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Abstract—System of Systems (SoS) engineering is a challenging
research direction because an SoS has distinctive characteristics
in comparison to distributed systems. UPMD and SysML provide
adequate frameworks and notations which help in the process of
modeling and architecting SoS. Projects such as DANSE and
COMPASS have selected the most relevant views among the
numerous views of UPDM. By nature, an SoS evolves after its
initial deployment. To deal with evolutions, the architect needs
to model configurations, what was not considered in previous
state of the art. Modeling configuration is indeed key before we
can model the evolution itself. In this paper, our contribution
is a new modeling process, based on UPDM and SysML, that
helps the architect in designing the configuration of an SoS. The
proposed process is illustrated with the case study of the French
emergency service.

I. INTRODUCTION

The growing complexity of distributed systems leads to con-
sider new engineering approaches. Among them, the system
of systems (SoS) approach [1] addresses the case in which
the constituents retain their own operational and managerial
independence. The architecture of a system of systems focuses
on the communications between its constituents, from which
the overall behavior emerges. Model-based techniques are
suitable to assist the architect with development, maintenance
and adaptation steps. Models of constituents, connectors and
environment are helpful to analyze trade-offs, to determine
the contracts binding the SoS to the constituents, and to deal
with complexity by documenting the structural, behavioral and
communication aspects of the system of systems.

In comparison to classic distributed systems, an SoS rises
specific issues that have to be dealt with, including hetero-
geneity that follows from managerial independence of the
constituents, difficulty to bound a system that is intrinsically
open, and dynamicity. Previous state of the art has highlighted
that UPDM provides an adequate framework and that SysML
is a set of suitable notations when an architect wants to
model an SoS, as evidenced by projects DANSE [2] and
COMPASS [3]. While UPDM is a large framework with
numerous views that address many aspects in the lifecycle
of a project, only valuable views are selected in the UPDM
framework in order to focus the work of the architect on
specific concerns.

In this paper, we focus more specifically on the following
characteristic: an SoS usually involves critical systems or
economic systems (e.g. emergency services, transportation
services) that cannot support the disruption or degradation of

some services. The SoS architecture continuously evolves and
the architect needs to evaluate the current architecture to re-
deploy it.

Accurate and precise models are therefore important ar-
tifacts in such evolutionary development of SoSs. For this
reason, in this paper, we focus more specifically on the
modeling of configurations.

Our main contribution is a process that helps an SoS
architect produce models for the configurations of the SoS
under consideration. To do this, our contribution relies on
the analysis of UPDM, DANSE and COMPASS. Then we
contribute an adapted selection the UPDM views that are
targeted at defining configurations for an SoS. We propose
the SysML notations that appear to be the most relevant ones
for these views.

The paper is organized as follows. The next section de-
scribes the real case study that we use to illustrate the modeling
process. Then, we investigate in Section III the related works
in order to identify the main modeling issues and existing
approaches to get the architectural charateristics needed to
model SoS architecture configurations. Section IV describes
the modeling process applied to the case study. Section V
discusses and motivates the choices we have made in the
proposed modeling process. Finally we draw conclusions and
perpsectives.

II. MOTIVATING USE CASE

We present in this section a typical use case that will
exemplify system of systems modeling. Our emergency rescue
SoS is based on the French emergency service whose mission
is to protect property and people. It is the setting up of an
exceptional rescue organization in the case of natural disasters.
Here it is about a flood of a whole area. The SoS is formed
by the interaction of several systems which cooperate to fulfill
an objective that they cannot provide individually.

The Figure 1 shows the main participants. There are several
rescue teams which are the constituent systems collaboraring
in the SoS. We consider:

• The departmental operation center of fire and help
(CODIS1) which oversees and coordinates the whole
operational activity of a departmental fire and rescue
service (SDIS2). Here two operation centers are involved

1Centre Opérationel Départemental d’Incendie et de Secours
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Fig. 1. French Emergency Service

CODIS56 and CODIS35. A SDIS is responsible for
transporting injured people, fighting fires and protecting
property.

• The SAMU3 is the center for emergency medical regula-
tion and regulates urgent care resources (ambulances for
example).

• Finally, the Civil Security, involved in major crisis situa-
tions, can provide air assets.

Each type of system is deployed on each French department
with its own funding and hierarchical structure, and it provides
its own communication infrastructure. The constituent systems
share the same telecommunication standard. Consequently,
systems can communicate with each other and/or share their
infrastructure.

We focus on three possible SoS configurations. The first one
considers two SDIS having an operational collaboration, that
is, they communicate directly, only with respect to field actions
performed in order to fulfill the mission. Such a collaboration
is set up, for instance, when one SDIS faces understaffing, and
it therefore requests missing resources from a neighbour SDIS
for a small-sized mission. In our scenario, this configuration is
used when inhabitants call for emergency services in response
to what is thought to be a localized flood.

In the second configuration, two SDIS have a tactical and
a strategic collaboration, that is, a hierarchical command
chain is set up. In addition to the operational collaboration,
the tactical collaboration allows commanders to communicate
with their subordinates, in order to give them instructions
and collect reports with regard to field actions. The strategic
collaboration ensures that consistent directions are adopted
by the collaborating SDIS in order to address higher-level
objectives defined by the mission. This second configuration
is used when the crisis is bigger, hence calling for more
resources than provided in the first configuration, and when
these resources require tight coordination. In our scenario, the
SoS evolves to this second configuration when the emergency
services discover that the flood is more critical than they
initially thought.

3Service d’Aide Médicale Urgente

Finally, in the third configuration, a SDIS collaborates with
the Emergency Medical Assistance Service (SAMU) and the
civil security. This configuration occurs when the fire and
rescue services need help from other services in order to deal
with the crisis. In our scenario, SAMU is involved in order to
regulate evacuation of wounded persons to closest hospitals,
and civil security provides helicopter resources when the flood
makes roads unusable.

III. SOS MODELING ISSUES

This section describes current practices in the context of
SoS modeling. We also emphasize issues that are specific to
the context of SoS.

On the one hand, standard modeling languages like UML
and SysML provide acknowledged notations, and XMI allows
tool interoperability. SysML relies on the core concept of
block, which is the unit of which a system is composed.
The block concept extends UML’s class with the notion of
composite structure. Within a system, blocks interact through
ports that can be connected to one another. Like UML, SysML
defines several diagrams, for both behavioral and structural
aspects of the system. While not being exhaustive, use case
diagrams describe interactions between users and the system;
sequence, activity and state machine diagrams describe the
course of action within blocks; block definition (bdd), internal
block (ibd) and parametric diagrams describe blocks and their
interactions.

On the other hand, the Unified Profile for DoDAF and
MODAF (UPDM [4]) is an architectural framework that pre-
scribes a comprehensive set of more than 40 views, which help
in the process of modeling and architecting SoS. Like its name
tells, it unifies the preexistent DoDAF and MODAF architec-
ture frameworks, from the USA Department of Defense and
UK Ministry of Defence respectively. The framework defines
a collection of modeling intentions, by describing the objective
of each specific view. The main groups of UPDM views are:

• Acquisition/Project Views (AcV/PV) describe organiza-
tional aspects of projects, including their timeline and
milestones.

• The All-Views (AV) gather global information and meta-
data about elements of the architecture.

• Operational Views (OV) are a collection of views that
describe the activities involved in the SoS, as well as
the resources (human or machinery) that perform these
activities.

• Service-Orientated Views (SOV) describe the services, in
terms of their interfaces, as well as the function services
are expected to perform in order implement activities
described in Operational Views.

• Strategic/Capability Views (StV/CV) are a group of cross-
project long-term views that describe and organize capa-
bilities of an organization, in anticipation of projects.

• System/Services Views (SV/SvcV) are a collection of
views that describe how operational capabilities described
in Operational Views and user requirements can be real-



ized in terms of equipment (or human) capability, that is,
the specification of constituents involved in the system.

• Technical/Standards Views (TV/StdV) describe technolo-
gies, rules and standards underpinning the implementa-
tion of the system, hence providing a tool to anticipate
technological progress or disruption that may affect the
system.

While UML and SysML are only languages and do not
provide any associated process, UPDM does not prescribe
any modeling language for none of the views. The two
technologies complement each other.

Instead of considering UPDM as a whole, and in order
to avoid the numerous views of UPDM, previous work in
the DANSE project [2] suggest to focus on selected views.
Operational View OV-1 is intended to describe the mission or
scenario of the SoS. Then, Operational View OV-5 aims at
describing the tasks involved in achieving the mission. Next,
Operational View OV-2 describes interactions and exchange
of information between operational capabilities of the system.
System View SV-5 traces what functions can implement the
operational capabilities of OV-5. System View SV-1 addresses
the composition and interaction of resources. Last, System
View SV-10A is used in order to express functional and non-
functional constraints.

The COMPASS project [3] also selects a subset of views,
but, unlike DANSE, the COMPASS project does not follow
UPDM. Though, some similarities can be observed, beginning
with the distinction between Operational View and System
View, named logical and physical, respectively. Most of the
views match the DANSE project, since both projects follow
the RUP process. But we observe the following differences.
Instead of a single view OV-1 to describe the mission of the
SoS, the COMPASS project uses two views: the first one gives
an outline of the general organization; the other one focuses
on the use cases expected from the SoS. Similarly, SV-1 is
split into one view specifically targeted at the relationship
between contituents and missions, and a separate view that
describes collaborations within the SoS. Last, COMPASS has
no counterpart for SV-10A.

Both DANSE and COMPASS reduce the architecture frame-
work according to targeted objectives. The differences between
the two reduced frameworks can be explained by different
objectives: on the one side, DANSE is more targeted at SoS
validation and adaptation to the environment; on the other side,
COMPASS focuses on SoS evolution.

In the remainder of this section, we focus on specific
modeling issues, and how these issues are addressed in the
state of the art.

A. Heterogeneity

Since an SoS establishes a collaboration between constituent
systems coming from several independent organizations, sev-
eral stakeholders are involved in the production of the corre-
sponding models. For instance, each fire department has it own
system organization which is different of SAMU organization.
But when it comes to the SoS, the models produced by

all these stakeholders must be combined. Heterogeneity of
languages and practices is an obstacle.

Altogether, UML/SysML/XMI and UPDM provide frame-
works that have good chance to be adopted by independent
organizations. In practice, both DANSE and COMPASS use
this combination for most of the diagrams they rely on.

In addition to modeling language and framework, the par-
ticipation of several independent stakeholders rises the issue
of concept (mis)alignment. To address this issue, [5], [6], [7],
[8] propose to use traceability information in order to describe
the relationship between related or similar concepts in models
produced by different stakeholders. UPDM defines traceability
views in order to help verifying that all the abstraction layers,
e.g., Operational View and System View are consistent with
one another.

B. SoS boundary

When an SoS is under definition, its border is generally
blurred in the sense that identifying the constituents of the
SoS is not trivial.

T-AREA [9] illustrates this issue with the example of
Apple’s supply chain. At that time, all of the Apple’s direct
suppliers for a specific category of batteries used to share the
same second-level supplier, for one of the critical materials.
Despite apparent redundancy when only the constituents di-
rectly contributing to the mission of the SoS were considered,
that shared supplier was in practice a single point of failure.
This was revealed by an earthquake which caused a disruption
of the shared supplier, according to [9]. In this case, if the
second-level supplier is not part of model, reliability analysis
of the SoS fails to report the weakness.

At the same time, in our case study of Section II, it is
obvious that modeling all the emergency services from all the
French departments (one hundred departments) is irrelevant.
Even if they all possibly provide resources, only few of them
have effective impact on the SoS. Only the services in the
departments where the flood is located, plus possibly the
neighbour departments, are significant.

The challenge is to decide which constituents should be
included in the models, while omitting those constituents that
do not provide valuable information.

In the DANSE project, described above, the boundary of the
SoS is defined by the production of UPDM’s OV-1 expressed
as a schematic picture. COMPASS uses in addition a use case
diagram.

C. Dynamicity

Due to its nature, an SoS can include hundreds of con-
stituents which are versatile. Consequently, dynamic models
are not as usable as in simpler systems.

To face this issue, [10] suggests to restrict the use of state
machine diagrams to the specification of contracts. [11], [12]
propose to focus models on static regularity of the considered
SoS. Instead of giving all the details of instances, the SoS is
described by a set of constraints over how constituents can be
connected to one another. The same approach is used in the
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DANSE project in SV-1: an internal block diagram is used
to model constraints on constituent connections. In that way,
the model represents any configuration that conforms to the
constraints, according to the environment.

D. Dynamic architecture
In our case study, we observe that an architecture is first

defined as a response to the initial call to the emergency
services. Then, while the SoS provides initial services, the
environment evolves or the environment is discovered to be
different from the initial thought. The SoS needs to evolve
accordingly. New constraints are required during the SoS
execution because new types of constituents are involved.
Consequently, architecture models are required during SoS
operation too. According to, e.g., [13], it is a good practice to
ensure clean separation of concerns between reconfiguration
logic and the rest of the architecture, while at the same time
reusing the same paradigms and description languages. To the
best of our knowledge, none of the previous SoS modeling
approaches take this issue into account.

E. Positioning of our work
In our work detailed in Section IV, in comparison to related

work, we specifically consider the configuration of the SoS
and its modeling, thus leading to a different combination of
choices. Indeed one objective of our work is in the context
of dynamic reconfiguration. We also put the emphasis on
the process in addition to the views and modeling language.
UPDM serves as a basis for our work, because it appears to
be well-adapted to the modeling of complex systems. With
respect to the identification of the boundary of the SoS,
we restrict to (semi-formal) structured notations: use case
diagrams in the context of OV-1. With regard to dynamicity,
we improve over previous approaches by introducing the use
of architectural styles, and more specifically the architectural
primitives [14].

IV. SYSTEM OF SYSTEMS MODELING PROCESS

This section is dedicated to the modeling process from
which the objective is to obtain the various configuration

Fig. 3. Use case diag. of operational collaboration between SDIS 56 and 35

models of our SoS. As we explained in the previous section,
we choose UPDM which is a good candidate to address
the modeling of complex systems. Our modeling process is
composed of four steps, which are outlined in Figure 2. The
process we propose is a top-down process, where the architect
first bounds the system under consideration by means of func-
tional analysis. Then the architect produces activity diagrams
for each use case to detail how the tasks performed by each
constituent can be combined to achieve SoS-level functions.
Next the architect identifies and composes the constituents by
means of block definition diagrams. Last the architect obtains
the configuration as an internal block diagram that describes
interactions between the constituents that have been engaged
in the system of systems to implement the activies previously
described.

As we do not have room to detail the three configurations
outlined in Section II, we will proceed with the process on the
first case, which is the initial configuration.

The first step of the process aims at drawing out the bound-
aries of the SoS under consideration. Similarly to UPDM’s
Operational View OV-1, our goal is to enumerate the func-
tionalities and missions expected from the SoS as well as
to elicit the actors that are related to these missions. A use
case diagram allows to describe the general organization with
coarse-level actors.

Figure 3 describes the operational collaboration between
two CODIS operators. The SDIS 56 operator needs to engage
a constituent belonging to SDIS 35: a vehicle equipped with a
pump (VTU). It is the first use case. Once the VTU is deployed
on the ground, an operational coordination must be established
between the SDIS 56 operator and the SDIS 35 team leader.
It is the second use case. These two actors communicate via



an operational canal as we see in the use case at the bottom
of the figure. Communication networks are concerned because
part of the path from the vehicle to the intervention is covered
by SDIS 35 network only.

The second step should detail the activities associated with
each use case. The operational view OV-5 in UPDM translates
into activity diagrams. For every use case previously identified,
an activity diagram describes the normal course of operations.
Figure 4 shows an activity diagram for the operational co-
ordination of the workforce. It illustrates the communication
protocol between the CODIS operator of SDIS 56 and the
SDIS 35 team leader, and the sending of the instructions by
the operator. The communication channel (here voice radio)
is shared. In consequence, the French procedure requires that
the CODIS operator first waits for the end of ongoing calls.
We see that phases of identification, confirmation of listening
and reception are required

The third step concentrates on the composition of the
constituents. The system view SV-1 in UPDM suggests using
block definition diagrams (bdd) to model the constituent
organization. Figure 5 shows this diagram for our exam-
ple. The actors are part of the constituents used by the
SoS. To differentiate between constituent classes, stereotypes
are mentioned such as <<human>>, <<software>> or
<<material>> with their intuitive interpretation. We can
see that the SoS aggregates CODIS operators, operational
communication channels and team leaders. Furthermore, at the
level of the material constituents we see that the CODIS has
a fixed communication post, every operational channel has a
relay and every team leader is in charge of a VTU.

Step four focuses on the interaction of constituents in the
SoS. The internal block diagram (ibd) in figure 6 shows
the operational coordination between SDIS 56 and SDIS
35. In our case study, CODIS operators communicate with
team leaders. As seen in the activity diagram Figure 4, the
collaboration protocol between a CODIS operator and a team
leader is a disciplined commander/subordinate relationship.
In the internal block diagram (ibd), we decided to reflect
this fact by introducing a tactical layer (containing CODIS
operator) and a distinct operational layer (containing team
leader). In order to document such design decisions, we
propose to rely on architectural primitives [14]. In Figure 6,
the <<Group>> stereotype annotates packages that denote
layers in the architecture. Package inclusion is used to connect
constituents with the package that models the layer to which
constituents belong. The internal block diagram hence states
that CODIS operator belongs to the CODIS56 layer (tactic
layer) and team leader belongs to the routine intervention
layer (operational layer). According to its definition in [14],
<<Group>> prevents direct communication between con-
stituents from distinct layers, which is indeed the constraint we
want to express, such that CODIS operator and team leader are
forced to use the operational channel in order to communicate.
The <<ShieldPort>> stereotype, from [14] annotates the
only port that is allowed for cross-layer communications. OCL
constraints enforce this restriction: these constraints ensure

Fig. 4. Activity diagrams



Fig. 5. bdd operational coordination between SDIS 56 and 35

Fig. 6. ibd of operational coordination between SDIS 56 and 35

that any binding either connects ports of constituents that
belong to the same <<Group>> package, or connects a port
to a <<ShieldPort>> port. The <<IShield>> stereotype
is used to denote shield interfaces, involved in cross-layer
interactions.

Finally we can consider the evolutions of the studied config-
uration. One evolution corresponds to the transition between
the first and the second configuration described in section II.
The number of constituents deployed for local intervention
(FloodingIntervention layer) has increased considerably, so
CODIS can no longer fully manage the intervention. A group
leader has to be deployed to supervise a local intervention.
CODIS 35 decides to deploy a group leader to assume the role
of CODIS operator in the previous configuration. Following
the same modeling approach, Figure 7 shows the resulting
configuration that corresponds to a strategic collaboration
beween SDIS 56 and SDIS 35. The <<Group>> primitives
are reused to model the partition of constituents and to define
communication points. The <<Layer>> primitives are intro-
duced to capture constraints, with an attribute levelNumber
that states the position of the layer in the hierarchical command
chain. An OCL constraint ensures that cross-layer interactions
through <<ShieldPort>> ports do not skip intermediate

Fig. 7. ibd of strategic collaboration between SDIS 56 and 35

levels in the command hierarchy. For example constituents
from FloodingIntervention layer cannot directly communicate
with constituents of the CODIS56 layer. Other configurations
exist for this case study which we cannot expose here.

Without going into all the details, we have described the
main steps of our modeling process which allows us to obtain
a modeling of an SOS configuration. All the diagrams obtained
form the basis of the SoS architecture. Our ultimate goal is to
be able to reconfigure the architecture of a SoS and facilitate
the transition from one configuration to another.

V. DISCUSSION

The work described in this paper lies in the context of a
larger work towards assisting the architect in the design of
reconfigurations when the SoS evolves. Even if this paper does
not address the specific issues of evolution and reconfiguration,
we keep this intention in mind as one of the goals of the model
that results from the process of Section IV. More specifically,
reconfiguring the SoS after deployment, when the SoS evolves,
requires to ensure runtime properties such as timeliness, safety,
continuity of operation. To correctly assess whether these
properties are met, modeled configurations must capture exact
and precise dependencies required by each constituent to
provide its services to the SoS.

In this regard, each view we select contributes in the fol-
lowing way. By adopting a top-down modeling approach, our
process forces the architect to address SoS boundary first. OV-
1 and the use-case diagram forces the architect to model the
goals of the SoS as well as the actors that interact to contribute
to these goals. Indeed, we use actors to model constituents.
OV-5 and the activity diagram help fully investigating the
boundary of the SoS. It requires the architect to tell what
constituents contribute to each goal of the SoS, and what



is the contribution of each constituent, modeled by lanes in
the activity diagram. It is an opportunity for the architect
to discover possibly missing constituents, and therefore to
ensure the boundary is correctly defined. SV-1, block definition
diagram and internal block diagram yield to the configuration
the architect intends to model: bdd details the type of the
constituents that fulfill the goals previously described in OV-1;
bdi shows dependencies between involved constituents, whose
knowledge will later be useful to ensure safety and continuity
of operation during reconfiguration.

In Section IV, we do not specifically address dynamicity
of the architecture. No UPDM view accounts for this specific
issue. We leave this issue for future contributions.

In this paper, we focus on a modeling process yielding to
a model of the SoS configuration, with subsequent reconfig-
uration in mind. This is the reason why we select only few
of the UPDM’s views. Of course, the proposed process of
Section IV can be included in a larger process that takes into
account additional concerns. In the following, we review why
other views are not relevant in the context we consider.

All-views gather only administrative information and in-
dexes. Acquisition views focus on organizational aspects such
as the definition of milestones and project timeline. These
views are clearly not releveant with respect to our context.

Strategic views define organization-level capabilities, in-
dependently of any system. In our case study, these views
describe capabilities listed in Section II as well as additional
capabilities such as chemical protection capabilities that have
been set up, e.g., in anticipation of plant incident. While
the content of strategic views may be helpful to design
configuration, the anticipation process that yields to strategic
views is not in the scope of our work.

Likewise, technical views track standards, rules and conven-
tions that the system implementation must satisfy. Technical
views describe for instance the communication conventions
that we have implemented in the activity diagrams of Figure 4
or the hierarchical organization modeled by the <<Layer>>
stereotype in Figure 7. The process of producing technical
views is beyond the scope of our work.

Service-orientated views are used to associate capabilities
identified in the operational views with services, that is, units
of work with well-defined required and provided interfaces,
which are in turn performed by the configuration described
in system views. In Section IV, we skip service-orientated
views, because we are more interested in the configuration
that describes interactions between constituents, rather than
the services they implement.

Regarding operational views, we have selected only OV-1
and OV-5, that is, the goals of the SoS as well as the normal
course of actions for each goal. Indeed, other operational views
concern information model and organizational aspects. Hence
other operational views are not of interest in our context. Re-
garding system views, we have chosen to consider only SV-1,
the specification of constituent interactions. While SV-2 would
describe links between constituents, we observe that sufficient
information in this regard has already been embedded in SV-1.

SV-8 models system evolution as a timeline, where each mile-
stone is characterized by a group of member constituents. In
our approach, we rather foresee that each milestone is going to
be characterized by a complete SV-1 model, hence containing
a group of member constituents along with connection paths
in order to be able to describe richer evolutions. Other system
views address behavior models, non-functional properties and
information models, and are therefore not of interest in the
context of our work.

VI. CONCLUSION

In this paper, we proposed a process that helps an architect
in designing the configurations of an SoS. For that we selected
adequate UPDM views that are relevant with respect to this
modeling objective. First, the architect draws out the bound-
aries of the SoS under consideration, yielding to OV-1 as a
use case diagram. In the second step, the architect details the
activities associated with each use case, resulting in activity
diagrams representing OV-5. In the third step, the architect
focuses on the organization of the constituents, yielding to
block definition diagrams for SV-1. Last, in the fourth step,
the architect designs configurations, which describe constituent
interactions as internal block diagrams.

To illustrate the proposed process, we applied it to a real use
case, the French emergency service. After having informally
described the scenario, our process allowed us to design
several configurations, one for each evolution of the SoS. For
space reason, in this paper, only two of these configurations
are depicted.

For our future work, we plan to rely on the modeled
configurations following the proposed process in order to
further study the reconfiguration of the SoS architecture. To
this end, we will reuse our previous work [15], that defines
reconfiguration patterns, in order to model how the SoS
changes its configuration each time an evolution is required.
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