
HAL Id: hal-02021361
https://hal.science/hal-02021361v1

Submitted on 15 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of Inductive Types from Ecore Metamodels
Jérémy Buisson, Seidali Rehab

To cite this version:
Jérémy Buisson, Seidali Rehab. Generation of Inductive Types from Ecore Metamodels. Model-Driven
Engineering and Software Development. MODELSWARD 2018., pp.308-334, 2019. �hal-02021361�

https://hal.science/hal-02021361v1
https://hal.archives-ouvertes.fr

Generation of Inductive Types from Ecore Metamodels

Jérémy Buisson1 and Seidali Rehab2

1 IRISA, Écoles de Saint-Cyr Coëtquidan, Guer, France,
jeremy.buisson@irisa.fr

2 MISC, University of Constantine 2 - Abdelhamid Mehri, Nouvelle ville Ali Mendjeli,
Constantine, Algeria,

seidali.rehab@misc-umc.org

Abstract. When one wants to design a language and related supporting tools,
two distinct technical spaces can be considered. On the one hand, model-driven
tools like Xtext or MPS automatically provide a compilation infrastructure and
a full-featured integrated development environment. On the other hand, a for-
mal workbench like a proof assistant helps in the design and verification of the
language specification. But these two technical spaces can hardly be used in con-
junction. In the paper, we propose an automatic transformation that takes an input
Ecore metamodel, and generates a set of inductive types in Gallina and Vernacu-
lar, the language of the Coq proof assistant. By doing so, it is guaranteed that the
same abstract syntax as the one described by the Ecore metamodel is used, e.g., to
formally define the language’s semantics or type system or set up a proof-carrying
code infrastructure. Improving over previous state of the art, our transformation
supports structural elements of Ecore, with no restriction. But our transformation
is not injective. A benchmark evaluation shows that our transformation is effec-
tive, including in the case of real-world metamodels like UML and OCL. We
also validate our transformation in the context of an ad-hoc proof-carrying code
infrastructure.

Keywords: Model-Driven Engineering, Model Transformation, Inductive Type,
QVT-Operational, Ecore, Xtext, Coq

1 Introduction

In this paper, we present our work that is specifically related to the implementation
of support tools for a formal architecture description language for system of systems
engineering, named SosADL [1]. In this paper, we do not intend to describe this novel
architecture description language. We would like to put the emphasis on difficulties that
arise when we want to benefit from convenient tools like Xtext [6] and, at the same
time, formally ensure language properties by means of proofs.

Nowadays the creation of a language and its infrastructure becomes easier thanks
to the tools that model-driven engineering offers. Among these effective tools we find
MPS [24] or Xtext [6]. A complete editing environment can be generated from a com-
bined description of concrete and abstract syntax. This can include syntax-highlighting,
auto-completion and elaborated error reporting. A compilation or interpretation frame-
work accompanies these tools in order to smoothly interact with the generated editing

2 Jérémy Buisson, and Seidali Rehab

environment. For SosADL we choose Xtext to benefit from the mature Ecore/EMF
ecosystem.

In the formal side, principled language design has been promoted by language
theory. This is done using well-established techniques to specify a language in terms
of, e.g., semantics and type system, and then prove that this specification is sound.
Proof techniques, relevant properties and proof techniques have been proposed in the
meta-theory related to language theory. And several proof assistants as Coq [5] or
Isabelle/HOL [19] have been successfully used to mechanize such specifications and
proofs. For SosADL we choose Coq.

The problem in our work is how to ensure the automatic transformation between
the two technical spaces in order to benefit from their crossed contributions, so that the
disadvantages of one can be overcome thanks to the contributions of the other. This
question comes from the fact that there is a difficulty of integration between the model-
driven engineering tools like Xtext or MPS and the proof assistants. Some (model-
driven engineering) researches often rely on graph-based modeling, while the others
(proof assistants) use inductive data types, despite some exceptions such as Rascal [13].
In other words, we need to make sure that both sides, that is, informal implementation
in the Ecore/EMF technical space, and the formal specification in the Coq technical
space are consistent. To overcome this problem, we base SosADL tools on the proof-
carrying code approach [18]. Therefore, we aim to generate automatically large parts of
the infrastructure for proof-carrying code.

In this paper, we study how to generate Coq types for the abstract syntax tree from
an Ecore metamodel, such that the abstract syntax of the language is shared in the two
technical spaces. Our contribution is an improved transformation in comparison to prior
state of the art: constraints on the input metamodel are relaxed, especially with respect
to inheritance, to the detriment of not being injective.

The work described in this paper is an extended version of our earlier publica-
tion [8]. In addition to more detailed description of the transformation, we better de-
scribe its implementation, and more specifically the transformation framework we have
designed. We extend the test suite that we use to validate our transformation with real-
world metamodels. And we extend the validation with some discussion of execution
time.

Section 2 describes the overall context of our work. Section 3 gives a brief descrip-
tion of Ecore and of inductive types. Section 4 presents related work about transforming
from metamodels to inductive types. Section 5 describes a running example that we use
in the subsequent description of the transformation, given in Section 6. Section 7 dis-
cusses specific points, noticeably why we consider having an injective transformation is
not that important in our case. Section 8 gives indications about implementation issues.
Section 9 summarizes how we validate the transformation. Finally, section 10 concludes
the paper with perspectives.

2 Context and Motivations

When one wants to use model-driven techniques to implement the supporting tools
for a formally-defined language, the question arises how to ensure the implementation

Generation of Inductive Types from Ecore Metamodels 3

grammar

editor

source

metamodel

compilation
infrastructure

model

parser

output artifacts

proof

compiler

term

abstract
syntax type

proof
generation

infrastructure

type system,
semantics, ...

is transformed into
depends on
is an instance of
is composed of

as usual with Xtext

Fig. 1. The big picture of our general approach.

actually conforms to the formal definition of the language. In this paper, we consider
that this issue is solved by means of proof-carrying code [18].

With the proof-carrying code, the compiler (or any supporting tool for the language)
not only generates compiled code. It also generate a verifiable proof of properties about
the source or compiled code. By checking the validity of the proof, one can easily
ensure that the compiler performed correctly. For instance, the Java compiler generates
annotations in the compiled byte-code such that the Java virtual machine can easily
ensure that the generated byte-code has been correctly generated, without having to
perform complete type checking.

Our general approach described in Figure 1 explains the proof-carrying code ap-
proach in the way we apply it to the SosADL [1] context. This one is divided into two
parts. The first (upper) part of the figure, which aims to produce at the end output ar-
tifacts, starts with the generation of our complete editing environment from a concrete

4 Jérémy Buisson, and Seidali Rehab

grammar. This operation, which generates a metamodel, an editor, a compilation in-
frastructure and a parser, is performed using Xtext [6]. Thanks to this generated code,
the model that is an instance of the metamodel is obtained from the textual source
thanks to the parser. Then, we develop a compiler using the compilation infrastructure,
which (the compiler) is in turn the tool for transforming the object-oriented model to
the output artifacts. The second (bottom) part of the figure gives the explanation of the
proof-carrying code. The proof generation infrastructure is used by our compiler to
provide a proof. This proof is an instance of the language’s specification, i.e., of the
type system or semantics. Terms compose this proof, which represent instances of ab-
stract syntax type. In addition, these terms map with models, and thus we have to ensure
a strong consistency between the metamodel and the abstract syntax type, that is, any
object that is an instance of a metamodel class maps to a term whose type come from
the abstract syntax, and conversely.

3 Background

In this section, we introduce Ecore and inductive types, which are the two languages
which we consider to express an abstract syntax.

3.1 Ecore

An Ecore [22] metamodel is an object-oriented description of the abstract syntax of a
modeling language. An Ecore metamodel consists in hierarchically-nested packages,
where the root packages are the Ecore files. Each package contains several classes,
which describe the types of objects that can exist in instance models. As usual in object-
oriented modeling languages, Ecore supports inheritance and subtyping by means of a
specialization-generalization relationship between classes. A specific kind of classes,
abstract classes, denote classes that cannot be instantiated in models; only their con-
crete, i.e., non-abstract specialization classes can be.

An Ecore class contains structural features, namely, the fields declared by the class.
In Ecore, fields can be either attributes or references. The former (attributes) denote
fields whose type is a plain Java type imported as a data type; while the latter (ref-
erences) are fields whose type is described by an Ecore type. References are further
refined as either containment references or non-containment references, where the se-
mantics of containment is the same as UML’s composition.

An instance model, which is an instance of a metamodel, is a tree of objects (ac-
cording to the containment references) whose classes are the classes described in the
metamodel. Additional non-containment references allow to describe arbitrary graphs.
An instance model either resides in memory or is serialized to an XMI file.

Orthogonal to the attribute/reference classification, structural features have addi-
tional properties. To transparently represent collections, each structural feature has mul-
tiplicity indication. The actual kind of collection is further refined by uniqueness and
ordering properties. In addition, a feature is said derived when its value is computed
on-demand; transient when it is omitted from XMI serialization; or volatile when it is
omitted from the in-memory object.

Generation of Inductive Types from Ecore Metamodels 5

« abstract »
Tree

Leaf

Node
x: EInt

1..1 left

1..1 right

Fig. 2. Example of a simple Ecore metamodel.

Ecore classes also contain operations. But operations are not relevant in the context
of this work.

Figure 2 shows an example metamodel, which contains an abstract class named
Tree specialized by two concrete classes Leaf and Node. So only Leaf and Node can be
instantiated in models. While Leaf has no structural feature, Node contains an attribute
x, whose type is data type EInt, the data type that imports Java’s int primitive type,
and two containment references (containment is denoted by the diamond) named left

and right. The attribute and the references all have here 1..1 multiplicity, meaning that
each instance of Node contains exactly one left Tree and one right Tree.

3.2 Inductive Types

Inductive type is a usual approach to the definition of data types in the context of func-
tional programming. Without lack of generality, in the following, we consider the spe-
cific case of Gallina and Vernacular, Coq’s languages for terms and for module-level
commands.

Each inductive type is a set of constructors, each of which declares a variant of the
type. The data structure associated with a given constructor is specified by the formal
parameters of that constructor. Types are gathered in hierarchical modules, where each
file is a module too.

To illustrate, consider the following example in Gallina and Vernacular:
Inductive Tree: Set :=
| Leaf: Tree
| Node: Tree→ nat→ Tree→ Tree.

This code reads as the definition of an inductive type named Tree, for which two
constructors are defined:

– When a Tree is built by the Leaf constructor, its does not contain any data: the type
of Leaf is Tree.

– When a Tree is built by the Node constructor, it contains a Tree, a nat (a natural
integer), and another Tree. The type of Node states that it is a function that takes
3 parameters and returns a Tree.

Any value is the result of calling the constructors. A term is therefore inherently a
tree that mimics the abstract syntax tree of itself, like:
Definition x := Node (Node Leaf 2 Leaf) 6 Leaf.

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.7.2/stdlib//Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.7.2/stdlib//Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.7.2/stdlib//Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.7.2/stdlib//Coq.Init.Logic

6 Jérémy Buisson, and Seidali Rehab

4 Related Works

Language theory provides background on how one specifies a language and what prop-
erties of such specification should be investigated for in order to convince that the lan-
guage specification is sound. The idea to extend the theoretical approach to languages
with effective tools to help in the implementation of language supporting tools has al-
ready been investigated, like witnessed by several projects. For instance, Ott [21] is
a tool that, given a single description of inference rules, e.g., for semantics or type
systems, generates boilerplate code, as well as definitions suitable for mechanization
with a proof assistant and LATEX-based documentation. Lem [17] goes one step further
and generates in addition executable functions from inductive relations encoding oper-
ational semantics or type systems. The K-framework [2] is a comprehensive approach
to generate interpreters and tools from the executable semantics of a language.

More than just interpreters or tools, it may be convenient to generate compilation in-
frastructure, as well as full-featured editors and development environments. The idea is
not new like witnessed by older projects like Centaur [7] and ASF+SDF [12]. It has been
renewed in the context of model-driven engineering and domain-specific languages, that
rise the issue of routinely producing supporting tools and editors for many languages.
In this perspective, Xtext [6] generates a full-featured text editor and a compilation
framework based on the Eclipse IDE, from a combined description of concrete and ab-
stract syntax. MPS [24] is based on projectional editor, i.e., edition is made directly
at the level of the abstract syntax. MPS also provides a declarative language for exe-
cutable type systems. Other language workbenches like Spoofax [11] and Rascal [14]
have similar objectives of generating both compilation infrastructure and IDE services.

There is therefore a need for bridging the gap between model-driven engineering,
which enables automatic generation of convenient IDE from the language definition,
and formal methods that allows precise specification and analysis of the language and
its semantics. To bridge this gap, one possible approach consists in generating a formal
description of the language from a metamodel, or conversely in generating a metamodel
from a formal language description.

Several previous work have studied how one can analyze a metamodel thanks to
tools coming from formal methods, e.g., [4,3,16,15]. These work usually address the
question whether a metamodel is consistent, especially when the metamodel is partly
specified by constraints such as OCL constraints. These work propose approaches to
decide whether the metamodel is inhabited and contradiction-free, i.e., whether some
instance model exists and conforms to the metamodel. Since they try to prove properties
of the metamodel, the main object made available in the proof assistant is the metamodel
itself.

In Section 2 and Figure 1, we have depicted a slightly different issue. What we
are interested in is ensuring, here by means of proof-carrying code, that an analysis or a
transformation conforms to its specification, and, of course, to encode this specification.
In this context, the main object we would like to manipulate in the proof assistant is
instances of the metamodel, and not the metamodel itself. So the metamodel has to be
transformed into types, such that instances of this metamodel could be transformed into
manipulable terms conforming to these types.

Generation of Inductive Types from Ecore Metamodels 7

Such a transformation has already been studied in [9]. Authors have defined a bidi-
rectional transformation between Ecore and Isabelle’s inductive type: each abstract
class A is mapped to an inductive type t; and each concrete class C is transformed to
a constructor c of the inductive type a mapped from the super class A of C. Fields of
class C are mapped to formal parameters of constructors c. Examples given in Section 3
illustrate this transformation scheme on a simple case. To apply this transformation, the
metamodel must conform to the strict pattern of having only abstract classes without
any super type nor any field, and each concrete class must specialize exactly one ab-
stract class. The transformation is injective. But multiple inheritance, or even having a
class that specializes another class that specializes yet another class is prohibited.

Rascal [13] comes with another similar transformation. Instead of restricting the
metamodel, the transformation described in [13] leverages a preprocessing step of the
metamodel before the scheme of [9] is used. First, structural features are pushed to
concrete classes (same as our step 6 in Figure 4); then references are generalized,
i.e., a reference to any class C is replaced with a reference to C’s most general super
class, hence flattening the inheritance tree to two levels. After this preprocessing step,
the metamodel obviously conforms to the restrictions required by [9]. The second step
of preprocessing intrinsically assumes that a most general super class exists for any
class. But in presence of multiple inheritance, this assumption may not hold, unless a
class implicitly generalizes all the other classes, e.g., like Ecore [22]’s EObject or Java’s
Object classes. And if such a class exists, it turns out that the transformation issues a
single inductive type for this class, to which all the constructors belong. In the end,
terms manipulated in the proof assistant are therefore untyped, what is undesirable.

This last comment is the issue we address in this paper. In Section 6, we follow
the same principles as [9,13], but without any restriction on the input metamodel. Fur-
thermore, when multiple inheritance is not used, our transformation generates narrower
types than the transformation of [13] by duplicating constructors. As counterpart, gen-
erating a term from a model is going to be harder, because the right constructor has to be
selected with respect to the expected type for the term. Like in [13], our preprocessing
steps break injectivity.

5 A Running Example

To illustrate the discussion in subsequent sections, we use the metamodel for λ terms of
Figure 3. A File is composed of Definitions, each containing a Term. A term is either
an Abstraction, an Application or a Variable. In order to avoid issues related to nam-
ing and scopes, the abstract syntax assumes variables have already been resolved, hence
Variable has a non-containment reference to Binder, which is either an abstraction or
a definition. Classes are generic such that terms can be annotated, e.g., with types.

We expect that our transformation generates the following Coq script (or equiva-
lent), i.e., inductive types such that any model that is an instance of the source meta-
model can be written as a term whose type is one resulting from the transformation.
Inductive Term: Type→ Type :=
| Term Abstraction: ∀ (A: Type) (type: option A) (boundName: string)

(boundType: option A) (body: Term A), Term A

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes

8 Jérémy Buisson, and Seidali Rehab

File
«abstract»
Binder

boundName: EString

Definition

Term

AbstractionVariableApplication

U

D

A

T

VB

«bind U» D

«bind U» A

«bind T»
A«bind T» V

«bind T»
B

0..1 boundType

0..∗
definitions

1..1 term0..1 type

1..1
body

1..1 binder

1..1 parameter

1..1 function

Fig. 3. Ecore metamodel of the example. Source [8].

| Term Application: ∀ (A: Type) (function: Term A) (parameter: Term A), Term A
| Term Variable: ∀ (A: Type) (binder: URI (Binder A)), Term A
with Binder: Type→ Type :=
| Binder Definition: ∀ (D: Type) (boundName: string) (boundType: option D)

(term: Term D), Binder D
| Binder Abstraction: ∀ (A: Type) (type: option A) (boundName: string)

(boundType: option A) (body: Term A), Binder A.
Inductive Definition: Type→ Type :=
| Definition Definition: ∀ (D: Type) (boundName: string) (boundType: option D)

(term: Term D), Definition D.
Inductive File: Type :=
| File File: ∀ (definitions: list (Definition Type)), File.

6 The Transformation

The transformation that we propose is decomposed into 12 steps, like shown in Fig-
ure 4. It follows the same principle as [9,13]: it maps classes to inductive types, con-
crete classes to constructors, and structural features to constructor parameters. In our
transformation, the improvements lie the preprocessing of the metamodel, especially
to handle multiple inheritance in the source metamodel, as well as in the more elabo-
rate post-processing specifically targeted at Gallina and Vernacular. Our transformation
does not consider any behavioral element, such as operations and derived, transient or
volatile features, as these elements are irrelevant with respect to the context depicted in
Section 2.

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes

Generation of Inductive Types from Ecore Metamodels 9

Ecore
metamodel link

normalize
types

eliminate
behavioral

aspect

eliminate
cross-

references

introduce
constructors

percolate
features

remove
inheritance

translate to
inductive

types

schedule
types

remove
name

clashes

translate to
Gallina /

Vernacular

text
generation Coq file

1 2 3 4

5678

9 10 11 12

Ecore-specific front end

Coq-specific back end

Fig. 4. Decomposition of the Ecore-to-Coq transformation.

To describe the transformation, we begin first with the Ecore-specific front-end, i.e.,
steps 1 to 4 in Section 6.1. Then, in Section 6.2, we present the main steps 5 to 8
of the transformation. Last, Section 6.3 describes the Coq-specific back-end containing
steps 9 to 12 .

6.1 Ecore-specific Front-end

The goal of the front-end step is to first transform the Ecore metamodel in order to
normalize and simplify its representation. The first step 1 erases the concept of pack-
age: all the classes are gathered in a single top-level package and a single file. Indeed,
it would be tempting to map packages to modules. However, while each class can be
member of any package, regardless of the relationships between classes, the situation is
different in the context of inductive types. The constructors of an inductive type belong
to that type, and therefore they are all members of the same module. But like explained
in Section 6.2, constructors are mapped from classes. If the packages were not ignored,
our transformation would attempt to generate the constructors of a single inductive type
within several distinct modules, which is forbidden in the target language.

To illustrate more concretely, consider an abstract class A in package p1, specialized
by concrete class C of package p2. In Section 6.2, we will see that class C maps to
constructor C, which belongs to type A, itself being mapped from class A. If packages
were mapped to modules, type A should be in module P1 and constructor C should be
in module P2. This is impossible since constructors belong to types, not to modules.

To show the effect of step 1 , Figure 5 gives an excerpt of the result when applied
to the metamodel of Figure 3. The metamodel is almost unchanged. Still, classes from
the Ecore metamodel are pulled into the single root package, starting with EObject

because it is used as the raw type of type in Term. Because of boundName in Binder,
EString is pulled too. Any other class that EObject depends on is pulled as well, and
the process is repeated until all the dependencies are gathered. Like shown in the XMI
excerpt of Figure 5, the transformation encodes the name of the originating package in

10 Jérémy Buisson, and Seidali Rehab

1 <LEPackage>
2 <eClassifiers name="ecore_EString" ... />
3 <eClassifiers name="lambda_Binder"
4 eSupertypes="//ecore_EObject" ...>
5 <eTypeParameters name="U" />
6 <eStructuralFeatures name="boundName" ... />
7 <eStructuralFeatures name="boundType" ...>
8 <eGenericType eTypeParameter="//lambda_Binder/U" />
9 </eStructuralFeatures>

10 </eClassifiers>
11 ...
12 </LEPackage>

Fig. 5. XMI excerpt after step 1 link. Source [8].

the class name. By using this systematic renaming scheme, the transformation avoids
name clashes after all the classes are gathered in a single package.

In step 2 , the transformation deals with the representation of types in Ecore. In its
early versions, Ecore did not support generic classes. In this context, types and classes
were confused in a single concept. Thus, the type of, e.g., a reference or an attribute
were given as a direct reference to the data type or to the class. Since the introduction
of generic classes in Ecore, types and classes have been made two distinct concepts,
yielding to the introduction of EGenericType to represent types. But due to backward
compatibility, old-style types are still allowed when referring to non-generic data types
or classes. Figure 5 contains examples of both:

– The super class of lambda_Binder (line 4) is given as a direct reference to the
ecore_EObject class, which is indeed a non-generic class.

– The type of boundType (line 8) is given as an instance of EGenericType, here to
represent type variable U.

Step 2 translates all the types to a simpler uniform representation, whose abstract
syntax is given in Figure 6, regardless the types were initially given old-style or new-
style. We define five kinds of types:

– GEClassifierType is a type built by applying effective parameters (eArguments)
to a possibly generic classifier, i.e., either a data type or a class. If the referenced
classifier is not generic, i.e., if it does not have any formal type parameter, then
eArguments is empty.

– GEVariableType is a type variable eTypeParameter, e.g., bound by an enclosing
generic classifier.

– A GEAnyType represents the any-type wildcard.
– GELowerBoundType is a wildcard type with a lower bound.
– GEUpperBoundType is a wildcard type with an upper bound.

Figure 7 shows an excerpt of the resulting XMI file, in our running example. For
instance, the super-class of lambda_Binder, which where initially given as an old-style

Generation of Inductive Types from Ecore Metamodels 11

«abstract»
GEType

GEVariableType

eTypeParameter: GETypeParameter
GEAnyType

GEClassifierType

eClassifier: GEClassifier

GEUpperBoundType

GELowerBoundType

0..* eArguments eLowerBound

eUpperBound

Fig. 6. Abstract syntax for types.

direct reference to ecore_EObject, is now encoded as an instance of GEClassifierType
(lines 5 and 6); and the type of boundType is an instance of GEVariableType referring to
formal type parameter U of lambda_Binder (lines 14 and 15).

Steps 3 erases behavioral elements, that is, operations and derived, transient or
volatile features. In step 4 , all the non-containment references are replaced with at-
tributes of type _URI. These attributes are intended to store identifiers of the referred
objects. Feature multiplicities are expanded to appropriate collection types at the same
time, hence completing the simplification of the types:

– Features with 0..1 multiplicity are mapped to type _Option.
– Features with 1..1 multiplicity keep their original type.
– Features with m..n multiplicity where n ≥ 2 are mapped to types _List, _Set or

_Bag, depending on uniqueness and ordering properties stated in the source Ecore
metamodel.

In subsequent steps of the transformation, these collection types are suitably inter-
preted such that they are ultimately mapped to corresponding Coq types.

6.2 Core of the Transformation

During steps 5 to 7 , constructors are added to the classes, before they can be turned
into inductive types.

First, in step 5 , each concrete class of the metamodel is mapped to a newly-created
constructor. Figure 8 illustrates the result of step 5 : in this excerpt, two constructors
are created for the two concrete classes Abstraction and Definition. Each constructor
refers to the structural features defined or inherited by the corresponding class.

Then in step 6 , structural features are pulled down and cloned into the constructors,
through inheritance. Like shown in the excerpt of Figure 9, the structural features are
duplicated to all the constructors that inherit from them. Step 6 also ensures correct
handling of generic classes by substituting type variables when the structural features
are inherited, like illustrated by type and boundType in Figure 9.

The last step that deals with constructors is step 7 . This step duplicates construc-
tors previously built up at each level of the generalization relation, including at abstract

12 Jérémy Buisson, and Seidali Rehab

1 <GEPackage>
2 <eClassifiers xsi:type="GEClass"
3 name="lambda_Binder" abstract="true">
4 <eTypeParameters name="U"/>
5 <eSuperTypes xsi:type="GEClassifierType"
6 eClassifier="//ecore_EObject"/>
7 <eStructuralFeatures xsi:type="GEAttribute"
8 name="boundName" lowerBound="1">
9 <eType xsi:type="GEClassifierType"

10 eClassifier="//ecore_EString"/>
11 </eStructuralFeatures>
12 <eStructuralFeatures xsi:type="GEReference"
13 name="boundType" containment="true">
14 <eType xsi:type="GEVariableType"
15 eTypeParameter="//lambda_Binder/U"/>
16 </eStructuralFeatures>
17 </eClassifiers>
18 ...
19 </GEPackage>

Fig. 7. XMI excerpt after step 2 normalize.

classes. For instance, because the Abstraction class inherits from the Term and Binder

abstract classes, the Abstraction constructor is duplicated at these two classes. Because
Binder is also a generalization of the Definition class, the Binder class is also made
containing a duplicate of the Definition constructor. At the end of step 7 , the gen-
eralization / specialization relation can be discarded. For each constructor duplicate,
an assignment stores the precise type of the value built, hence taking into account of
generic classes correctly.

Step 8 straightforwardly turns each class into an inductive types, without any fur-
ther transformation.

6.3 Coq-specific Back-end

In Gallina and Vernacular, it is forbidden that an inductive type refers to another type
that is not previously defined or that does not belong to the same group of definitions.
Inductive type definitions must be ordered accordingly to their dependencies. To do so,
step 9 computes strongly connected components in the dependency graph in order to
build groups of types, then this step sorts the groups according to topological order.

For instance, in the result of step 9 , types Binder and Term shall be in the same
group, since they refer each other. Indeed, constructor Variable (in Term) has a param-
eter of type _URI<Binder<V>>; and constructor Definition (in Binder) has a parameter
of type Term<D>. This group is put before Definition, which refers to Term.

Step 10 ensures that each name is unique, as well as conforms to lexical constraints
of Gallina and Vernacular. Step 11 introduces Vernacular commands (like Inductive)
and builds Gallina terms for each type to build a correct script. Step 12 generates the

Generation of Inductive Types from Ecore Metamodels 13

«abstract»
Term

type: _Option<T>

«abstract»
Binder

boundName: EString
boundType: _Option<U>

DefinitionAbstraction

«constructor» «constructor»

term

body

U
T

DA

Fig. 8. Metamodel excerpt after step 5 introduce. Source [8].

«abstract»
Term

«abstract»
Binder

DefinitionAbstraction

«constructor»
type: _Option<A>
boundName: EString
boundType: _Option<A>
body: Term<A>

«constructor»
boundName: EString
boundType: _Option<D>
term: Term<D>

UT

DA

DA

Fig. 9. Metamodel excerpt after step 6 percolate. Source [8].

text file. For our running example, the result is equivalent to the desired ones given at
Section 5:
Definition ecore EString: Type := string.
Definition ecore EInt: Type := Z.
Definition ecore EEList: (Type→ Type) := list.

(* ... *) Inductive lambda Term: (Type→ Type) :=
| lambda Term lambda Abstraction: (∀ (A: Type), (∀ (body: (lambda Term A)),

(∀ (boundName: ecore EString), (∀ (boundType: (Option A)),
(∀ (type: (Option A)), (lambda Term A))))))

| lambda Term lambda Application: (∀ (B: Type), (∀ (function: (lambda Term B)),
(∀ (parameter: (lambda Term B)), (∀ (type: (Option B)), (lambda Term B)))))

| lambda Term lambda Variable: (∀ (V: Type), (∀ (binder: (URI (lambda Binder V))),
(∀ (type: (Option V)), (lambda Term V))))

with lambda Binder: (Type→ Type) :=
(* and so on *)

string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
Z.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic

14 Jérémy Buisson, and Seidali Rehab

«constructor»
Abstraction (T=A)

type: _Option<A>
boundName: EString
boundType: _Option<A>
body: Term<A>

«constructor»
Abstraction (B=A)

type: _Option<A>
boundName: EString
boundType: _Option<A>
body: Term<A>

«constructor»
Definition (B=D)

boundName: EString
boundType: _Option<D>
term: Term<D>

«constructor»
Application (T=A)

...

«constructor»
Variable (T=V)

...

«constructor»
Abstraction (A=A)

type: _Option<A>
boundName: EString
boundType: _Option<A>
body: Term<A>

«constructor»
Definition (D=D)

boundName: EString
boundType: _Option<D>
term: Term<D>

Abstraction

Term Binder

Definition
D

A D

D

A

A A

A

V

T B

Fig. 10. Metamodel excerpt after step 7 flatten. Source [8].

6.4 Traceability

Orthogonal to the previously described steps, the transformation ensures traceability.
That is, it records mapping information between objects in the source metamodel, ob-
jects in intermediate steps and objects in the Gallina model. This information is sub-
sequently used when instances of the source metamodel have to be transformed into
Gallina terms.

7 Discussion

Our transformation restricts to metamodels that strictly conform to Ecore constraints as
implemented in EMF, including constraints at the warning level.

In addition, the following patterns are ignored:

– When a multi-valued reference in an Ecore metamodel refers to a class that contains
two features named key and value, and when this class’s instance class name is
java.util.Map$Entry, the Ecore tool chain handles this reference as a hash map.
Our transformation ignores the pattern, yielding to a collection of pairs.

Generation of Inductive Types from Ecore Metamodels 15

«abstract»
A

x: EInt

«abstract»
A

B B
x: EInt

Fig. 11. Two different metamodels yielding to identical Coq scripts. Source [8].

– When a multi-valued attribute has type EFeatureMapEntry and if it is suitably an-
notated, the attribute declares a feature map, that is, a structural feature that merges
several subset structural features in a single one. Values in the collection are in-
dexed by subset features. Because the subset features must be volatile, transient
and derived, they are erased at step 3 of our transformation. But the attribute’s
type is not decoded to the correct type, which should be the union of the types of
all the grouped subset features.

Except the above-described limitations, Ecore is fully supported. Hence the trans-
formation cannot be injective. To illustrate the reason, consider Figure 11: the two meta-
models, despite different, result in identical Coq scripts. When the structural features
are pulled from classes to constructors at step 6 , our transformation does not track the
class they originate from. By the way, this information is irrelevant in Gallina.

The fact that the two metamodels yield to the same Coq script is not an issue: any
model that is an instance of any metamodel of Figure 11 is also an instance of the other
one. Indeed, these models contain only instances of B that contain an integer named x,
regardless x is declared in B or inherited from one of its super classes.

Still, we can further analyze what steps of the transformation are injective, and what
steps are not:

– Steps 5 , 8 , 11 and 12 are straightforwardly injective.
– When the naming scheme is robust enough, steps 1 and 10 are obviously injective

too.
– Step 4 is not injective, mainly because multiplicities are simplified as one of 0..1,

1..1 or 0..∗. Though, Gallina would allow to preserve any exact multiplicity if de-
sired.

– Step 2 is trivially not injective because Ecore’s representation of non-generic
types is not unique. But making the distinction between old-style representation
and EGenericType is irrelevant as both are considered as interchangeable by the
Ecore tool chain.

– Step 9 discards the order of metamodel elements.
– Steps 3 , 6 and 7 discard information from the metamodels.

Like described in Section 6, the transformation is a pipeline decomposed in many
steps. This approach makes each individual step simpler as each one focuses on a single
issue (or few related issues). The first steps 1 to 4 of the transformation are specific
to Ecore, and steps 9 to 12 are specific to Gallina and Vernacular. If other source

16 Jérémy Buisson, and Seidali Rehab

or target languages were considered, only the related steps would have to be changed.
Consider MOF [20] for instance: according to [10], older versions of MOF and Ecore
are convertible to one another. To adapt the transformation to MOF, step 1 has to
deal with nested classes, e.g., similarly to the way packages are merged; step 4 has to
deal with MOF’s richer reified associations; and data type mapping has to be updated,
since MOF is not based on Java types. Likewise, switching to, say, Isabelle/HOL would
require changing steps 10 and 11 in order to take into account the different abstract and
concrete syntax.

8 Implementation

The decomposition of the transformation in multiple steps allows us to mix several im-
plementation technologies. Our overall choice is in favor of industrial-strength freely-
available technologies: Eclipse’s mature EMF-and-Java ecosystem. Model-to-model
transformations are implemented in plain Java and QVT-Operational. The final model-
to-text step 12 uses Acceleo.

Steps 1 to 10 perform only local modification. At each of these steps, when con-
sidered individually, the transformation rebuilds the overall structure of the source
(meta)model into the target one, only substituting some specific subtrees. Rather than
using a general-purpose approach to model transformation, we design an ad-hoc frame-
work that duplicates an EMF (meta)model with hooks to customize its behavior at some
features of some classes. Our framework is a mixture of EMF’s EcoreUtil.copy, ATL’s
refining mode [23] and Rascal’s visit operation. But unlike these inspiring approaches,
our framework is not restricted to endogeneous transformations, and therefore adopts a
copy-based strategy.

The overall algorithm of our framework is given, in pseudo-Java code, in Figure 12.
At lines 2 and 3, the algorithm uses EMF’s reflection to clone the object at the root of the
subtree that must be transformed. The remapClass hook lets the transformation change
the class of the object on the fly. Then at line 4, the algorithm records the mapping
between source and target objects, in order to later resolve references. Each structural
feature of the target class (line 5), is mapped back to a structural feature of the source
class (line 6) by the remapFeatureBack hook.

– If the target feature is a containment feature, values are assigned immediately
(line 10). By default, the remapValue hook calls the clone function in order to re-
cursively copy model objects.

– If none of the source feature and target feature is a containment feature, the task
is registered for post-processing (lines 14 and 15). After the source model has
been fully handled, post-processing tasks call the remapReference (lines 26 and 27),
which, by default, looks in the mapping table to set the reference in the target object
(line 28).

– With our framework, it is non-sense when the source feature is a containment fea-
ture, while the target feature is not. Line 17, our algorithm raises an error in this
case.

Generation of Inductive Types from Ecore Metamodels 17

1 clone(sourceObject) {
2 targetClass = remapClass(class of sourceObject)
3 targetObject = new object of type targetClass
4 mapping.put(sourceObject , targetObject)
5 for (targetFeature: targetClass.features) {
6 sourceFeature = remapFeatureBack(targetFeature)
7 if(targetFeature.isContainment) {
8 for (v: remapValue(values of sourceFeature
9 from sourceObject)) {

10 add v to targetFeature of targetObject
11 }
12 } else if(!sourceFeature.isContainment
13 && !targetFeature.isContainment) {
14 register (sourceObject ,sourceFeature ,
15 targetObject ,targetFeature)
16 } else {
17 error
18 }
19 }
20 return targetObject
21 }
22
23 post -processing {
24 for(sourceObject ,sourceFeature ,
25 targetObject ,targetFeature: registrations) {
26 for (v: remapReference(values of SourceFeature
27 from sourceObject)) {
28 add v to targetFeature of targetObject
29 }
30 }
31 }

Fig. 12. Pseudo-code of our Java-based transformation framework.

On top of this framework, we provide an implementation of the hook functions
(remapClass, remapFeatureBack, remapValue and remapReference) based on Java re-
flection, yielding to simpler description of the transformation steps. Figure 13 illus-
trates our framework with the real source code for step 3 . In the constructor at lines 3
and 4, it directs the framework to remap classes of the Generic package to classes with
same name (except a prefix) of the Structural package. The rule at lines 6 to 17 im-
plements a remapValue hook for eStructuralFeatures of a SEClass target object, when
it is mapped from a GEClass source object. Lines 8 to 11 retrieve the default behav-
ior of the hook, that is, the cloning of objects as a function named transformer. Then,
the rule retrieves the eStructuralFeatures of the source object (line 11), filters those
that are neither derived nor transient nor volatile (lines 12 and 13), applies the default
behavior transformer to the retained objects (line 14), and put the resulting objects

18 Jérémy Buisson, and Seidali Rehab

1 public class G2S extends GenericRemapper {
2 public G2S() {
3 super(GenericPackage.eINSTANCE , "GE",
4 StructuralPackage.eINSTANCE , "SE");
5 }
6 @Rule public void eStructuralFeatures(
7 GEClass source , SEClass target) {
8 Function <EObject , EObject > transformer =
9 maybeTransform(GE_CLASS__ESTRUCTURAL_FEATURES ,

10 SE_CLASS__ESTRUCTURAL_FEATURES);
11 source.getEStructuralFeatures ().stream()
12 .filter((s) -> !s.isDerived() && !s.isTransient()
13 && !s.isVolatile())
14 .map(transformer)
15 .map(cast(SEStructuralFeature.class))
16 .forEach(target.getEStructuralFeatures ()::add);
17 }
18 }

Fig. 13. Java code for step 3 eliminate.

in eStructuralFeatures of the target object (line 16). Other structural features in any
other class are just copied by the framework. By not having any structural feature named
eOperations in SEClass, operations are omitted in the target (meta)model, without any
further programming.

At step 11 , QVT-Operational seems a good choice as it avoids most of the nota-
tion burden. Disjunct mapping and collection operations like iterate remind pattern-
matching and higher-order functions, like usually found in functional programming. For
the purpose of the comparison, we have also manually translated the QVT-Operational
transformation into strictly equivalent Java code.

Our implementation records mapping information between source objects and gen-
erated ones, including intermediate ones, using a generic one-to-one correspondence
metamodel. In order to deal with the size of mapping information, especially in the
context of EMF’s XMI serialization, our implementation produces two records:

– Summarized mapping information record only indirect mapping from each source
Ecore object to the corresponding Gallina objects, hence omitting intermediate
steps.

– Full mapping information is split into fragments in order to keep the size of each
fragment below a fixed threshold. This trick lowers memory consumption by EMF’s
XMI serialization code. Synthetic objects, which do not belong to any intermediate
model, are saved alongside mapping information.

Most of the transformation steps are exogeneous transformations, with the only ex-
ception of step 10 that is endogeneous. By making this choice, the abstract languages
for target metamodels are fitted to the needs. Doing so is required to for implicit re-
moval of objects by our framework, such as the removal of operations at step 3 like

Generation of Inductive Types from Ecore Metamodels 19

Ecore files Ecore files Ecore files Coq scripts
(downloaded) (after build) (validated) (generated)

raw count 279 338 319 319
unique files 241 241 226 197

Table 1. Summary of the benchmark suite.

previously described. The whole transformation involves 11 different metametamod-
els. In the pipeline of the whole transformation, each two consecutive metametamodels
must remain consistent for the elements that are not directly affected by the concerned
step. Managing such 11 different metametamodels while maintaining their consistency
appears to us to be a tedious and error-prone task during development, despite the small
size of the metametamodels3. We would have appreciated lightweight mechanisms for
automatic application of some editing commands to a group of several metametamod-
els. Using transformations engines, e.g., based on QVT or ATL, for such operations
appeared inconvenient: such transformations would have had to be generic enough to
be applicable to several similar-yet-different metametamodels, while not offering any
reuse opportunity because editing commands are one-shot.

The Java code for steps 1 to 10 contains 1555 SLOC, and the underlying Java-
based framework contains 320 SLOC according to ohcount. The QVT-Operational
script for step 11 is made of 218 SLOC and its Java translation contains 655 SLOC.
The Acceleo template for step 11 contains 41 SLOC. The code is available at https:
//bitbucket.org/jbuisson/ecore2coq.

9 Validation

To evaluate our transformation and our implementation, we build a benchmark suite
from four third-party open-source projects, in addition to the metamodels involved in
our transformation itself: EMF, Eclipse’s OCL, Xtext extras, and Dresden OCL. In total,
we gather 80 Eclipse projects from the repositories of these projects. Like summarized
in Table 1, these projects contain 279 Ecore metamodel files, of which 241 are unique
files. At the completion of Eclipse’s builder task, some of these metamodels are dupli-
cated in target directories, yielding to 338 Ecore metamodel files. In this suite, 319 files
pass EMF’s validator without any error nor warning, of which 226 are unique files. Our
transformation produces 319 Coq scripts, of which 197 are unique files, hence illustrat-
ing that our transformation is not injective.

9.1 Metrics on Source Metamodels and Generated Scripts

Table 2 summarizes some metrics about few source metamodels and generated scripts.
The biggest metamodel is the UML metamodel in its version coming from the Dresden
OCL project: it contains 247 classes, of which 199 are concrete and 48 are abstract. It

3 Each metametamodel contains approximately 20 classes, 50 references, 30 attributes, and
30 data types

https://bitbucket.org/jbuisson/ecore2coq
https://bitbucket.org/jbuisson/ecore2coq

20 Jérémy Buisson, and Seidali Rehab

Ecore source after step 1 link Gallina target
classes classes

File concr. abs. type enum. concr. abs. type enum. ind. cons. def.
20 20

Ecore 15 5 33 0 15 5 33 0 20 61 41
247 265

UML 199 48 4 13 212 53 15 13 278 1964 23
...

4113 11578
Total 3421 692 943 210 8777 2801 4092 367 11945 43584 6675

Table 2. Metrics on source metamodels and generated scripts.

also contains 4 data types and 13 enumeration types. Not shown on Figure 2, the classes
of the source metamodel contain 508 references and 110 attribute; increased to 554 ref-
erences and 140 attributes after step 1 . After step 1 , additional classes are pulled in,
increasing the size to 265 classes (212 abstract classes and 53 concrete classes), 15 data
types and 13 enumeration types. Because one inductive type is generated for each class
and for each enumeration type, 278 inductive types are generated, which altogether de-
fine 1964 constructors. The 23 generated type definitions come from the 15 data types
after step 1 , and 8 predefined types definitions, i.e., types like _URI and _Option men-
tioned at Section 6.1.

In total, the source metamodels of our benchmark contains 3421 concrete classes
and 692 abstract classes containing 5529 references and 2996 attributes, 943 data types
and 210 enumeration types. After step 1 , it contains 11578 classes (8777 concrete
classes, 2801 abstract classes, 23743 references and 13589 attributes), 4092 data types
and 367 enumeration types. Our transformation produces 11945 inductive types made
of 43584 constructors, as well as 6675 type definitions.

The metamodels of our benchmark involve multiple inheritance. At most, one class
has 8 immediate super types, increased to 9 after step 1 . The depth of inheritance is up
to 11 levels.

9.2 Validity of the Generated Scripts

As a first validation, we ensure that the transformation produces correct Coq scripts.
To do so, we invoke the Coq compiler on each of them. Of the 319 generated scripts,
315 pass successfully compilation. Manual inspection lets us ensure that the generated
scripts correspond to the source Ecore metamodels.

The remaining 4 scripts raise Coq’s non strictly positive occurrence error. To better
understand this error, consider the anti-pattern and generated script of Figure 14. The
generated type U recursively uses itself in the type of parameter x, as a parameter of
generic type T. By doing so, and depending on the type of T’s constructors, one can
make the logic inconsistent, but, in the case of Figure 14, this is not the case. Still Coq4

restrict definitions of inductive types to conform to a syntactical criterion, named strictly

4 Other proof assistants based on dependent types, such as Agda or Lean behave similarly.

Generation of Inductive Types from Ecore Metamodels 21

T U

V

A

«bind A» U

x

«bind A» W

Inductive T: Type→ Type := | T T: ∀ (A: Type), (T A).
Inductive U: Type := | U U: ∀ (x: T U), U.

(* alternate definition of T *)
Inductive T (A: Type): Type := | T T: (T A).

Fig. 14. Anti-pattern leading to Coq error.

positive recursive occurrences in order to ensure that any inconsistent definition is re-
jected. However, the syntactical criterion is a conservative one, hence ruling out some
consistent definitions too. In Figure 14, the alternate definition of T, which differs only
in Coq’s internal treatment, allows to work-around the criterion by moving parameter
A to the inductive type itself instead of the constructor. This alternate definition shows
that, in this example, our transformation generates only consistent definitions.

Figure 14 is representative of the 4 failing scripts. Because the problematic parame-
ters are type parameters of generic classes, one could think the error could be avoided by
simply changing our transformation to put type parameters at the inductive type, rather
than at constructors. But doing so would prevent a non-generic class, e.g., V to inherit
from, e.g., T<W> (dashed in Figure 14, where W is yet another class), while such a con-
struct is perfectly permitted by our transformation and yields no error in the generated
Coq script.

The error could be worked-around by specializing generic classes, that is, by doing
partial application of type parameters. We have not yet included this strategy in our
transformation.

9.3 Execution Time of the Transformation

Using the same benchmark, we have measured the execution time spent in the trans-
formation with several platforms. In this perspective, we instrument the transformation
in order to measure the time spent in each step, including serialization of the result but
excluding XMI deserialization of the input. To mitigate intrinsic variations of execu-
tion time, each step is preceded by an invocation of the garbage collector. We also do
our best to make the transformation reproduce identical artifacts regardless the execu-
tion environment, sometimes at the cost of sub-optimal implementation, e.g., to ensure
identical order of elements even in unordered collections. In order to avoid effects of
cache and JIT, every source metamodel is transformed several times before execution
time is measured.

Table 3 gives the details of the execution platforms we use. For each platform, we
enable G1 garbage collector and string deduplication in the Java virtual machine. In
each run, we use a headless Eclipse product.

Measured execution time are given in Table 4. We first use platform D to compare
Java and QVT-Operational implementations of step 11 : we observe that the Java imple-
mentation is 30 times faster than the QVT-Operational implementation.

22 Jérémy Buisson, and Seidali Rehab

Platform CPU RAM OS JDK Heap size
A 2x Xeon L5640 48GiB Debian 9.4 Oracle 8 162 64-bits 16GiB
B 4x Xeon E5-2630 v4 128GiB Debian 9.2 Oracle 8 162 64-bits 16GiB
C 4x Xeon E5-2630 v4 128GiB Debian 9.2 Oracle 10+46 64-bits 16GiB
D 1x i7-4702HQ 16GiB Windows 10 1709 Oracle 10+46 64-bits 8GiB

Table 3. Execution platforms used in experiments.

A B C D
Step Java 1 Java 2 Java 1 Java 2 Java 1 Java 2 Java QVTo
1 link 7.7 7.5 2.8 2.9 2.7 2.7 9.4 9.4
2 normalize 5.8 5.7 2.1 2.1 1.9 2.0 6.9 6.6
3 eliminate 3.9 3.8 1.3 1.2 1.2 1.2 5.0 5.0
4 eliminate 4.8 4.6 1.8 1.8 1.6 1.7 5.6 5.4
5 introduce 5.8 5.6 2.2 2.2 2.1 2.1 6.4 6.1
6 percolate 14.8 15.4 6.2 6.0 5.7 5.9 10.7 10.5
7 flatten 495.4 509.4 202.1 196.6 187.3 197.9 207.6 202.9
8 translate 43.8 45.0 22.9 22.4 21.5 22.3 31.7 30.5
9 schedule 146.7 146.4 67.0 68.2 61.0 61.0 82.9 81.2
10 rename 65.5 65.9 34.3 34.0 33.5 33.5 61.6 60.9
11 generate 39.2 39.1 19.5 19.5 19.6 19.1 42.1 1332.9
12 generate 94.1 95.3 52.6 50.2 45.1 45.1 49.6 49.0
save mapping summary 193.1 199.2 119.3 116.5 114.5 115.5 123.8 123.3
Total (transformation) 1120.5 1142.9 534.1 523.6 497.7 510.0 643.2 1923.6
save synthetic objects 579.5 579.1 358.6 353.8 357.2 370.3 437.5 433.1
save full mapping 2731.9 2737.4 1658.4 1727.5 1748.7 1709.9 1817.1 1792.9

Table 4. Measured execution time (seconds) of each individual step.

After this first observation, we measure execution time only for the Java implemen-
tation using the other platforms, hence showing that, even with real-world metamodels,
our transformation is compatible with use in interactive IDE. By comparing two runs
on each platform, we evaluate variability of the execution time, here up to 2.6%, de-
spite efforts to mitigate. Because the transformation is intended to be used in interactive
environments, we do not feel necessary to have more accurate measures.

To assess the relevance of summarized mapping information, the two last lines of
Table 4 give the time spent when full mapping information is saved, including synthetic
objects and intermediate objects generated at each step. We observe the time spent in
these tasks is large in comparison to the time spent in the transformation. To better
explain, in the case of Dresden OCL’s UML metamodel, the biggest one of our suite,
59793 synthetic objects are created and 7414201 correspondences are recorded, while
summarized mapping contains only 6287 correspondences. For the complete bench-
mark suite, 20GiB are generated for synthetic objects and mapping, to be compared with
6.9MiB input Ecore files, 2.5GiB generated models and 359MiB summarized mapping.
This observation confirms that saving full mapping information should be avoided if
unnecessary.

Generation of Inductive Types from Ecore Metamodels 23

9.4 Usability in the Context of Proof-Carrying Code

To ensure that the generated scripts are actually usable in the context of proof-carrying
code [18], we fully applied the approach depicted in Figure 1 in the implementation of
tools supporting SosADL [1]. This paper focuses on automating only the transforma-
tion of the Ecore metamodel towards Gallina inductive types. Hence the others tasks
either involve preexisting tools such as Xtext [6] or are done by hand. Noticeably, the
transformation of SosADL architectures into Gallina terms has been manually written.
Then we manually instrument SosADL’s type checker in order to produce proofs that
witness that the architecture under consideration is actually well-typed. Last we use
Coq to check the correctness of all the generated artifacts.

This experiment witnesses that the types generated by the transformation described
in this paper conform to the requirements of a proof-carrying code infrastructure.

10 Conclusion

In this paper, we describe a transformation from Ecore metamodels to inductive types.
This transformation allows to set up a model-driven language engineering chain, e.g.,
involving Xtext and, at the same time, to specify the language using a proof assistant,
such as Coq, and then prove properties of this specification. In comparison to previous
work [9,13], our transformation has fewer constraints on the source Ecore metamodel
and ensures stronger typing in the generated inductive types, but it is not injective.

To validate our proposal, we implement the transformation using QVT-Operational,
Acceleo, and EMF-and-Java. We fetch of 226 Ecore metamodels from open source
projects, in order to gather both synthetic and real-world metamodels for the purpose
of benchmarking. For all of them, except 4 metamodels, our transformation produces
valid Coq scripts. The 4 erroneous cases correspond to a specific pattern that infringes
a syntactic criterion that prevents Coq from accepting potentially inconsistent type def-
initions. Still, this criterion is a conservative approach, and we analyze that, in our case,
none of the generated type definitions may introduce any contradiction in the underly-
ing logic. We propose to further study this point, investigating how partial application
of type parameters may work-around Coq’s restriction.

Our experience shows that, regardless the execution platform, our transformation
scales to real-world metamodels.

In the near future, we will continue automatic generation of the proof-carrying code
infrastructure from an Ecore metamodel. Our next step will be to produce a second
transformation, that will generate the transformation from instance models to terms,
such that the terms have the types generated by the transformation described in this
paper.

References

1. The SoS Architect Studio: Toolchain for the formal architecture description and analysis of
software-intensive systems-of-systems with SosADL

24 Jérémy Buisson, and Seidali Rehab

2. K overview and SIMPLE case study. Electronic Notes in Theoretical Computer Science 304,
3–56 (2014). DOI 10.1016/j.entcs.2014.05.002. Proceedings of the Second International
Workshop on the K Framework and its Applications (K 2011).

3. On the verification of UML/OCL class diagrams using constraint programming. Journal of
Systems and Software 93, 1–23 (2014). DOI 10.1016/j.jss.2014.03.023

4. Barbier, F., Cariou, E.: Inductive UML. In: Proceedings of the 2nd International Conference
on Model and Data Engineering, MEDI’12, pp. 153–161. Poitiers, France (2012). DOI
10.1007/978-3-642-33609-6_15

5. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development: Coq’Art The
Calculus of Inductive Constructions, 1st edn. Springer Publishing Company, Incorporated
(2010)

6. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt Publish-
ing (2013)

7. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: Centaur:
The system. In: Proceedings of the Third ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, SDE 3, pp. 14–24. Boston,
Massachusetts, USA (1988)

8. Buisson, J., Rehab, S.: Automatic transformation from Ecore metamodels towards Gallina
inductive types. In: Proceedings of the 6th International Conference on Model-Driven Engi-
neering and Software Development - Volume 1: MODELSWARD„ pp. 488–495. INSTICC,
SciTePress (2018). DOI 10.5220/0006608604880495

9. Djeddai, S., Strecker, M., Mezghiche, M.: Integrating a formal development for DSLs into
meta-modeling. In: Proceedings of the 2nd International Conference on Model and Data
Engineering, MEDI’12, pp. 55–66. Poitiers, France (2012)

10. Gerber, A., Raymond, K.: MOF to EMF: There and back again. In: Proceedings of the 2003
OOPSLA Workshop on Eclipse Technology eXchange, eclipse ’03, pp. 60–64. Anaheim,
California (2003)

11. Kats, L.C., Visser, E.: The Spoofax language workbench: Rules for declarative specification
of languages and IDEs. In: Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’10, pp. 444–463
(2010)

12. Klint, P.: A meta-environment for generating programming environments. ACM Trans.
Softw. Eng. Methodol. 2(2), 176–201 (1993)

13. Klint, P., van der Storm, T.: Model Transformation with Immutable Data, pp. 19–35. Springer
International Publishing, Cham (2016). DOI 10.1007/978-3-319-42064-6_2

14. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with Rascal. In: Proceedings
of the 3rd International Summer School Conference on Generative and Transformational
Techniques in Software Engineering III, GTTSE’09, pp. 222–289 (2011)

15. Lano, K., Clark, D., Androutsopoulos, K.: UML to B: Formal Verification of Object-
Oriented Models, pp. 187–206. Springer, Berlin, Heidelberg (2004). DOI 10.1007/
978-3-540-24756-2_11

16. Meyer, E., Souquières, J.: A systematic approach to transform OMT diagrams to a B spec-
ification. In: Proceedings of the Wold Congress on Formal Methods in the Develop-
ment of Computing Systems-Volume I - Volume I, FM ’99, pp. 875–895 (1999). DOI
10.1007/3-540-48119-2_48

17. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: Reusable engineering of
real-world semantics. In: Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’14, pp. 175–188. Gothenburg, Sweden (2014)

18. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’97, pp. 106–119. Paris,
France (1997)

Generation of Inductive Types from Ecore Metamodels 25

19. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer-Verlag, Berlin, Heidelberg (2002)

20. OMG: OMG Meta Object Facility (MOF) Core Specification (2016). URL http://www.omg.
org/spec/MOF/2.5.1/

21. Sewell, P., Nardelli, F.z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., StrniŠa, R.: Ott:
Effective tool support for the working semanticist. J. Funct. Program. 20(1), 71–122 (2010)

22. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework
2.0, 2nd edn. Addison-Wesley Professional (2009)

23. Tisi, M., Martínez, S., Jouault, F., Cabot, J.: Refining models with rule-based model transfor-
mations. Research Report RR-7582, INRIA (2011). URL https://hal.inria.fr/inria-00580033

24. Voelter, M.: Language and IDE Modularization and Composition with MPS, pp. 383–430.
Springer, Berlin, Heidelberg (2013). DOI 10.1007/978-3-642-35992-7_11

http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
https://hal.inria.fr/inria-00580033

	Generation of Inductive Types from Ecore Metamodels

