniilZae )
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By using Lemma 4.2 for f being replaced by Aph, 41 and QAph, 1 and Lemma 4.4, we have

[ 055 ], 60 40055 asp,

< (I8l + 105 Byl ) |
WHQAMHM%+H DTFEQA )
N R (CE A

Based on Lemma 4.4 and Lemma 4.5, we obtain

‘([Gn(Ct)U(Gm(Ct))_l — 0] B Aphp1, QAphn+1)L2(ngu)‘
- ‘(H‘% [Gr(ct)o(Gr(ct)) ™ — 1] azA,,hnH,H%QAphnH)Lz(R%U)‘
S ||H_% [GK(Ct)’U(GR(Ct))_l - 'U} 8IAphn+1||L§:’v ||H%QAphn+l||Lgu

< cgetest H(Dw)ﬁAPhnHHLi ) HH%APhnHHLg L

since @ is commuting with any function of the operator D,. Then, it follows from (4.17) that there
exists some positive constants 0 < ¢g < 1,c9 > 0 such that for 0 < ¢ <¢y,0 <k <1,0<t < T,

1d s
L QU 2, + (o0 — T (1 Ay

+ H 25+1A h"+1||L2(]R2 )) < ||A hn‘HHLz(]R2 )
+ ‘(GH(Ct)ApF((GN(Ct))ilhm (Grlet)) ™ hnsn), QAPh”Jrl)Lz(Ri,u)‘ '

Here, the constant 0 < ¢y < 1 is chosen sufficiently small so that

cy
27
then we obtain that for all 0 < ¢ <¢y,0 <k <1,0<t < T,

cscTeT <

D@ A2y + e[ Aghusa 7, + o 1D By,
< 2010“@1/ Aph"JrlHLi N +2 ‘(GN(Ct)APP((GH(Ct))ilhna (GH (Ct)) n+1) QA hn+1) ‘

with c10 = c4|(QY/2) 7| £(r2) > 0. Following from (3.5), (4.10) and (4.11), for all 0 < ¢ < ¢,0 <
k<1,0<t<T we are led to

2
@ asmenl],
b [ @000 (A (D} + DDA s )i
0 .

2 4 ) / 62610(1&77')
L3 0

X ‘(GH(CT)A;DP((GH(CT))ilhn(T)a (Gr (CT))ilthrl(T))a QApthrl(T))p R2 )’ dr

< QY22 ) g0l

t
+ 2 / 62610(1&77')
0

% |(Galer) AT (Guler) (1), (Gouer))  hasa (7)) QB (1) e |

S e2clot

‘QUQAPQO‘
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Taking the square root of the above inequality and taking the supremum over 0 <t < T give
HQl/gAPh”H HL;@L; N Ve HHgAPhnHHL%Lg Y +/eo H <Dw>ﬁAPhn+1HL2TLg Y
< QY or) [ Bpoll 2

1/2

T
1 \/3ec0T </0 ‘(Gﬂ(ct)ApF((GR(ct))—lhn, (Gﬁ(ct))—lhnﬂ),QAphnH)L%U}dt>

Multiply the above inequality by 2% and take the summation over p > —1, we have
1Q *hn 1|z 22 m1/2y + VoI H Pnsallzs 2 vy + Veol(Da) =5 bz 72 2y
T\ H1/2 T 2
<eQ ||E(L2)||90||Z%(B;/12) + V210 Z 22

p>—1
1/2

T
x ( /O | (Galet) 2D (Gret)) ™ s (Gelet) ons1), Q1) 2oz ) )| dt)

It follows from Lemma 2.10 that
Hh"JFlHZ;QZ%(B;’/f) + \/6||H%hn+1||Z2TZ%(B;/12) + \/6“<Dm>ﬁhn+l||i%f%(33/l2)
< 661°T||Q1/2||L(L2)||(Q1/2)71||L(L2)||90||zg(33(12)

c10T 1/2 El
(4.18) +V2et0 Ol g2 gy 192 P2 2 112

< 661°T||Q1/2||L(L2)||(Q1/2)71||L(L2)||90||55(B;/12)
1/2

ClgT
et enlihnll E s gy

I bz 22 72y
Next, we use the mathematical induction argument to show that

Co
(4.19) Wl 22 1) < 502 g2eom
for n > 0. In the case of n = 0, owing to the assumption
Co Co )
2ct 20T 2cq e T||QY2]| £ (12

(420) ||g0||Z2(Bz1/12) <eg, with0<e; = inf(é:o, < ép

where the positive parameter £y > 0 is defined in (3.4), we deduce from (4.11) that
co
Iholzs 22 myz) < N9ollzz i) < 52 comor

In the case of n > 1, if we assume that
Co
Bl = <9
I "HL&’?LE(B;,?) ~ 22, e2c00T

then it follows from (4.18) that

Cg s —S
WPniillze 2 oy + 4 3 12 Anallzs 22 my/z) + VOOl D) = hniallzs 72 mye)
<T@ @Y™ Hlews) lgoll g2 /)

Together with (4.20) and (4.21), we deduce that

(4.21)

C9
||hn+1 ||Z%°Z%(B;/12) < W'

Hence, it follows from (4.21) that for 0 < ¢ < ¢p,0 <k < 1,n > 1,
Cg s s
”hn”f%of%(B;/f) + \/ 5”7’[2 h"”f%f%(B;/f) + \/@H<Dz>25+l h"HEQTZﬁ(B;/f)
< ech”Ql/ZHL(L?)||(Q1/2)_1||£(L2)||90||Z%(B;/12)-

This ends the proof of Proposition 4.1.
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Based on Proposition 4.1, by passing the limit when £ — 04 in the estimate (4.1), it follows
from the monotone convergence theorem that the following lemmas:

Lemma 4.6. Let T > 0. Then, there exist some constants C,e1 > 0,0 < cg < 1 such that for all
initial data ||g0HZ2(Bl/2) < e1, the sequence of approximate solutions (gn)n>0 satisfies
v 2,1 f
HGO(Ct)gnHE%OZ%(B;/f) + HH%GO(Ct)gn”Z%E%(B;/l?)
= ~ cT
+ H <Dz> 2ot GO(Ct)g"”Z%Z%(B;(f) <Ce HQOHZ%(B;/E)

for all 0 < ¢ < co,n > 1, where

1

Go(t) = exp(t(H'F + (D,)=1)55),

4.2. Gelfand-Shilov and Gevrey regularities. It follows from the Cauchy-Schwarz inequality
that for all 0 < ¢ < ¢p,0 <k <1,

IGa(e)ApfI2s < IGo2e) Al 180111 -

By passing to the limit kK — 04 in the above inequality, it follows from the monotone convergence
theorem that for all 0 < ¢ < ¢,

1Go(ct)ApfllTe | < Go(2et)Apfllre IIApfIlzz -
It implies that for all 0 < ¢ < ¢,
1/2 1/2
1Go(e) S Iz za sy < (D2 28NGo@et) A Fllizrz,) (2 28100 ez, )
(4.22) p=—1 p=—1
qmmmmm o NI

LeeL2 (B, LeeL2(By7)

For the solutions (§n)n>0 defined in (3.5), by using Lemma 4.6 and (4.22), we can obtain that for
0<c< 2,

1Go(et)insp — Golet)dunll e 12 5172

< 2V Ce ™ | gol| V7

L2(Bl/2 HgnJr;D gTLH

L°°L2 1/12)7
which implies that (Go(ct)gn)n>1 is a Cauchy sequence in E%OZ% (3217/12). Let h be the limit of the
Cauchy sequence (Go(%t)Jn)n>1 in the space L°°L2(Bl/2) Notice that

- (co(39) |

then following from the convergence of the sequences {g,} in E%’Z%(Bm ) and the uniqueness of
the solution to the Cauchy problem (1.3), we have

1= (@o(30) n=esn (-3 +080) %)

On the other hand, we can deduce from Lemma 4.6 that

SICOE ",
LeeL2(BY?) — H 0 In = L2 (B2

(4.23) HGO(%Ot

cT
L°°L2(B1/2) < Ce HQOHE%(B;/f)

Passing to the limit in the above estimate (4.23) when n — 400, we obtain

s+1
2

(Do) 551) )

t
(4.24) lexp (5 (# < Ce“Tlgol s /2.

Iz 22,

By using the following elementary inequality,

3s+1 k==
Va,c > 0, z* exp (— o cr 35+1> < ( 32+1k )
S Cc s
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we can deduce that for f € S(RZ ), for all k > 0,

| +<Df>3s_ﬁ) exp (=5 (W + (D) EH) 7T ) &y
(4.25) 2

35+1 (k')3s+1
< (BryF o 18z,

SCp

Then it follows from (4.24) and (4.25) that the solution to the Cauchy problem (1.3) satisfies for
al0 <t <T,k>0,

+1 3s41\ K
(1 + 00 F) gz
3s+1 3s+1 (kl)% COt s+1 3s5+1 35
(4.26) _( o ) peze=n [[exp (- (17 +<Dz>25+1)3‘+1)g"Z$Z%(B;(12)

35+ 1\ %2k (B2 | o
< () T e 0ol

By (4.26), we obtain that there exists a positive constant C' > 1 such that V0 < ¢ < T,k > 0,

H(HT + <Dw>32—ii)kg(t) o

3s+1
< gy (R 2

LBy e
This proves the Gelfand-Shilov property in Theorem 1.1.
On the other hand, we have for p > —1,q¢ > 0,
(4.27) 010 ,g(x,v) Z 0L g (@)en(x). with gu(x) = (9(. ). en)r2qr,)
and
(4.28) G Apgn(x) = (078p9(x,-), €n)L2(R,)-

We deduce from (4.27)-(4.28) and Lemma 5.6 with r = 233(55111) that there exist some constants
C1,C5 > 0 such that for for all k,1,q > 0,e > 0,

10" 0,08 9(#)l|z2 (p2re) = > 25| 0L088,9(1) 1z,

p>—1

+oo
P
< D0 D 2808Augn ()| 2 |v* D enl 12

p>—1n=0

(429) CQ kel o el —+oo »
< Ol(Tl)) (kY260 (1) 2650 Y~y ™ 23 ][02Apgn ()] 12

inf(ezG+0 n=0p>—1
3s+1 HED!
1-—- 577, ( ——n 3 T ) 577, )
x (( o) exp 525(5—1— 1)n + on0

where 6, o stands for the Kronecker delta, i.e., 6,0 =1if n =0,0,,0 = 0if n # 0. It follows from
(4.24) that for all 0 < ¢ < T,

cot ,,  s+1 3s+1 . 2s ) ’
— 2 D, )2s+1 ) 3541 _
| exp (G078 + (Do) )58 ) | >
1 S S S 2 1/2
= 25 ( E Hexp ( 5) ;1 _|_ <DI>2sii)332+1)Apgn( L2)
p> 1 v

e ”go”i?wéffw

which implies that for all 0 <¢ < T,

p t 1 s s s
(430) D7 2Fsup [ exp (S ((n+ 5)F 4+ (D) )T ) Ay (1)

p>—1 n=0

C
1 S G ool ey
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Then we obtain that for all n,q > 0,p > —1,

].s+

1 1 : 2
HagApgn(t)HLg = (%/Rmzq exp(— cot((n + 5) 7 4 <€>T+1)397+1)

t 1
X ‘exp (%((TL—F 5)

2s

+1 :
< (28—|—1) s q(q!)%ztl exp(— Cit(n+l) 35+1 )
2 2
+

s+1 3s+1

7 4+ <€> 2541

(4.31)

scot

X Hexp (%t((TH— 5)‘2 + <Dx>25+1)%)Apgn(t)‘ .

where we used the following inequality that, VO <t < T, Vq >0, V¢ eR,

2541
s 4

(6ot < (21

scot
Then it follows from (4.29), (4.30) and (4.31) that for all 0 <t < T, k,l,q > 0,

14 0L019(0) 212
Cs )’“rl (28 +1
)

- 3511
inf(e2GD | 1 scot

“+00 2s
p t 1. s s PEEsY
x> ) 2% |lexp (% ((n+ F 4 <D$>g*"ﬂ) ’ +1)Ap9n(t)‘

2
n=0p>—1

2s+1
2s+1

) T ) )7 (g

Scl(

L2

s(s+1
1 (s+1)

3s+1 s(s+1) Co 351
e (o ) )
X (( ,0) €Xp 528(8+1)n 1 n+ >

s(s+1
1 (s+1)

C 3s
a5 )

C! k+l /2 1 25-.:14 _3s+1 _3s+41 s
SCeCTHgonz(Bw)Cl( e ) ( = ) T (k) T (1) 76T (g1) *5
vt inf(e=G0 1) scol
“+o0 s(s+1)
3s+1  se+tn ¢ 1N\ =T
S5 (0=t (i (o) )
HZ_O(( o)exp (5 Tyn A

¢ 1\ S
+onoep (= Fi(n+3) 7).

If we choose

s(s+ 1)eot
S L
T Tiasya 0

then there exist some constants Cs, Cy > 0 such that for all

¥ 0L (0| s 2,
(4.32) F(t) 3s+1 3s+1 2
k+1 Lk _3s+l 2s+1
S 0304+ +qt 3&3+1> (k:«l»l)*'qu (k') 2s(s+1) (l') 2s(s+1) (q') 25 |g0||z2(B;/12),
S(s+1 s v (B
where

= coT 1y %54
F(x):Zexp(—%(n—kg) ) ), x> 0.

n=0

31
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For any x > 0 we obtain that

+o0o (s+1 +1)
—( Bt 1) cox 1 533+1) jzﬁﬂra Cox 1 39(,2+1
F(z) =a 56D E 'y n+§ exp ( — — n—|—§
n=0
1
X
as(s+l)
()R (0 1y
(Bl 4y ﬂﬂl _ 1
< g7 SGHD || z3G+D |Loo ([0,400)) E SN ISy
"0 §0 s(s+1) (n+ ) 351

-Gt
5 AREICE D) .

with a positive parameter o« > 0. We deduce from (4.32) that for Vo > 0, there exist some constants
C5,Cs > 0 such that for all 0 <t <T,k,l,q >0,

OOt

~ <
1/2
||L12,(32{1) - 253(5;11) (k+l+2)+23+1 +a

3541 3s+1 el
[o*aLo%g(t) (kY =E7D (1) 7657 (g1) 55

190/l z253/2

This proves the Gevrey smoothing property in Theorem 1.1.

5. APPENDIX
5.1. Hermite functions. The standard Hermite functions (¢, ),cn are defined for v € R,
(=)™ w2 dv, .2 1 d w2 a'l ¢o
On (V) = ——L——c2 e )= —————(v——)"e" ) = ,
W= T w )T s @) =

where a is the creation operator

1 d
ay = 7 (v — %)
The family (¢,)nen is an orthonormal basis of L?(R). We set for n € N,v € R,
L(E _ 4
Vol 2 dv
The family (e, )nen is an orthonormal basis of L?(R) composed by the eigenfunctions of the har-
monic oscillator

en(v) =274, (2720, e, = )"eq.

2

H:—Av+% Z(n+ P, 1= P,

n>0 n>0

where P, stands for the orthogonal projection

P.f = (fa en)L2(R,,)en'
It satisfies the identities
(5.1) Aven=vVn+leni1, A_e, = ne, 1,

where

5.2. The Kac collision operator. For ¢ a function defined on R, we denote its even part by
9 1
P(0) = 5((0) + ¢(=0)).

The following lemma is given by [17] (Lemma A.1):

Lemma 5.1. Let v € L (R*) be an even function such that 6?v(0) € L*(R). Then, the mapping

o€ C2(R) > lim V(0)(5(6) — 0(0))d0 = /O /R (1 — 0)620(0) " (16)dbdt,

e70+ Jyo|ze
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defines a distribution of order 2 denoted fp(v). The linear form fp(v) can be extended to C*!
functions (C' functions whose second derivative is L°°). For ¢ € CY' satisfying ¢(0) = 0, the
function v@ belongs to L'(R) and

(fp(v), ) = / v(0)@(0)do.
Let f,g € S(R) be Schwartz functions. We define

Fralo,0) = F@)g(0). 00(0.0) = [ (Fro(Row) = Fyyw))dv..

w
where Ry stands for the rotation of angle 6 in R?,

R cosf) —sinf 0. J—R
0_<sin0 cosf )—exp( ) T =Ry

The second derivative with respect to 6 of the function ¢y, is in S(R) uniformly with respect to
0. We define the non-cutoff Kac operator as

K(Q?f)(v) = <fp(]1(—%,%)ﬁ)7 SDf79('7U)>7

when £ is a function satisfying (1.2). Since @y ,(0,v) = 0, Lemma 5.1 allows to replace the finite
part by the absolutely converging integral

Kg. )0 = [ 80)( [ (@Lr = @)-pdv.)do = K. o).

101<%
It was established in [17] (Lemma A.2) that K (g, f) € S(R), when g, f € S(R). We also recall the
Bobylev formula [5] providing an explicit formula for the Fourier transform of the Kac operator

— ~ -~

Rl 0)©) = | p0)[a(esin0) (¢ cos) =507 )] b

when f, g € S(R). The proof of this formula may be found in [17] (Lemma A.4).

5.3. Linear inhomogeneous Kac operator. We recall some spectral analysis for the linear
inhomogeneous Kac operator that are given in [17, 18]. Consider the operator acting in the velocity
variable

(5.3) P =ivé + af (v, D),
with parameter { € R, where the operator A = afj (v, D,,) stands for the pseudo-differential operator
1 ,
a (0, Dyu = o= [ e=ag(CEL () dwdn
2 R2

defined by the Weyl quantization of the symbol

2

v
ao(v,m) = co(L+n> + z)s

with some constants ¢y > 0,0 < s < 1. This operator corresponds to the principle part of the
linear inhomogeneous Kac operator

00, + K

on the Fourier side in the position variable.
Let ¢ be a C§°(R,[0,1]) function satisfying

=1 on [-1,1], supp ¢ C [—2,2].
We define the real-valued symbol

& n? +0?
5.4 = — _—
(54) " AT ( N\ T )

with
A= (140217 +£%)3,
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It holds that the following equivalence of norms

(5.5  ¥reR,3C, >0, CLH'HTUHH < HOpw((l T ”;))u‘

< Cr|Hul| 2,
L2

where H = —A, + ”72 stands for the harmonic oscillator.

5.4. Fundamental inequalities. We recall some estimates for the Kac collision operator along
with the Hermite basis, see [18] for details.

Lemma 5.2. Let P be the operator defined in (5.3) and M = m™ the self-adjoint operator defined
by the Weyl quantization of the symbol (5.4). Then, the operator M is uniformly bounded on L?(R,)
with respect to the parameter £ € R, and there exist some positive constants 0 < ey < 1,¢1,c0 > 0
such that for all 0 < e < gg,u € S(Ry), £ € R,

s _2s
Re(Pu, (1 —eM)u) > Cl||H2u||2L2(RU) + c1e(€) 2+ ||U||2L2(1R,,) - 02||U||2L2(1Rv),
where H = —A, + % stands for the harmonic oscillator.

Since the operator A, acts on the position variable z only, we obtain the following conclusion
based on Lemma 5.2.

Lemma 5.3. Let P be the operator defined in (5.3) and M = m"™ the self-adjoint operator defined
by the Weyl quantization of the symbol (5.4). Then, the operator M is uniformly bounded on L?(R,)
with respect to the parameter £ € R, and there exist some positive constants 0 < ey < 1,¢c3,¢4 > 0
such that for all 0 < e <eg,u € S(R,), £ € R, p > —1,

Re(PApu, (1 —eM)Apu)p2r2)
> e[ HE Apull2ams) + 3(€) I Apull2a g, — call ApullZa s,
where H = —A, + ”742 stands for the harmonic oscillator.
Lemma 5.4. Let (e,,),>0 be the Hermite basis of L*(R) describes in Section 5.1. We have
ek, e1) = o i€prr, k,1>0,
with

Qan,m = \/C§ﬁ+m/4 B(6)(sin 0)*" (cos§)™df, n>1, m >0,
o = [ BO)(cost)™ ~0)db, m =15 a0p = azsrn =0, mm >0,

where CF = ﬁlk), stands for the binomial coefficients.

Lemma 5.5. We assume that the cross section satisfies (1.6) with 0 < s < 1. Then, there exists
a positive constant C > 0 such that for allm > 1,m > 0,

i C
0 < agnm =1/C30, B(6)(sin 6)** (cos §)™df < n—%ﬂmm,

-
4

where i m = (14 2)5(1 + mﬁ'l)i'

In [18], the authors showed a key estimate on the Hermite functions.
Lemma 5.6. It holds that

(k+1+n)

Vn, k,0 >0, ||Uk81l)€n||L2(R) < 9ok
n!

)

1
Vr > 5,V£>0,Vn,k,120,

23 +rer

k+1 Ny
i) e

where 6,0 stands for the Kronecker delta i.e., 0p0 =1 if n=0,0,,0=0 if n # 0.

[0%0 enlliae) < VE((L = 8n0) exp(ern®) + dn0)
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5.5. Gelfand-Shilov regularity. We refer the reader to the works [14, 15, 23, 24] and the refer-
ences herein for extensive expositions of the Gelfand-Shilov regularity theory. The Gelfand-Shilov
spaces S*(R) may also be characterized as the spaces of Schwartz functions belonging to the Gevrey
space G*(R), whose Fourier transforms belong to the Gevrey space GY(R). That is, f € S(R) sat-
isfying

30>0,e>0, |fw)<Ce " veR, [f(&) <", ceRr.
In particular, we notice that Hermite functions belong to the symmetric Gelfand-Shilov spaces

Sll//; (R). More generally, the symmetric Gelfand-Shilov spaces Sf(R), with ¢ > 1/2, can be

characterized through the decomposition into the Hermite basis (ey)n>0 see e.g. [24] (Proposition
1.2)
1
feSlR) & feL*(R), 3to >0, [[((fien)r2 exp(ton))nzolliz )
& [ L’(R), 3o >0, [[™ £,

where H = —A, + % is the harmonic oscillator and (e, )r>0 is Hermite basis given by Section 5.1.

5.6. Fundamental properties in Besov space. For convenience of reader, we recall some fun-
damental properties in Besov space which are frequently used in this paper. The Littlewood-Paley
decomposition is “almost” orthogonal in the following sense.

Lemma 5.7. For any u € S'(R?) and v € S'(RY), the following properties hold:
AgAqu =0, if [p—dql>2,
Aq(Sp—1udpv) =0, if |p—q|>5.
Additionally, the standard Young’s inequality for convolution products implies that

Lemma 5.8. Let 1 < p < oo and u € LP, then there exists a constant C' > 0 independent of p,q
and u such that

[Aqullze < Cllullze,  [[Squllz < CllullLz.
The following embedding properties in Besov spaces have been used several times.

Lemma 5.9. Let s € R. - Lo s
(1) If 5 < s, then Bg’l — B§71; (2) 327/1 (R) — L>*(R) and BQ’/1 (R) < L>(R).

According to [26], we have the following topology between homogeneous Chemin-Lerner spaces
and nonhomogeneous Chemin-Lerner spaces.

Lemma 5.10. Let 1 < p,q,7 < oo and s > 0. Then we have

192 Nzs gy ~ Iz sy I Dzegss o S 1 Izegs

Finally, it follows from [12] that

Lemma 5.11. Let s € R and 1 < g1, 02,p,7 < 0.
(1) If r < min{p1, 02}, then it holds that

e T [,
(2) If r > max{p1, 02}, then it holds that

lull s pez(ms ) 2 Nullzerzez s -
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