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FastRule: Efficient Flow Entry Updates for
TCAM-based OpenFlow Switches

Kun Qiu, Student Member, IEEE, Jing Yuan, Jin Zhao, Member, IEEE, Xin Wang, Member, IEEE,
Stefano Secci, Senior Member, IEEE, Xiaoming Fu, Senior Member, IEEE

Abstract—With an increasing demand for flexible management
in software-defined networks (SDNs), it becomes critical to
minimize the network policy update time. Although major SDN
controllers are now optimized for rapid network update at the
control plane, there is still room for data plane optimization in
terms of update time, when using TCAM-based physical SDN
commodity-off-the-shelf switches. A slow update directly affects
network performance and creates bottlenecks. To minimize flow
entry update time, a dependency graph, a kind of DAG (directed
acyclic graph), can be used for the access management of flow
entries at the switch. Thanks to the DAG, unnecessary entry
movements, which are the main factor slowing down flow entry
updates, can be avoided. However, existing algorithms show
limitations when updates become very frequent. We propose a
new flow entry update algorithm, called FastRule, that exploits a
greedy strategy with an efficient data structure to accelerate flow
entry update with a DAG approach. Moreover, we also adjust
our algorithm for other flow table layouts to make it scalable. We
elaborate on the correctness of FastRule and test our algorithm
using a hardware switch. Compared with existing algorithms, the
evaluation shows that our algorithm is about 100x faster than
state-of-the-art solutions with a flow table of 1k size.

Index Terms—Software-Defined Networks, TCAM, OpenFlow,
greedy algorithm, flow update

I. INTRODUCTION

OFTWARE-DEFINED NETWORKS (SDN) and Open-

Flow [2] are increasingly being adopted by enterprise
networks and even carrier networks. The advantage brought by
SDN is dynamic network reconfiguration thanks to the global
view on network states. An increased spectrum of functional-
ities is being explored in SDN. How to enhance the response
time to network update events such as failures or topology
changes is critical, since it determines the agility of the SDN
control loop [3]. In the case of failure recovery in carrier
networks, re-routing rules in switches has to be finished within
25ms [4], to avoid congestion or packet loss. Meanwhile,
traffic engineering applications, e.g., B4 [5], also require fast
switch reconfiguration to improve network efficiency.
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Although many solutions are proposed to increase the
controller processing power in order to shorten control-plane
processing latency [6]-[11], they cannot avert the considerable
latency in the data plane, which is mainly caused by rule up-
date of the switch [12]. According to the recent measurement
results, a commercial OpenFlow switch can only process 42
rule updates in 1s [13]. Thus, reducing the rule update latency
of switch is a critical task.

Usually, the switching rule (flow entry) update latency is
the time to add, delete, modify flow entries in the flow table
of SDN switches [14]. The primary reason why OpenFlow
switches can perform inefficiently in flow entry update is that
they use ternary content addressable memory (TCAM) [15] — a
memory architecture that can be seen as an ordered array with
parallel look-up ability [16] — whose function is mainly de-
signed for fast entry lookup, not for fast updating. Flow entries
in TCAM are usually stored from top to bottom, ordered by
decreasing physical addresses. If the header of an incoming
packet matches with multiple flow entries, only the entry
with the highest physical address is chosen. Thus, during the
flow entry update, the switch cannot prevent maintaining the
order of entries in the TCAM, which may cause a significant
number of movements of existing flow entries [17], [18]. In
fact, not only OpenFlow-based switch, but also 5G mobile
networks are highly dependent on TCAM update efficiency. It
is reported that some new 5G firewall designs use TCAM to
increase their detection, differentiation and selective blocking
efficiency [19].

The problem can be approached from two dimensions. One
is to minimize the number of flow entry updates sent to
switches from the control plane [20]-[23]. For example, a
modular composition approach [24]-[27] can minimize the
number of updates by reducing redundant updates; and Diony-
sus [17] reduces multi-switch policy update latency caused
by suboptimal scheduling. Another way is to design a new
firmware with efficient algorithms [28]-[33] in switches that
can decrease flow entry movements in TCAM. The minimum
dependency graph, a kind of Directed Acyclic Graph (DAG),
can avoid unnecessary flow entry movements in the procedure
of flow entry update. Utilizing DAG in the firmware needs
a policy compiler, whose function is to convert entry update
requirement into DAG, and a TCAM update scheduler, whose
function is to convert an update in DAG back into a sequence
of TCAM entry movements. The state-of-the-art solution
called RuleTris [34] mainly focuses on designing an efficient
policy compiler, but the poor performance of its TCAM update
scheduler leads to large firmware time, say, up to 50ms for
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one update in a flow table with a size of 1k entries.

In order to overcome these limitations, we propose FastRule,
an efficient and scalable flow entry update framework that
can achieve 0.04ms firmware time per-update in a 1k size
flow table by providing a high-performance TCAM update
scheduler. Our scheduler reduces the time complexity of cal-
culating update sequence to O(cavg (log n)?) with only O(n)
space complexity by a greedy algorithm and an efficient data
structure based on Binary Indexed Tree (BIT), where n is the
size of TCAM and c,, 4 is the average diameter of subgraphs
in the DAG. According to our measurement, a common value
of c4vg for a n = 40k flow table is less than 15, which is
far less than n. We implement our scheduler in the firmware
of ONetSwitch [35], a programmable hardware OpenFlow
switch. Through hardware evaluation, our solution reveals to
be 100x faster than the solution of RuleTris. The evaluation
also demonstrates that our solution scales well with the flow
table size increases, as shown in our large-scale hardware
emulations. We also modify FastRule to satisfy the particular
TCAM layouts [32], [33] in order to prove that FastRule can
also be utilized in the different type of OpenFlow switches.
We elaborate on the correctness of FastRule and prove that
we can always find a solution with our algorithm.

The rest of this paper is organized as follows: we first
describe the background of TCAM, flow dependency and DAG
in section II. In section III, we describe the framework of
FastRule. In section IV, we introduce a greedy algorithm
for scheduling flow entry movement, and an efficient data
structure, BIT, for querying minimum range. In section V, we
discuss several flavors of FastRule in different TCAM layouts.
In section VI, we evaluate FastRule and analyze the evaluation
results. In section VII, we give the related work. We conclude
in section VIIL.

II. BACKGROUND

As above mentioned, the TCAM is designed for high-speed
packet matching rather than for efficient entry updating in the
flow table. The reason for the slow update is that the TCAM
must keep the order of flow entries to satisfy a restriction
called flow dependency [12], [34]. Besides the priority (defined
in OpenFlow specification), the minimum dependency graph,
a kind of DAG, is a widely utilized way to handle flow
dependency. In this section, we give a brief description of
the flow dependency restriction, DAG, and how they decrease
the TCAM update latency.

A. Flow dependency

Similarly to the route entry that includes a prefix and a
forwarding port, the flow entry includes a match field and an
action [2]. If an incoming packet matches the match field of a
flow entry, the corresponding action is executed. If the match
field of two flow entries overlaps, i.e., two flow entries match
a same incoming packet, a specific order must be provided to
solve the matching ambiguity. The flow dependency is such a
relationship between two flow entries. Since we can define a
flow entry A is dependent on a flow entry B if B should be
matched first, or A is dependent on B if A should be matched

TABLE I
TERMS OF DEFINITION
Notation Description
G=(V.E) A flow dependency graph G

with node set V' and edge set E
The number of
flow entries or nodes in G
A node in DAG, also
indicates a flow entry in flow table

n

fu€V,uel0n]

ef.fv EE An edge in DAG, indicates f,, — fv
The number of
mn flow dependency requirements or edges in G
Cmax The largest diameter of the sub-graph in G
Cavg The average diameter of the sub-graph in G
phyaddr(fy) The physical address that stores f;, in TCAM
val(A) The flow entry or node in physical address A

first, without loss of generality, we define a flow entry A is
dependent on a flow entry B if B should be matched first.
We also use A — B to indicate A is dependent on B directly.
Moreover, if there is an entry C, and A —- B — C, we can
say A is dependent on entry C indirectly.

B. Flow entry update in existing hardware switches

Previous research shows that the main reason for TCAM
slow update is the flow dependency maintenance based on
an integer index or priority [21]. In the TCAM, each flow
entry has its physical address [16], and the TCAM always
returns the entry with the highest physical address if it matches
multiple entries. When adding a new flow entry, the switch
firmware finds a correct place: the physical address which must
be higher than flow entries with lower priority, and moves
all flow entries that physical addresses are lower than the
newly arrived one to create a space (unused TCAM entry)
in TCAM. Thus, updating a TCAM flow entry is similar to
insert sorting algorithm, i.e., if we have n flow entries, we
need n/2 movements on average to insert a new flow entry
into the TCAM.

C. Dependency graph

Moving all flow entries that physical addresses is lower than
the newly arrived flow entry will lead to a large number of
entry movements. However, it is apparent that only moving
flow entries that have a flow dependency relationship with
the newly inserted flow entry also meets the flow dependency
requirement.

For example, in Fig. 1(b), we need to move 4 flow entries to
create a free space for the newly inserted entry if we utilize a
priority-based solution, but in Fig. 1(c), only 2 movements are
necessary. Thus, directly utilizing flow dependency rather than
assigning a priority can significantly decrease the number of
movements. The minimum dependency graph, which is a kind
of Directed Acyclic Graph (DAG) [22], [34], [36] commonly
used to describe the flow dependency in a flow table. We
describe our notations in TABLE I. Specifically, we use a node
to indicate a flow entry in the flow table, and we use a directed
edge from node fj, to f,; to express node entry f, is dependent
onentry fp. Also, if f, is dependent on entry f7,, the physical
address phyaddr(f,) must be higher than phyaddr(fp). In
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Phyaddr Entries
(o oo+
05 wp
0x4 A'B
0x3 B
0x2 .
0x1

(a) A flow entry with match field “C*A”
needs to be inserted into the flow table. We
use the uppercase letter to indicate match
items of the match field. Usually, an entry
with wildcard match field must be dependent
on a precise one. Such as “**A” — “C*A”,
“ERB” 5 “A*B ”'

Phyaddr Entries Prio

0x6 CAA 25

(b) If the flow dependency is implied by
priority, the firmware introduces a priority
20 to the new flow entry, and schedule the
insertion according to 20 into space with
physical address 0x5. It needs 4 movements
in order to provide the space. We call it a
priority-based solution, which is a naive so-
lution widely utilized in OpenFlow switches.

Phyaddr Entries Dependency

0x6 CAA O

(c) If the flow dependency is implied by a DAG, the
firmware finds that the newly inserted entry has no depen-
dency on entry “A*B” and “**B” in DAG. It needs only
2 movements to provide the space. We call it DAG-based
solution.

Fig. 1. An example of flow entry insertion in a TCAM based flow table. We firstly simply introduce how TCAM match works. There are 5 flow entries
in the TCAM, and we use an uppercase letter to indicate an entry field in the flow entry. There are 3 match items in the match field: ‘A,B,C’ indicate a
fixed item, and ‘*’ indicate ‘ANY’ (omitted). ‘ANY’ means it will match any possible value in the packet header. If there is an incoming packet with packet
header “CAA”, the flow entry “CAA”, “C*A” and “***” are matched, but only “CAA” is the match result. This is because “CAA” has the highest physical
address. In (a), we need to insert a new entry with match field “C*A”. (b) shows the movements if the flow dependency implied by priority, and (c) shows

the movements if the flow dependency implied by DAG. Usually, utilizing DAG can significantly decrease the number of movements.

Fig. 1(c), we can see that it is easy to reduce movements in
DAG.

The diameter of a graph is equivalent to the length of the
“longest shortest path” between any two nodes in the graph.
Intuitively, ¢4, indicates how complex the flow dependency
is in a flow table. In most cases, such as in routing tables and
access control lists, ¢,qx << n.

Usually, a DAG, converted from a routing table or access
control list, may have sub-graphs since the DAG is composed
of several disconnected parts. The existence of disconnected
parts will not affect the dependency between flow entries,
It can decrease the expected number of movements. Thus,
Cavg < Cmax < .

D. TCAM update scheduler

For inserting a flow entry into the TCAM, after the correct
place for the newly inserted entry is chosen, a sequence of
flow entry movements is applied in order to make the chosen
space free in the TCAM. Such a sequence is called update
sequence, which is created by the TCAM update scheduler,
part of the switch firmware.

We use (I, f, A) to indicate the insert operation, and use
(D, A) to indicate the delete operation. For example, we can
use the sequence (I,C * A, 0x5), (I,* = A, 0x4), (I, A = B,
0x3), (I,* = B, 0x2) and (I, = * %, Ox1) to indicate the update
sequence in Fig. 1(b). Also, we can use the sequence (/, C A,
0x5), (I, ** A, 0x2), and (/, * * %, 0x1) to indicate the update
sequence in Fig. 1(c).

Due to the large time cost of the priority-based solution,
a more efficient algorithm is needed to calculate an update
sequence from graph elements (such as nodes and edges).

RuleTris utilizes a dynamic programming algorithm with
the time complexity O(n?) in the TCAM update scheduler
to calculate the update sequence. However, it lacks efficiency

when 7 is large. Motivated by our observation that the length
of most update sequences is not longer than c¢,,4x, and
the average length is about c,,g, we design an optimized
algorithm whose time complexity is related to ¢;uax O Cavg.
Moreover, as deleting a flow entry from TCAM is simpler
than inserting one in most cases [34], we first discuss the flow
entry insertion in Section III and IV.

III. THE WORKING FLOW OF FASTRULE

In this section, we give an overview of FastRule. We use
Fig. 2 as an example to present the workflow of flow entry
insertion in FastRule. The first stage is the compiler, which
converts a request of flow entry insertion into a request of node
insertion in DAG. There are many approaches to contribute
a compiler, and we can apply existing approaches, e.g., the
one in RuleTris [34], to our framework. Usually, the output
contains a node: a flow entry f, and all flow dependency
requirements that f must satisfy. The third stage is the TCAM;
we apply the update sequence into TCAM by TCAM API. In
our evaluation, we use the API provided by ONetSwitch [35].

The second stage searches for a sequence of TCAM entry
movements, i.e., an update sequence, which starts with the
newly inserted flow entry and ends with a free space in TCAM.
We design an algorithm using a greedy strategy, which is an
approach that always takes the locally optimal choice. To put
it simply, the algorithm constantly finds the address with the
least number of movements for creating a free space for the
newly inserted entry in a candidate address set. Each candidate
address is associated with an integer metric. The smaller the
metric is, the more optimal the address (using less number of
movements to create a free space in this address) is considered
to be.

Fig. 2 gives a brief workflow of the second stage. Firstly,
we must find candidate addresses for f before the greedy
algorithm, and these candidate addresses must satisfy the flow
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(Input f. Output:
candidate addresses)
“Find candidate
addresses for

The Greedy
Algorithm
loop O(Cavg) times
(Input:f, candidate
addresses. Output: fp,
TCAM operation)

A Flow Entry
Update Request
“Insert a flow entry

Update Schedule
“Output node fp, “(LEA),..”
whose address A has
minimum metric in
candidates. Output
TCAM operation:
(LEA)"

Update Request
(Flow Entry)
to
Update Request
(DAG)

-

Apply Update
Schedule in
TCAM

Minimum metric
in candidates

Compiler TCAM API

TCAM update time

A DAG Update

Request
“Insert a node f in
G

Array:0fn)
B

Array:0(1)
BITOflogn)~2)

On-demand: O((cavs”2)*n)
Array:O(cave*n)
BIT:O(Cavs* (logn)"2)
Firmware time

1st stage:
DAG Compiler

2nd stage:
Update Scheduler

3rd stage:
TCAM

Fig. 2. The working flow of FastRule. We give the input and output of
algorithms in the greedy algorithm, and we explain how they work with
quotation marks.

dependency requirements of f. Next, an address A with the
minimum metric is chosen from the candidates set and its
fp =val(A) is obtained. Then, f is inserted in A to displace
fp, and a TCAM operation (I, f, A) is added to the update
sequence. Next, the f, becomes the new f, and we must
find candidate addresses which satisfy the flow dependency
requirements of the new f in a new loop. The loop is over
if there exists at least one free space in candidate addresses,
which means the new f can be put into a free address. Usually,
the loop performs O(cqyge) times.

Choosing the minimum metric from candidates contributes
to the most dominant portion of time in FastRule. In the
bottom of the second stage, we give three methods, which
have different time complexity to get the minimum metric:

1) On-demand: Computing the metric of all candidates
from scratch every time. Choosing the minimum metric
from candidates set has an O(cq,gh) time complexity.

2) Pre-compute with array: Utilizing an array to save
metrics of all candidates, and updating metrics after
the loop is over. Choosing the minimum metric from
candidates has an O(n) time complexity, while updating
metrics has an O(c4yg) time complexity.

3) Pre-compute with BIT: Utilizing a modified Binary
Indexed Tree (BIT) to save metrics for all candidates,
and updating metrics after the loop is over. Choosing the
minimum metric from candidates has an O(logn) time
complexity, updating metrics has an O(cgyg (log n)?) time
complexity.

The BIT is a data structure that is modified to get the min-
imum metric in all candidates within log time. In Section IV,
we briefly introduce our greedy algorithm and BIT, and we
also discuss how we optimize FastRule by transforming the
on-demand version to the pre-compute with BIT version.
The final time complexity of the on-demand version is
O(cgv gn). The pre-compute with array version is O(c,vn),
and the pre-compute with BIT version is O(cy,(log n)?).

As we have mentioned above, the time for the second stage
is called firmware time, and the time for the third stage is
called TCAM update time. Compared to previous solutions,
FastRule can significantly decrease the firmware time and does
not increase TCAM update time in most cases. We evaluate
FastRule in terms of firmware time and TCAM update time
in Section VL.

IV. GREEDY ALGORITHM

In this section, we first describe how to find candidate
addresses for f, and then we give a brief description of the
greedy algorithm. We firstly introduce the on-demand version.
Then, we introduce the pre-compute with array version, and
describe the algorithm of updating metrics. Last, we introduce
BIT, and describe how to update metrics in BIT. In this section,
without loss of generality, we assume that the highest TCAM
physical address and free space are in the top.

A. On-demand: finding candidate addresses

When receiving an incoming request from the DAG com-
piler, such as inserting a node f with flow dependency
requirements f, — f — fp, it is precisely that candidate
addresses for f range from phyaddr(f,)+1 to phyaddr(fp).
In another case, if node f is an output of the greedy algorithm
in the last loop, the flow dependency is f — f», where
phyaddr(fy) — phyaddr(f) is the minimum. In other words,
fp is the nearest node which f depends on. Thus, candidate
addresses for f range from phyaddr(f) + 1 to phyaddr(fp)
in this case.

B. Address metric computation

As we have mentioned, the greedy algorithm needs to
choose a candidate address A whose metric is the minimum.
We use M(A) to indicate the metric, whose formal definition
is given below.

Definition 1. M (A) is the number of nodes in a specific path
P(A) in DAG that starts from val(A) and ends with val(A;).
The out-degree of val(A;) must be 0. For all pair of addresses
A;, Ajyy in path P = {val(A),val(Ay),val(Ay),...val(A;)},
they satisfy A;4+1 < A; for any A; € {Atleval(Ai),val(A,) € G}.

Intuitively speaking, path P starts from the node in address
A, and ends with a node that is not dependent on any nodes.
For any pair of addresses A;, A;+1 in path P, the node in A; is
dependent on the node in A;;, and A;4+; must be the nearest
address from A;.

We can use a depth-first search (DFS) algorithm in Algo-
rithm 1 to find P and its length M(A) for any address A:
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Algorithm 1: FIND:Finding the path P
Input: Address A, DAG G
Output: P
1 s is the neighbor of # with minimum physical address
2 h«—val(A), s « oo
3 for w that is the neighbor of h in G do
4 if phyaddr(w) < s then
5 L L s « phyaddr(w)

6 P «— PU FIND (s)
7 return P

finding the nearest node that is depended by the node in the
current address (the first address is A); using the searched
nodes and its physical address as the input in next search turn.
If there is no new node found, the search finishes. The time
complexity of the DFS algorithm is O(cqvg). As G is a DAG
that does not have any loop, the algorithm can always get a
result.

C. Greedy algorithm

After f, the node to be inserted, and its candidate addresses
are available, we can start the greedy algorithm to get the
update sequence. We describe the greedy algorithm in Algo-
rithm 2.

We use a recursion form to describe the algorithm. The
algorithm finds the address with minimum metric in candidates
from line 5 to 9, insert f in A, and output a TCAM operation
(I, f, A) to update sequence in 12. We invoke the algorithm
with new f, and new candidate addresses in line 11 to 12. If
there exists a free space, the recursion will stop at line 14.

We give an example to describe how it works in Fig. 3.

Algorithm 2: SCHEDULE: Output TCAM update sequence

Input: Candidate addresses phyaddr(f,) to
phyaddr(f»), node f

Output: Update Schedule U(f)
1 fp is the node whose address has the minimum metric
2 A is the physical address of f),
succ(A) is the address of the nearest (in address)
successor of f,
h is the current minimum metric
for k € (phyaddr(fa), phyaddr(fp)] do
Compute M (k)
if M(k) < h then

he— M), Ak
L fp < val(k)

w

e e NN e

10 if exists succ(A) then

11 fa — A+ 1, fp « succ(A)

2| U(f) « (I, f, A)U SCHEDULE(fq, fb, fp)
13 else

4 | Uf) « (I f,A)

15 return U(f)

Before we prove the correctness of our algorithm, we first
give Proposition 1.

Proposition 1. Suppose there is a node f which satisfies f;, —
f and the out degree of node f is 0. If there exists at least one
free space that physical addresses is higher than phyaddr(f,)
in the flow table, it can always find an address A to insert f.

Proposition 1 tells us that if f is not dependent on any
node, and the physical address of free space is higher than
phyaddr(f,), it can always be inserted successfully.

Proof 1. In line 5, phyaddr(fp) is the entry with the highest
TCAM physical address in the flow table. After running line 5
to 9, we can always find A with M(A) =0, and f is inserted
at line 14.

Then, we can state the following proposition.

Proposition 2. The greedy algorithm can always find a
solution if there exists at least one free space in the flow table.

Proof 2. For current node f, and candidate addresses
phyaddr(f,) to phyaddr(f), we have the following cases.
1) if the out-degree of f is O (f is not dependent on any
nodes), then choose an address that is a free space in the
candidate addresses set, and insert f into the free space.

A solution hence exists.

2) if the out-degree of f is not 0, and there is an address
that is a free space in the candidate addresses set, insert
f into the free space. A solution hence exists.

3) if the out-degree of f is not 0, and there is no free address
in the candidate addresses set, then choose node f,
whose addressing metric is the minimum in the candidate
addresses set, and call the algorithm with f,, as new f.
From the definition of candidate addresses set, if there
is only one address in the set, f), satisfies the existence
condition, f — fp.

As G is a DAG (no loop exists), the out-degree of f), selected
in case 3) will reach 0O after a finite number of iterations. Thus,
case 3) will turn into case 1) eventually. In case 1), the free
space must be higher than phyaddr(f,). If the free space is
lower than phyaddr(f,), it must be occupied by the previous
call in case 2). Thus, according to Proposition 1, the algorithm
can find a solution.

The time complexity of the greedy algorithm can be outlined
as follows: the time complexity for line 5 to line 9 is O(c4vgn),
and the greedy algorithm needs ¢4, times to stop. Thus the
total time complexity is O(cZ, n).

D. Using an array data structure to store metrics

In Algorithm 2, the function from line 5 to line 9 is choosing
the minimum metrics in candidate addresses, which costs most
of the time in the greedy algorithm. As we have mentioned
above, in order to prevent computing metrics from scratch,
we can use an O(n) array to store pre-computed metrics.
The tradeoff is the maintenance time of updating the array
after each loop. We also use M[] to indicate the array. We
describe our maintaining algorithm in Algorithm 3 for M[]
after inserting a new node into the flow table.
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Fig. 3. An example of creating an update sequence for inserting f into DAG. From a) we can see there are 9 nodes (entries) in the DAG (table), and we need
to insert a new node 9 that is dependent on node 5, and node 6 is dependent on the new node 9. b) shows the flow table after node 9 is inserted. The length
of the update sequence is 4. Only nodes with blue color need to be moved, and the update sequence U (0x3) is (1,9,0x3),(1,5,0x4),(1,4,0x6),(1,2,0x9). We give
the detail of the first two callings of algorithm SCHEDULE in remain figures to show how our algorithm works. We use green color to indicate candidate
addresses. In c), we call SCHEDULE(0x3,0x3,9). The only selection in candidate address is 0x3, M (0x3)= 4, and P(0x3) is 0x3, 0x5, 0x7, 0x8. We insert
node f =9 at 0x3. The f), =5, and we call SCHEDULE(0x4,0x5,5). We have two available selections for A in candidate addresses: 0x4 and 0x5. M (0x4)= 2
and P(0x4) is 0x4, 0x6. M (0x5)= 3 and P(0x5) is 0x5, 0x7, 0x8. We choose 0x4 as A since M (0x4)< M (0x5). The f), = 4, and we insert node f =5 at
0x4. In e) and f), we insert node 4 and 2. Eventually, the flow table will become b).

M[0x9]=Mold[0x6] @ 0x9 1/ \
0 0x8
1 0x7
M[0x6]=Mold[0x4] @ / 0xB
3 0x5
M[ox4l=Mold[0x3]| (5 ot
X

9 U

M[0x3]=Mold[0x3]+1 0x3 T
M[Ox2}=Mold[0x3]+2| ({6 5 0x2
M[0x1]=Mold[0x3]+3 @ ox1

M[0x0]=Mold[0x3]+3| { 8 0x0 § 7

Fig. 4. An example for updating M(|] after the greedy algorithm. We
update metrics (M[phyaddr(9)], M[phyaddr(5)], M[phyaddr(4)],
M[phyaddr(2)]) whose addresses in U(9) and we also update met-
rics (M [phyaddr(6)], M[phyaddr(7)], M[phyaddr(8)]). These nodes
(6,7, 8) are directly or indirectly dependent on node 9. We use M[A] =
M old[B] to indicate the update process. M old[B] is the metric of physical
address B before update.

From Fig. 4 we can see that the algorithm updates M[] by
two steps:

1) Update the metrics for addresses that are in the update
sequence U(f).

2) Update the metrics for addresses whose nodes are directly
or indirectly dependent on node f.

The time complexity can be depicted as follows. Modifying
an element in array M[] costs O(1). From step 1) we have

Algorithm 3: UPDATE: Update M[] after inserting node
fatA
Input: A, U(f),M[] DAG G
Output: An updated M[]
U(f) is the update schedule created by SCHEDULE
2 for let h be the last address to the first address in U(f)
do

-

3 if h is not the last address in U(f) then
4 | MIw] < M[h]
5 weh

6 M[A] « M|succ[A]] +1

7 Q is a queue, Insert A to Q
8 while Q is not empty do
9

h is the head of Q, dequeue /1 from Q

10 if h is not A then

1 | M[h] « M[h]+1

12 for w is the neighbor of h that satisfies succ[w] = j
do

13 | Insert w to Q

to update metrics in the update sequence and the c4, . is the
length of the update sequence, the time complexity of step
1) is O(cavg). From step 2) we have to update metrics of
the node that are directly or indirectly dependent on f. The
time complexity of step 2) is O(cqyg (1+d;,)) while d;,, is the
average in-degree of G. We find d;, < 1 in all data sets, which
means that most flow entries are not depended on by other
entries. Thus, the total time complexity of updating metrics
is O(cavg). The time complexity of the greedy algorithm
decreases to O(cqvgn) since the time complexity of line 5
to line 9 decrease to O(n).
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E. Using a modified Binary Indexed Tree to store metrics

As we have mentioned in the previous section, utilizing
Binary Indexed Tree (BIT) (also called Fenwick Tree) can
decrease the time complexity of line 5 to line 9 in Algorithm 2
to O(logn). We discuss the design of BIT in detail in this
section.

1) Original BIT data structure: The original BIT data struc-
ture is used for quickly calculating the cumulative frequency.
Suppose there is an array R[] that has n elements, BIT can
get the sum

R[l...ad] = ZR[i],a e [1,n]
i=1

in O(logn) with space complexity O(n) by maintaining an
array B[]. As each integer p can be represented as 2% + 2% +
-+.+2ka For example. 11 = 1+2+8, the sum R[1...11] can
also be represented by R[1...11] = R[11(1)]+R[9...10(2)]+
R[1...8(8)]. It is easy to decompose an integer p into 251 +
2k2 ... 4 2ka by utilizing a function LOWBIT(x) = x&(—x)
(& is bit and). LOWBIT(x) can get the integer whose value
equals to the rightmost 1 in the binary presentation of x, such
as LOWBIT(1011;) = 0001,, LowBIT(1010,) = 0010,. BIT
uses an another array B[] to store the sum
X
B[x] = R[i],x € [1, N]

i=X—LOWBIT(x)+1

like B[11] = R[11],B[10] = R[9...10], B[8] = B[1...8]. If
we use binary to represent an integer, such as 11 = 1011,,
we can find 11 can be decomposed by minus the rightmost
1 in its binary presentation. For example, 1011, = 1010, +
0001,, 1010, = 1000, + 0010,. Thus, R[1...11(1011,)] =
B[11(1011,)] + B[10(1010,)] + B[8(1000;)]. For computing
any Rla...bl,a,b € [l,n], we can compute R[l...b] —
R[1...a] directly.

2) Minimum Range Query: In array based Algorithm 2, the
function of line 5 to line 9 is to find the minimum metrics in
array M[], which takes O(n) times. This is a minimum range
query problem, which can be solved by a modified BIT in
O(logn) times.

We can perform a minimum range querying by changing
the definition of B[] from sum (}}) to minimum value:

B[x] = min(M[i]),i € [x — LOWBIT(x) + 1, x], x € [1,n]

From Fig. 5(a) we can see that querying the min(M|a . .. b))
by computing min(M[1...b], M[1...a]) is not possible. We
can only query M[a ... b] by decomposing the range [a, b] into
several ranges in B[x] = min(M[(x — LOWBIT(x) + 1)...x])
and find the minimum value in these ranges. We give our
algorithm in Algorithm 4. The time complexity is O(logn).

3) Update: In the original BIT, if we update M[i] by
increasing or reducing a value A, we only need to increase
or decrease A in all B[j] whose range includes i. However,
in the scenario of minimum range query, we need to re-
compute all B[j] whose range includes i. However, if we
directly compute each B[j] by definition, the time complexity
will be O(nlogn). From Fig. 5(b), we can use computed
B[j — 2¥1,2F < LowBIT(j) < 2%*! to update B[j]. Thus, we

v B8 a P sed 2|6 |

M[1] M2] Mig] M[4] M[s] Mi6] M[7] M[8]

a) query

M) M2] M[3] M[4] M[5] Mie] M[7] Mig]

b) update

Fig. 5. An example for querying and updating BIT. In a), we query the min-
imum value in M[1...6], which can be decomposed as B[4] = M[1...4]
and B[6] = M[4...6]. Thus, we can only compare B[4] and B[6] to get
the minimum value is 1. In b). we update the value of M[6] from 9 to 2.
Thus, we have to check all ranges that include M [6]. The first is B[6], which
is the minimum value of M[5] and M[6], and we update B[6] = 2. The
next is B[8], which is the minimum value of B[4], B[6], R[7], R[8]. Due to
B[4] = 1, we do not change the value of B[8].

Algorithm 4: QUERYBIT: Query minimum value
Mla...b] in BIT
Input: M[], BIT B, range a,b
Output: The minimum value in M[a...b]
1 r is the minimum value in M[a. .. b]
2 while a < b do
3 r <« min(r, M[b])
4 b—b-1
5 while b — a > LOWBIT(b) do
6 r < min(r, B[b])
7 L b «— b—LOWBIT(b)

8 return r
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give the updating algorithm in Algorithm 5. The time com-
plexity is O((log n)?). Thus, the time complexity of the greedy
algorithm is decreased from O(c4vgh) to O(cqvg logn), and
the time complexity of updating metrics is increased from
O(cavg) to O(cqyg(log n)?). Overall, the time complexity of
the BIT version is O(cayvg(logn)?).

Algorithm 5: UPDATEBIT: Update M[i] in BIT

Input: BIT B, new value M[i], n is size of M and B
Output: The updated BIT B

1 j«i

2 while j < n do

3 B[j] < RIj]

4 k1

5 while £ <LOWBIT(j) do

6 B[j] < min(B[jl, B[j — k1)
7 k— k=2

8 | J < j+LOWBIT(j)

V. FASTRULE IN DIFFERENT TCAM LAYOUTS
A. Free spaces interleaved between non-free spaces

In most cases, all flow entries are arranged in the bottom
(or top, depending on the arrangement of physical address)
of the TCAM (such as in the leftmost figure in Fig. 6), and
the free space is in the top (or bottom) of the TCAM. We
call this layout as the original layout. The main disadvantage
of this design is that it may occur a large number of entry
movements if the new entry is inserted near the bottom (top)
of the flow table. In some other interleaved layouts, the TCAM
keeps j free spaces (unused TCAM entries) in every i non-free
spaces [18], as shown in Fig. 6, in anticipation of inserting and
deleting of flow entries. The average loop times of the greedy
algorithm improves to i.

l-—-_—l :-——_—i
|

s R S S L b——}j=2

=2 _
i=1{ ] bi=2
— —
| | |
L |
eo__d eo__d
a) b) 0) d)

Fig. 6. The TCAM keeps j free spaces (unused TCAM entries) in every i
non-free spaces. a) is the original layout, with the free space in the top of the
TCAM. We assign i = 1 and j = 1 in b), which means there exists 1 free
space in every 1 non-free space. In c), we assign i = 1 and j = 2, and in d),
we assign i = 2 and j = 2. Obviously, it is convenient to find a free space
for newly inserted entries.

However, it can decrease to ¢4 if all intermediate spaces
are filled up. In order to keep this layout, the firmware needs
to re-arrange existing entries at intervals. This may involve

TT1T T 71T
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Fig. 7. An example of inserting an entry into the original design and separated
design. There are five entries in the flow table. In a), if the new entry is inserted
in the bottom of the table, we need 4 moves to create a space for the new
entry. In b), if we separate existing entries into two parts located in the bottom
and top, only 1 move is necessary to create a space for the new entry.

extra entry movements during the re-arrangement, which is
considered as overhead. We evaluate FastRule in this layout
by varying i and j in Section VL.

B. Free spaces in the middle

Another TCAM layout is to separate all flow entries into two
parts, one part in the bottom and the other part in the top, and
the free spaces are in the middle [33]. Moreover, the insert
and delete behaviors in this layout are quite different from
the original layout. In this section, we discuss insert/delete
behaviors in this particular layout. In the original layout, the
time complexity of the greedy algorithm is related to cqyg.
In this particular layout, we can reduce the time complexity
by designing update policies. The largest movements can be
upper bounded by C“zv £,

As the example shown in Fig. 7 (b), we separate flow entries
in the flow table into two parts: some entries in the bottom, and
others in the top. Moreover, if we use m; and my, to indicate
the largest number of movements for the bottom parts and top
parts respectively, the largest m; and m;, are smaller than L”‘%
definitely. As the example shows in Fig. 7 (b), this separation
moves free spaces into the middle, and it can lower the upper
bound of the number of movements significantly.

1) Insert: If the newly inserted node f satisfies f, — f —
f», and phyaddr(f,) and phyaddr(fp) are both in the bottom
part or top part of the TCAM, we just insert f at bottom part or
top part. Otherwise, we need to insert f at the free space in the
middle part. Before we insert f into the middle part, we need
to judge whether the bottom or top is feasible to insert. We
compare the number of flow entries m;, and my, and define a
threshold ¢; if m; — m; > t, which means the number of flow
entries in the top part is larger than in the bottom part, we
insert the new entry in the bottom part. Otherwise, we insert
the new entry in the top part. Inserting f in the middle part
does not cost any flow entry movements.

An alternative choice is to keep m;, and m; smaller than
C"% all the time. This can decrease the maximum number of
movements, but may also increase the number of movements
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during the maintenance, which is considered as overhead.
Balancing m, and my in a proper interval is a good choice.

There is another consideration when we insert flow entry
into the free space. As an example in Fig. 8 b), inserting
several flow entries in order into continuous free spaces may
cost extra movements. An easy solution is to randomly choose
a free space from these continuous free spaces each time when
inserting the new flow entry.

2) Delete: Deleting a flow entry is more complicated than
in the original layout. We have two options:

1) Dirty delete: Delete the flow entry, left the space available
for newly inserted flow entries.

2) Balance delete: Delete the flow entry, and then use other
existing flow entries to fill this space.

Both two options have advantages and disadvantages. If we
use the Dirty delete, free spaces are not in the middle of the
flow table; this will waste much space in TCAM. If we use
the Balance delete, as an example shows in Fig. 9 a) and
b), we have to move other entries to the free space, which
is considered as overhead. Moreover, we still have to balance
entries between the top and bottom to make sure |m; —m| < t.

We have evaluated both this layout (insert with dirty delete,
insert with balance delete) and the original layout in our
evaluation section to show the differences in efficiency.

VI. EVALUATION

We evaluate FastRule through experiments on
ONetSwitch [35], which is an open-source hardware
OpenFlow switch. ONetSwitch is a ZedBoard with an up to
800Mhz Cortex-A9, 512MB DDR3 RAM. We use C++ to
implement our framework and use g++ provided by Xilinx
to cross-compile without any optimization. We evaluate the
average TCAM update time and firmware time by measuring
1,000 random updates.

1) Large size TCAM emulation: The original TCAM in
ONetSwitch is pretty small (256 entries in ONetSwitch45),
which is not enough for the experimental evaluation. RuleTris
solves this problem by emulating a large size TCAM in
a Linux server; in the server, they evaluate their algorithm
on the emulated TCAM and output the number of TCAM
moves that is needed for TCAM update — as each TCAM
move costs a constant amount of time (0.6ms), it uses the
total number of TCAM moves times the average latency of a
TCAM move to estimate the TCAM update time. We use a
more accurate way to emulate large size TCAM. Similarly to
RuleTris, we also use a Linux server to evaluate our algorithm,
but it is only used to ensure the correctness of our algorithm
(by checking whether flow entries in emulated TCAM are
in the correct physical address). In order to emulate a large
size TCAM with a small size (ONS_HW_TABLE_SIZE,
defined in ONetSwitch) TCAM in ONetSwitch, we mod-
ulo the original address with ONS_HW_TABLE_SIZE
(such as (1, f, A%256), ONS_HW_TABLE_SIZE=256 in
ONetSwitch45 [34]) if the original address is larger than or
equal to ONS_HW_TABLE_SIZE, and update the TCAM
with the modulo address. The update time is not affected by
utilizing the modulo address.

TABLE II
DATA SET
Type AcL4
n 250 | 500 | IK | 2K | 4K | 10K | 20K | 40K

Cmax 3 3 3 6 3 4 13 5

Cavg 1.1 1.0 | 1.1 | 1.1 | 1.1 1.1 1.6 1.1

Type ACLS5
n 250 | 500 | IK | 2K | 4K | 10K | 20K | 40K
Cmax 2 3 3 5 3 3 9 4
Cavg 1.0 | 1.0 | 1.1 | 1.1 | 1.1 1.1 1.2 1.1
Type Fw4
n 250 | 500 | 1K | 2K | 4K | 10K | 20K | 40K

Cmax 5 7 3 8 4 4 15 4

Cavg 1.5 14 | 1.1 | 1.6 | 1.1 1.1 1.6 1.0

Type

n 250 | 500 | 1K | 2K | 4K | 10K | 20K | 40K

Cmax 5 7 5 8 5 5 12 5

Cavg 1.4 14 | 12| 1.3 | 1.2 1.1 1.2 1.1

Type ROUTE
n 250 | 500 | IK | 2K | 4K | 10K | 20K | 40K
Cmax 2 3 3 3 3 3 4 4

Cavg 1.6 1.6 | 1.7 | 1.7 | 1.7 1.7 1.7 1.8

2) Data set: To confirm that our methods are robust and
scalable enough, we evaluate FastRule on various type of
flow tables: two from Access Control List (ACL4, ACLS),
two from Firewall (Fw4, Fw5) and one from Routing Table
(ROUTE). For AcL4, ACLS5 and Fw4, Fw5, we firstly use the
well-known policy generator ClassBench, with configuration
names ACL4, ACLS, Fw4, FwS5 provided in ClassBench [37],
to generate policies, and use ClassBench-ng [38] to covert
these generated policies into OpenFlow entries. For ROUTE,
we download an L3 routing table(routeviews-rv2-20170606)
from CAIDA [39], and use ClassBench-ng [38] to convert
a subset of prefixes into OpenFlow entries. We summarize
characteristics of these flow tables in TABLE II. The number
of flow dependency m ranges from 37 to 38225 in AcCL4,
3 to 4557 in ACLS, 365 to 24130 in Fw4, 168 to 40303
in Fw5 and 169 to 31381 in ROUTE. From m we can see
d;n 1s small since 10% flow entries have a flow dependency.
It is obvious that the number of flow dependency in Fw4,
Fw5 are larger than the number in ACL4, ACL5. Moreover,
ROUTE has a larger ¢,y than others. We also prepare a data
set of flow updates to flow tables with each size. We generate
250 updates for the flow table with 250 entries, 500 updates
for the flow table with 500 entries, and 1000 updates for the
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a) b)
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c) d)

Fig. 8. Inserting flow entries in order continuous free spaces may cost extra movements. a) is the initial state of the flow table, and d) is the final state of
the flow table. In b), we insert flow entries in order, we can find we need to move the orange node 3 times, and to move the blue node 2 times. In c), we do
not insert flow entries in order, we can find we do need any extra movements for the orange node and the blue node in the best case.

Fig. 9. An example of deleting flow entry. From a) and b), we can see that
after the entry (orange node) was deleted, the free space was occupied by
other flow (blue node) entry immediately. The situation is the same in c) and
d). We just delete the entry (orange node), and we do not need any extra
movement.

flow table with 1k, 2k, 4k, 10k, 20k, 40k entries. Moreover, we
generate two types of update. The first type only contains entry
insertion, and the second type contains an entry insertion and
an entry deletion after the insertion. As for flow entry insertion,
we create a new f that satisfies f, — f — fp, where f,
and fj are randomly chosen from existing entries in the flow
table. As for the deletion, we randomly delete a flow entry
in the flow table. The reason why we choose random updates
is that the time complexity of our algorithm only depends on
n and cqyvg; 1,000 updates can keep a relatively stable logn,
and random insertions will not change ¢4y, much. If cq4yg
increased significantly, newly inserted entries must be inserted
like a chain, e.g., the new entry that needs to be inserted is
always just dependent on the recently inserted entry.

3) Finite size of TCAM: In each evaluation, the TCAM
size equals the sum of existing entries and inserted entries.

Thus, for first type, the TCAM sizes are 500 for 250 updates
over 250 existing entries, and 1k for 500 updates over 500
existing entries respectively. For the second type, TCAM sizes
are 1.1k,2.1k, 4.1k, 10.1k,20.1k and 40.1k. For the first type
of update, the TCAM will be full of flow entries eventually,
and for the second type of update, the number of entries in
the TCAM will not change. Since the time complexity of our
algorithm depends on n and ¢4y, which is the number of flow
entries and the average diameter in the graph, the efficiency
of our algorithm does not depend on the finite size of TCAM.
If there is a free space in TCAM, our algorithm can find a
way to insert a flow entry.

4) Layout and algorithm: In section V, we have introduced
the impact of layout and insert/delete behaviors. In the eval-
uation, we use FR-SB to indicate the separated layout with
balance delete, FR-SD to indicate the separated layout with
dirty delete, FR-O to indicate the original layout. Moreover, we
use RuleTris to indicate the dynamic programming algorithm
in RuleTris, and Naive to indicate the widely used insertion
sort algorithm. Also, we evaluate FastRule in TCAM layout
with j free spaces in every i non-free spaces. Although the
finite size of TCAM does not affect the algorithm efficiency,
the separated layout may change c4,,, which may result in
higher inserting efficiency.

5) Firmware time and TCAM update time: We measure
the firmware time, which is the time of computing the
update sequence from a DAG-based or priority-based flow
entry update in the switch firmware: the time is measured
from when the computation starts till it is ready to apply the
update sequence to the TCAM. We also measure the TCAM
update time, which includes all update times when applying
the update sequence to the TCAM: we fetch the ADDENTRY(),
DELETEENTRY() APIs from ONetSwitch SDK, and call these
APIs to insert/delete entries in specific physical addresses in
TCAM, then the time is measured from the TCAM updating
start to the end. The firmware and TCAM update times are
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Fig. 10.

measured separately on the physical OpenFlow switch.

A. Firmware time: computing update sequence

Firstly, we show the average firmware time on these flow
tables in Fig. 10. We choose AcCL4, FW5 and ROUTE with
250 to 40k entries in flow tables to show how the overhead
increases. In the experiments, we feed 250 updates to the table
with 250 entries, 500 updates to the table with 500 entries and
1,000 updates to tables with other sizes. In Fig. 10(a), 10(b)
and 10(c), each update only contains one insert to the ACL4,
Fw5 and ROUTE tables. In Fig. 10(d), 10(e) and 10(f), every
two updates sequentially contain one insert and one delete to
the AcL4, FW5 and ROUTE table. We do not add FR-SD in
Fig. 10(a), 10(b) and 10(c) since the time used by FR-SB and
FR-SD is equal if there is no delete update. The error bar
indicates the maximum firmware time in the evaluation.

The firmware times evaluated in ACL4 table are shown in
Fig. 10(a) and 10(d). In all cases, the naive algorithm is the
slowest, which takes more than 1,000 times our algorithms
in a 10k-entry table. The reason is that it needs to locate the
suitable place in every update, and assign a new priority for all
entries that need to be moved within the TCAM. The RuleTris
performs better than the naive solution (100 times the naive
algorithm in a 2k entries flow table), but it is still slower than
our algorithms. Moreover, with the increase in flow table size,
the time used by the RuleTris and naive algorithm increase
rapidly, but our algorithms can remain stable. Different layout
and delete behavior can also affect the efficiency. If updates
only contain insert, FR-SB is a little bit faster than the FR-O.
However, If the update contains both insert and delete, FR-
SB is slower than FR-SD and FR-O. We give a brief analysis
in subsection VI-E. Moreover, the maximum firmware times
of FastRule algorithms are shorter than the average time of
others.

[ ]rr-sBEE Fr-o[ ] RuleTris N Naive

Flowtable size

(b) Insert, FW5
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The firmware time in ACL4, FW5 and ROUTE. We do not put Naive in 20k and 40k since Naive can not finish in half an hour.

Fig. 10(b), 10(c) and 10(e), 10(f) show the result of firmware
time evaluated in FW5 and ROUTE tables. Similarly to the
previous experiment, we observe that our algorithms are at
least 10 times faster than RuleTris due to the time saved in
the firmware time.

B. TCAM update time: time of rule updates on the TCAM

Then, we give the time of rule updates on the TCAM
on these flow tables in Fig. 11. In this experiment, we only
choose ROUTE in Fig. 11(a) and FW5 in Fig. 11(b) since these
two figures are typical and other figures are pretty similar
to them. From Fig. 11(a), the TCAM update time of FR-
SB and FR-O show no significant differences with RuleTris,
which means that our algorithms do not introduce overhead.
From Fig. 11(b), we can see FR-SD is the fastest among all
algorithms. However, FR-SB is much slower than FR-SD, FR-
O and RuleTris. This happens because the FR-SB uses more
TCAM movements to perform balance deletion by moving
other existing entries to fill the space.

C. The influence of cavg

Because of the time complexity of inserting in FastRule is
O(cavg(log n)z), which depends on ¢, 4, we give the firmware
time among different types of flow tables to show how ¢,y
affects the efficiency of our algorithms. In Fig. 12(a) and 12(c),
we can find the time used of FR-O is consistent with ¢, . For
example, in Fig 12(a), the time used by ROUTE and Fw4 in
size 2k are larger than the time used in another type of tables
since the ¢4y, of ROUTE and Fw4 are 1.6 and 1.7, which are
larger than ¢, in other type of tables (ACL4, ACLS and Fw5
are 1.1, 1.1 and 1.3). The situation is the same in Fig. 12(c).
Moreover, the average time of FR-SB is a little bit smaller than
the FR-O. However, in Fig. 12(b) and Fig. 12(d), the time does
not follow ¢4, 4. This happens because the time complexity of
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delete entry operations does not depend on c,,¢. Moreover, it
obviously shows that FR-SB is slower than FR-SD and FR-O
in all types of flow tables due to the balance delete overhead,
and FR-SD is the fastest method.

D. TCAM layout with j free spaces in every i non-free spaces

As we have mentioned above, there is another TCAM layout
that keeps j free spaces (unused TCAM entries) in every i non-
free spaces. In order to confirm that FastRule is scalable in
this TCAM layout, we evaluate FastRule in this layout with
several combinations that have different i and j. Moreover, we
also evaluate RuleTris for comparison.
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The TCAM update time in ACL4, FW5 and ROUTE. We do not put Naive in 20k and 40k since Naive can not finish in half an hour.

TABLE III
THE AVERAGE TCAM UPDATE TIME (MS) FOR ONE UPDATE W IN
DIFFERENT i AND j (TABLE: ROUTE)
(WITH j FREE SPACES (UNUSED TCAM ENTRIES) IN EVERY { NON-FREE

SPACES)
i|J 250 500 1K 2K 4K 10K | 20K | 40K
1 0 1.15 1.13 1.13 1.13 1.08 1.04 | 1.13 1.07
111 0.84 | 0.83 | 0.83 | 0.64 | 0.56 | 0.56 | 0.52 | 0.56
1|2 0.60 | 0.58 | 0.58 | 0.56 | 0.52 | 0.52 | 0.58 | 0.53
1|3 0.59 | 0.57 | 0.57 | 0.52 | 0.57 | 0.56 | 0.54 | 0.53
2 11 091 | 091 | 0.88 | 0.69 | 0.55 | 0.52 | 0.52 | 0.52
2|2 0.69 | 0.70 | 0.69 | 0.59 | 0.52 | 0.56 | 0.56 | 0.52
311 099 | 1.00 | 099 | 0.81 | 0.64 | 0.56 | 0.58 | 0.52

We give our evaluation result for the TCAM update time in
TABLE III. We give the TCAM update time for ROUTE with
flow table size from 250 to 20K. From the result we can see
that with the same i, the TCAM update time is smaller when
Jj is larger in most cases. It can be explained that more free
spaces between non-free spaces makes fewer movements for
the newly inserted entry (the average loop times of the greedy
algorithm improves to i). Also, with the same j, the TCAM
update time is larger when i is larger in most cases. Moreover,
from the result we find that with the increasing size of the
flow table, the TCAM update time decreased rapidly except
j = 0. This conclusion also indicates that arranging free spaces
between non-free spaces is better than arranging them in the
top (or bottom) of the TCAM.

We give the comparison for the firmware update time be-
tween FastRule and RuleTris in Fig. 13. We give the firmware
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update time for ROUTE with flow table size from 250 to 10K.
From the result, we can see that with the increasing size of
flow table, the firmware time of RuleTris decreased (except
j = 0). The firmware time of FastRule is about 10 times
than RuleTris in 10K size. In other words, if there are large
amounts of free spaces between non-free spaces in the TCAM,
the firmware time of RuleTris is smaller than FastRule. This
is because utilizing BIT costs a constant time in finding the
free space. However, the layout with j = 0 is the most utilized
TCAM layout, which makes FastRule faster in most real-world
scenarios.

E. Analysis

In this section, we give some brief analysis to explain the
efficiency differences between our algorithms and RuleTris.
Moreover, we also analyze the reason why efficiency differ-
ences exist among FR-SB, FR-SD and FR-O.

1) Comparison with DP-based solution (such as RuleTris):
The efficiency of our algorithm derives from a lower time
complexity than previous solutions. The DP-based solution
needs a double nested loop: the first loop is iterating all
addresses from the address that needs to be inserted to the
highest, which needs to take O(n); the second loop is updating
the number of movements from current address (the address
in the first loop) to the highest address, which takes O(n).
Overall, it takes O(n?) for one insertion. The time complexity
of our solution is based on the expected number of movements,
which is O(cavg).

We only move ¢, flow entries for each flow entry update
in TCAM. Usually, ¢4y is very small in real-world data sets.
RuleTris utilizes a loop to calculate the potential movements in
a range of flow entries that may be moved, and the range may
be n. Although ¢, can also reach n in the worst case, but it
seldom occurs in real-world data sets. Moreover, some time-
wasting initiation processes (Line 4 to Line 8 in Algorithm
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The firmware time in ROUTE with different i and j. We do not give figures of 20K and 40K since there are similar to 10K.

1 of RuleTris [34]) can also be observed in RuleTris, which
makes it less efficient than our approach.

2) Efficiency among different layouts and delete behaviors:
As we have mentioned above, differences exist between two
layouts, and also between delete behaviors. It can be observed
that the firmware time with FR-SB is slightly lower than FR-O
with pure insert updates, but the firmware time with FR-SB
is about 1.5 to 2 times the FR-SD and FR-O times, when the
insert updates and deletes update parts count for half each.
FR-SB separates all entries into top and bottom, and creates
a space in the middle of the flow table. On the one hand, the
newly inserted entry falling into the free space can decrease
the firmware time of maintaining existing entries, and on the
other hand, a separated flow table can decrease ¢4, and
Cavg, Which can also decrease the firmware time since the
time complexity of our algorithm is based on n and c4y 4.
However, the situation is different if the proportion of delete
updates increased. FR-SB needs to continuously maintain free
space in the middle of the flow table, which can increase the
delete overhead. If the deleted entry is not near the middle free
space, it costs at least one movement to fill the space created
by the deleted entry. The FR-SD and FR-O do not cost any
movements in delete update, which makes them more efficient
than FR-SB.

VII. RELATED WORK

In this section, we introduce some related work aimed at
enhancing update efficiency and range minimum querying.
There are several existing approaches that can increase flow
update efficiency by decreasing flow entry movements. Some
approaches utilize new flow table design, e.g. CacheFlow or
Mercury [28], [30], others usually utilize DAG to decrease
the flow entry movements in incremental TCAM update [18],
[29], [31]-[34].
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Hierarchical flow table design: As we have mentioned
before, although TCAM has high-speed matching efficiency,
the power and cost requirements limit its scale for supporting
more storage capacity. Though slow in lookup, SRAM has
larger storage size, which can be used to increase the capacity
of the flow table. CacheFlow [28] maintains a hierarchical
flow table design (high-speed TCAM and low-speed SRAM).
By utilizing “cover-set”, CacheFlow can decrease unnecessary
flow entry movements between TCAM and SRAM. Although
our work does not utilize hierarchical design, CacheFlow still
motivates us towards an efficient algorithm for solving flow
dependency.

TCAM update cache: TCAM uses physical address to de-
termine which rule (flow entry) need to be returned when mul-
tiple rules are matched. In other words, the TCAM firmware
needs to maintain a correct order to keep dependency between
flows in TCAM. Usually, the cost of keeping dependency
increases with TCAM size. Mercury [30] is a framework that
can decrease the number of entry movements by keeping a
nominal amount of TCAM space as updating cache. In short,
Mercury trades part of the TCAM space for update efficiency.

Incremental TCAM update: A partial order updating
theory [29] has been proposed to explore the design space
for incremental TCAM updating algorithm. It gives the
lower bounds on the TCAM updating performance. Although
DUOS [32] and P2C [31] have considered the flow depen-
dency problem and reduced the updating cost, these solutions
still show limitations in computing the updated minimum
dependency graph. In contrast, both RuleTris [34] and our
work can achieve the minimal updating cost by using the
policy compiler, which can generate the minimum depen-
dency information. Chain Ancestor Ordering (CAO) and its
optimized version CAO_OPT [18], [33] propose a separated
layout design to decrease the number of TCAM updating
movements. We have evaluated CAO_OPT (separated layout)
in our evaluation section.

Range Minimum Query: Besides the binary indexed tree
(BIT), there are also other schemes that can perform minimum
range querying in log n time complexity. The Range Minimum
Query (RMQ) problem is defined as finding the minimum
element in an array A[O...n] from indexed L (query start) to
indexed R (query end), where 0 < L < R < n. The simplest
solution is to perform a loop in the given range, from R to L.
This solution needs O(n) time to query the minimum element.
If the array A is static, Sparse Table (ST) [40] only has O(1)
querying time complexity and O(nlogn) preprocessing time
complexity. However, the array A is not static in our situation.
A data structure called segment tree [41], can be used to speed
up the query. Preprocessing the segment tree takes O(n) time,
and one range minimum query takes O(logn) time. Also,
segment tree needs extra O(n) space to store the segment tree.
Compared to BIT, which only needs an array to store the whole
tree, segment tree has to maintain a real tree structure, which
needs a significant constant time. Also, the querying algorithm
for segment tree is a recursion-based algorithm that is much
slower than the querying algorithm in BIT, which is only a
loop-based algorithm.

VIII. CONCLUSION

In this paper, we propose a novel memory update algorithm,
called FastRule, to efficiently address the issue of perfor-
mance bottleneck in TCAM memory update for OpenFlow
switches. To decrease the TCAM update latency, we design
a greedy algorithm with a specific data structure. First, we
propose a fast algorithm with time complexity of 0(c§vgn)
for quickly calculating the update sequence in a flow table
of size n, where cqy¢ is the average diameter of a directed
acyclic graph. Second, we optimize this algorithm with binary
indexed tree to further increase its efficiency, leading to the
reduced time complexity of O(cayg(log n)?). Moreover, we
also optimize our algorithm in some special layouts of the
flow table. Meanwhile, We prove the correctness of the greedy
algorithm and prove that we can always find a solution with
our algorithm. The evaluation results show that our algorithm
can be about 100x faster than the state-of-the-art approach,
in a lk-entry flow table. Furthermore, we analyze the impact
of TCAM layouts and delete behaviors on update efficiency.
The results demonstrate that FastRule can also decrease the
TCAM update latency in scenarios with different layouts and
delete behaviors.
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