
HAL Id: hal-02021357
https://hal.science/hal-02021357

Submitted on 15 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Finite State Machine Modeling Language and the
Associated Tools allowing Fast Prototyping for FPGA

Devices
Bertrand Vandeportaele

To cite this version:
Bertrand Vandeportaele. A Finite State Machine Modeling Language and the Associated Tools al-
lowing Fast Prototyping for FPGA Devices. IEEE International Workshop of Electronics, Control,
Measurement, Signals and their Application to Mechatronics (ECMSM 2017), May 2017, Donostia,
Spain. pp.253-258, �10.1109/ECMSM.2017.7945900�. �hal-02021357�

https://hal.science/hal-02021357
https://hal.archives-ouvertes.fr

A Finite State Machine Modeling Language and the
Associated Tools allowing Fast Prototyping for

FPGA Devices
Bertrand Vandeportaele

LAAS-CNRS, Université de Toulouse,
CNRS, UPS, Toulouse, France.

Email: http://homepages.laas.fr/bvandepo/

Abstract—The VHDL hardware description language is com-
monly used to describe Finite State Machine(FSM) models to be
implemented on Field Programmable Gate Array(FPGA) devices.
However, its versatility permits to describe behaviors that deviate
from a true FSM leading to systems that are complex to prove,
to document and to maintain.

The purpose of this work is to propose a language and
the associated tools to create FSMs through a dedicated and
intuitive textual description. This language is inspired by the dot
language used in Graphviz, a tool to define graphs, and adds
all the necessary elements required to describe complex FSM
models (using for instance memorized or non memorized actions
and actions on states or transitions). Moreover some additional
elements are proposed to enrich the standard FSM model such
as the genericity that permits to define simultaneously multiple
states, transitions or actions using a generative description.

A multi-platform open source JAVA program named FSMPro-
cess [1] is introduced. Based on the ANTLR parser generator, it
achieves the automatic generation of all the required .vhdl files
(component, package, instantiation example and testbench) and
a .dot file that is used to generate an always up-to-date graphical
representation of the model (hence its documentation).

This tool also supports simple model checking and integration
of additional VHDL code. It can be used conjointly with version
control systems and is coupled with the open source GHDL
simulator to allow fast prototyping. It can be used either with
its Graphical User Interface either as a command line compiler
for integration in makefiles.

I. INTRODUCTION

The Finite State Machine (FSM) model is a model of
choice to describe a sequential system who do not require
parallelism in its evolution (even if it allows parallelism for
its actions or parallelism of execution of multiple models).
This kind of model can be implemented using a behavioral
description in VHDL language to configure logic devices
(CPLD or FPGA) and achieve higher clock speed and lower
resources requirements compared with the implementation on
generic processors (CPU). While [2] proposes some systematic
translation rules to obtain the VHDL code from the model,
many other rules are observed in the literature and in source
files from different projects. As the VHDL language is not
specifically designed to implement FSM models, it offers
degrees of freedom possibly leading developers to generate
behaviors that deviate from the model.

In this paper, we propose to define and use a grammar
that matches the FSM model structure, allowing a compact
and minimalistic description of the model. This provide a
kind of bijection between the model and its implementation,
that allows to easily modify the model and thus permits to
implement the model at the same time it is being constructed.

This work is inspired from SHDL (Simple Hardware De-
scription Language) [3], a structural description language
that aimed different goals but used the same philosophy: to
describe a model in an adapted language and to export it to
the targeted language using a compiler.

A compiler named FSMProcess [1], based on the ANTLR
v4 [4] generic parser generator is introduced and distributed
as open source. It features all the necessary functionality to
design complex FSM models in an interactive way. This tools
allows automatic inference of the interface of the model and
generation of various VHDL files.

The paper is organized as follow: A simple example ap-
plication is firstly introduced to demonstrate the usage of the
FSM language to implement and test the model. Then, the
processing pipeline involving other open source software is
presented. Next, the FSM language is described and some
simple model checking that are achieved on FSM models are
presented. Finally, future improvements are proposed.

II. A SIMPLE APPLICATION EXAMPLE

A simple system is used as an example to present both the
basics of the language and the operation of the compiler. The
chosen system’s role is to count the angular position provided
by two inputs (named A and B) connected to the outputs
of an optical encoder based on two optical forks. This well
known problem can be solved using the state machine model
presented in the figure 1. This model pilots a counter which
is either incremented or decremented at particular time when
the INC and DEC signals are generated. The INC (resp. DEC)
signal is generated once when the system is in the state 0 (resp.
1) and the A input exhibits a rising (resp. falling) edge.

Fig. 1. The graphic representation of the example model. It is automatically
generated by the proposed tool conjointly with graphviz.

A. Model Description

This basic model is described in the FSM language in an
easy to interpret form by the following code, describing states,
transitions, conditions and actions:

0->1?A:INC;
1->0?NOT A:DEC;
1->2?B;
2->1?NOT B;
2->3?NOT A;
3->2?A;
3->0?NOT B;
0->3?B;

B. Embedded VHDL code

This model is augmented with some embedded VHDL code
through pragma directives. Readers familiar with VHDL eas-
ily recognize COUNT as the 16 bits output of a standard binary
counter that can be synchronously reset by a SRAZ CPT
input.

#pragma_vhdl_entity{ COUNT : buffer
std_logic_vector(15 downto 0);

SRAZ_CPT : in std_logic; }#pragma
#pragma_vhdl_promote_to_buffer{INC,DEC}#pragma
#pragma_vhdl_architecture_post_begin{
--counter:
Process (ck, arazb)
begin

if arazb=’0’ then count <= (others=>’0’);
elsif ck’event and ck=’1’ then

if sraz_cpt=’1’ then
count <= (others=>’0’);

elsif inc=’1’ then
count <=count+1;

elsif dec=’1’ then
count <=count-1;

end if;
end if;

end process;
}#pragma

The proposed compiler is able to process this two concise
parts of code and to automatically generate the following
VHDL code, inferring inputs, outputs etc. and allowing the
automatic generation of the graph shown in the figure 1. The
real output of the compiler contains additional comments that
ease the comprehension of the generated code but that are too
long to display in this paper. Additional outputs displaying

the current states number in binary are also automatically
generated.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity quadencoder is
port (

CK : in std_logic;
ARAZB : in std_logic;
STATE_NUMBER : out std_logic_vector(1

downto 0);
A : in std_logic;
B : in std_logic;
SRAZ_CPT : in std_logic ;
COUNT : buffer std_logic_vector (15

downto 0) ;
DEC : buffer std_logic;
INC : buffer std_logic);

end quadencoder;

architecture ar of quadencoder is
type fsm_state is (state_0, state_1, state_2,

state_3);
signal current_state, next_state : fsm_state;
signal value_one_internal: std_logic;
begin
Process (ck, arazb)
begin

if arazb=’0’ then count <= (others=>’0’);
elsif ck’event and ck=’1’ then

if sraz_cpt=’1’ then
count <= (others=>’0’);

elsif inc=’1’ then
count <=count+1;

elsif dec=’1’ then
count <=count-1;

end if;
end if;

end process;
value_one_internal <=’1’;
process (CK, ARAZB)
begin

if (ARAZB=’0’) then current_state
<=state_0;

elsif CK’event and CK=’1’ then
current_state<=next_state;

end if;
end process;
process (current_state, A, B)
begin

case current_state is
when state_0 => if ((A) = ’1’) then

next_state <= state_1;
elsif ((B) = ’1’) then

next_state <= state_3;
else next_state <= state_0;
end if;

when state_1 => if ((NOT A) = ’1’)
then next_state <= state_0;

elsif ((B) = ’1’) then
next_state <= state_2;

else next_state <= state_1;
end if;

when state_2 => if ((NOT B) = ’1’)

then next_state <= state_1;
elsif ((NOT A) = ’1’)

then next_state <=
state_3;

else next_state <= state_2;
end if;

when state_3 => if ((A) = ’1’) then
next_state <= state_2;

elsif ((NOT B) = ’1’)
then next_state <=
state_0;

else next_state <= state_3;
end if;

end case;
end process;

DEC <= ’1’ when ((current_state =
state_1) and (((NOT A)) = ’1’))
else

’0’;
INC <= ’1’ when ((current_state =

state_0) and (((A)) = ’1’)) else
’0’;

state_number <= "00" when (current_state =
state_0)

else "01" when (current_state
= state_1)

else "10" when (current_state
= state_2)

else "11" when (current_state
= state_3)

else "11";
end ar;

The generated code exhibits the verbosity of the VHDL
language. Compared with the model description using the FSM
language, the VHDL code is much longer, harder to understand
and modify, and prone to coding errors.

C. Simulation

The test of the model implementation is usually achieved
through testbenches which imply to write non synthesizable
VHDL code. The proposed compiler is able to generate
automatically complete testbench files from a short description
in the FSM file. For instance, the following concise FSM code
allows the generation of a complete testbench.

#pragma_vhdl_testbench{
wait until (ck’event and ck=’0’);
sraz_cpt<=’1’;
wait for ck_period;
sraz_cpt<=’0’;
A<=’0’;
B<=’0’;
wait for ck_period;
A<=’1’;
wait for ck_period*3;
A<=’0’;
wait for ck_period*3;
for i in 0 to 255 loop
A<=’1’;
wait for ck_period*3;
B<=’1’;
wait for ck_period*3;

A<=’0’;
wait for ck_period*3;
B<=’0’;
wait for ck_period*3;
END LOOP;
wait for ck_period*80;
}#pragma

The simulation consists in evaluating the testbench. The
figure 2 shows the chronograms generated from it: while
A and B inputs are sequentially activated, INC and DEC
signal are generated by the state machine and the counter
value evolves in the sequence 0,-1 (0xffff in 16bits signed
representation),0,1.

D. Use of the generated component

A package file containing the generated component and
another file containing an example of instantiation with default
port map are automatically generated by the compiler.

III. PROCESSING PIPELINE

The proposed processing pipeline involves the open source
FSM compiler [1] introduced in this paper and other free open
source tools:

• Ghdl [5] : a fast VHDL simulator based on the compila-
tion of the testbench to x86 code.

• GTKWave [6] : to display waveforms.
• Graphviz [7]: to generate bitmap and vector graphics

of graphs with nodes and oriented arcs from a textual
description in a .dot file.

A. Interactive development of single components

The FSM compiler is provided with a Graphical User
Interface to develop the model interactively. The user can
check in real time the model graphic representation and the
various generated VHDL files. Some shell scripts (for linux
and macos) and bat scripts (for windows) are provided to
automatize the process of the files generation, allowing fast
testbench execution through the use of Ghdl and GTKWave.
The figure 3 recapitulates the different files being generated
during the process, those in the second row being generated
by the FSM compiler itself.

The image files generated from the .dot file supply an
uptodate documentation about the model, and a text log
file indicates errors and warnings about the compilation and
pointing some possible model checking failures as described
further.

This processing pipeline permits to ease the simulation of
the model while the model is being described, ie. to allow
the user to visualize the testbench execution interactively. To
achieve that purpose, Ghdl is invoked and vcd file containing
the waveform are generated. At the first time GTKWave is
launched on this .vcd file, the user has to configure manually
how the signals are organized. This settings are saved in a .sav
file and are later reused even if additional signals are added
or removed from the model, allowing a very effective mean
of developing incrementally.

Fig. 2. Testbench simulation using GHDL. Screen capture from the GTKWave software.

Fig. 3. The Processing Pipeline.

B. Use in large projects

Large projects generally implies a large amount of files with
dependencies, ie. some have to be processed firstly before
others can be. This is commonly done through Makefiles that
describe recipes to generate the different files up to the top
level entity. The FSM compiler can be used in such a context,
without the GUI, to generate silently its output to different
files. Moreover, as the fsm files are essentially text files, they
can reliably be managed by versioning tools like Git.

IV. THE FSM LANGUAGE

A. Basic syntax

The very basic syntax of the proposed language is derived
below. A more complete definition is given in the ANTLR v4
[4] grammar definition file (.g4) provided with the sources of

the compiler but it requires the reader to master the ANTLR
v4 grammar definition rules and this is out of the scope of this
paper.

A Fsm model is described as a list of instructions whose
order is generally not significant. These instructions are ended
by ;. Spaces and tabulations can be inserted to organize
the text for the user’s convenience and the language is case
insensitive like the VHDL.

Some comments can be added anywhere in the code using
the C syntax, ie. // operator for end of line comment and /*
*/ operators for multiline comments.

A state is described simply by its name. Optionally, multiple
actions can be attached to it, separated by the : operator.

origin_state1;
origin_state2:action_1:...:action_n;

A transition between two states is described using the
-> operator. An optional condition can be added using the ?
operator. A condition is a boolean expression using operators
from the VHDL language. Transitions involving states that
were not previously described will automatically generate
the corresponding states. Optionally, multiple actions can be
attached to a transition, separated by the : operator.

origin_state1->destination_state1;
origin_state2->destination_state2?condition;
origin_state3->destination_state3:action_1...

:action_n;
origin_state4->destination_state4?condition:

action_1:...:action_n;

When multiple transitions are defined from a given state,
the conditions has to be mutually exclusive. To free the user
from having to explicitly write mutually exclusive conditions,
a priority operator * is used to set the priority level of
each transition, the lower value being the higher priority. The
default priority value is 1000.

origin_state->destination_state*priority?
condition:actions;

The actions supported by the model are of two kinds. First,
the default actions involve non memorized outputs which
are implicitly set to the 0 when not set. Otherwise they can

be set to 1 or to the value of a condition involving VHDL
operators. These actions are defined using the optional I and
the , operator as follow, multiple actions being separated by
the : operator.

action_1:I,action_2:I,action_3=condition

The second kind of actions involves memorized outputs
and more complex management. The initial value of such
outputs at start up is defined in the same instruction than the
asynchronous reset as shown further. Three kind of actions can
be defined on memorized outputs: it can be reset to 0 using the
R operator, be set to 1 using the S operator or memorize the
value of a VHDL expression using the M operator. The reset
and set actions can be conditioned by a VHDL condition.

S,action_1:R,action_2:M,action_3=expression
S,action_1=condition1:R,action_2=condition2

B. Advanced syntax

More advanced features of the syntax are described below,
enriching the traditional model of the FSM.

The first described state is chosen by default as the initial
state for the model (shown as a double circle in the graph). It is
the active state at start up and when the asynchronous reset
is triggered. The signal, active level and initial state can be
redefined using the => operator. Initial values for memorized
outputs can also be defined (this can generate some synthesis
problems for some FPGA depending on its reset circuitry).

=>state_1?asynchronous_reset_input_name,
asynchronous_reset_active_value:
output=initial_value...;

//example: =>state_1?CLRN,1: out1=IN3;

The clock signal can be changed from its default name CK
to another one using the / operator.

/clock_input_name;

Actions can be defined once whatever the current active
state of the model is to avoid the definition of the action in
every states. These actions are defined using the % operator.
This could for instance be used to describe a memorized output
that is set during a particular transition and reset anytime under
a condition. This also allows to generate easily a one clock
cycle delayed version of a signal using a M type of action.

%action1;

Synchronous reset transitions can be defined using the
-> operator without state name on the left side. This allows
to define in a single instruction potential transitions from any
state including the destination state. Actions can be attached
to such transitions and a VHDL condition is used to trigger
the reset. A priority mechanism is used to determine which
transition should be done, synchronous reset transitions having
always an higher priority than standard transitions.

->destination_state1*priority?condition:actions;

C. VHDL code inclusion and interfacing with the FSM model
The inclusion of external language inside the FSM language

is achieved through pragma directives. If such a directives
uses arguments, its has to be ended by the following statement:

}#pragma

An input or an output generated from an action of the fsm
model can be promoted to a buffer to be reused internally
by the embedded VHDL code.

#pragma_vhdl_promote_to_buffer{output_name,...

The automatic buffering of the outputs being used as input
in the fsm model can be authorized through:

#pragma_vhdl_allow_automatic_buffering

An input or an output generated from an action in the FSM
can be demoted to signal to map it to an internal signal instead
of an input or output signal:

#pragma_vhdl_demote_to_signal{output_name,...

Various VHDL code can be included in the FSM files, such
as the inclusion of libraries, the addition of inputs or outputs,
the definition of internal signals and the internal architecture
description are inserted using the following statements:

#pragma_vhdl_pre_entity{
#pragma_vhdl_entity{
#pragma_vhdl_architecture_pre_begin{
#pragma_vhdl_architecture_post_begin{

As shown in the example, VHDL testbench is defined using:

#pragma_vhdl_init_testbench{

D. Genericity in the FSM model
Defining state names with an optional base name and

ending with a number, the FSM syntax also permits multiple
definitions in single instruction. For instance, multiple sates
are defined using (, to and) operators:

base_state_name(number_begin to number_end);

Same actions occurring in multiple sates are defined by:

base_state_name(number_begin to
number_end):actions...;

Mutliple transitions in cascade (from one state to the next
one) using the same condition for the transitions are using the
operator:

#base_state_name(number_begin to
number_end)?condition;

Fig. 4. Generated FSM model for generic parameter N=4.

Priorities and actions can be attached to such transitions
using:

#base_state_name(number_begin to
number_end)*priority?condition:actions....;

The concept of generic parameters used in the VHDL
language is supported in FSM using:

#pragma_vhdl_generic_directive{
parameter_name : parameter_type :=
defaut_value; ...

The effective value of the generic parameter is set at compile
time and this allows to adapt the generated component. For
instances, N and M being two integer generic parameters, the
width of an input B can be adapted using:

#pragma_vhdl_entity{ B : in
std_logic_vector(N -1 downto M+2);}#pragma

This concept of genericity is pushed further in the FSM
language allowing to define the model itself according to
generic parameters. We just provide a short overview here
due to lack of space. A FSM generic parameter is replaced
by its actual value by the precompiler. Arithmetic operations
achieved (for instance +,-,/,*, log...) on numeric generic pa-
rameters are evaluated if inserted in pragma:

#pragma_fsm_generic{ generic operation
involving generic parameters....

This allows for instance to define transitions between states
that depend on the parameter’s value. Combined with the
definition of multiple transitions in cascade, this permits to
define FSM model whose portions of graphs correspond to dif-
ferent number of states. This is exploited in multiple examples
provided with the compiler. For instance, this generic FSM
model describes the sequencing of the successive division
operations of two N bits operands and the figure 4 shows its
graph for a value of N=4 :

=>0?RESETN;
->1?START;
0->1?START;
#(1 to #pragma_fsm_generic{N+1}#pragma);
(1 to #pragma_fsm_generic{N}#pragma):COMPUTE;
#pragma_fsm_generic{N+1}#pragma:RESULT_AVAILABLE;

V. SIMPLE MODEL CHECKING

As the FSM model is processed by the compiler, some
simple model checking is achieved to verify the coherence
of the description. A brief overview is shown here. For

instance, if multiple transitions are defined from a given state,
the compiler can check if the corresponding conditions are
mutually exclusive and generates a warning to ask the user to
define priorities to disambiguate the model description.

As the FSM syntax is less verbose than VHDL, information
have to be inferred from the model description. For instance
used signals are detected as input, memorized or non memo-
rized outputs, buffered signal as the model description is being
compiled. The coherency between the different usages of the
signals is being checked.

Inaccessible states are detected in the model. The results of
the model checking are reported in a log file in the form of a
textual description of errors and warnings.

VI. CONCLUSION AND FUTURE WORKS

A language to describe quickly and efficiently complex
models of finite state machines has been introduced. Inclusion
of some device dependent code (FPGA for logic devices) has
also been proposed to facilitate the description of systems that
contain logic alongside the FSM model. An open source com-
piler has been presented and a complete processing pipeline
based on free open source software has been proposed to pro-
vide a complete tool allowing complex system design from the
modeling and documentation to the functional simulation. This
tool has a potential for industrial and educational purposes as
it allows shorten development times, easier code maintenance
and documentation and it is less prone to error thanks to a the
use of a language that is specifically adapted to the model.

The FSM compiler [1] is provided with many exam-
ples showing more complex models that involve advanced
functionality. For instance a simple soft core, multi clock
cycles generic arithmetic operator (multiplication, division
etc.), generic converters (for instance binary to BCD) and
communication interfaces are provided.

In a near future, the model checking will be further investi-
gated and the proposed compiler should integrate the export of
the model to different languages (Verilog) and different hard-
ware architectures (microprocessors using C language). This
later (and simple to achieve) improvement would ease the co-
design for architectures that integrate both microprocessor(s)
and logic by describing the sequential parts of a whole system
without requiring to firstly define on what kind of hardware
they will later be executed.

An online version of the tool is also planed as it would allow
potential users to try it without requiring specific installation
on the client’s computer.

REFERENCES

[1] B. Vandeportaele, https://github.com/bvandepo/FSMProcess
[2] A. Nketsa and D. Delauzun, Electronique numérique : systèmes

numériques complexes, Ellipses, 2012.
[3] J.C. Buisson, Processeurs - Concevoir son micro-processeur - Structure

des systèmes logiques, Ellipses, 2006.
[4] T. Parr, The Definitive ANTLR 4 Reference, Pragmatic Bookshelf, 2013.
[5] T. Gingold, GHDL, http://ghdl.free.fr/.
[6] GTKWave, http://gtkwave.sourceforge.net/.
[7] Graphviz, http://www.graphviz.org/.

